Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
787a22a9
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
403
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
787a22a9
编写于
4月 12, 2022
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
perf(tensor): implement __new__ in cpp
GitOrigin-RevId: 4defd249c3ca673ec67648c4f8aaa1858eb00447
上级
99df4a79
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
432 addition
and
114 deletion
+432
-114
imperative/python/megengine/core/_wrap.py
imperative/python/megengine/core/_wrap.py
+4
-0
imperative/python/megengine/tensor.py
imperative/python/megengine/tensor.py
+0
-33
imperative/python/src/common.cpp
imperative/python/src/common.cpp
+5
-0
imperative/python/src/common.h
imperative/python/src/common.h
+3
-1
imperative/python/src/tensor.cpp
imperative/python/src/tensor.cpp
+405
-63
imperative/python/src/tensor.h
imperative/python/src/tensor.h
+7
-16
imperative/python/test/unit/core/test_tensor_wrapper.py
imperative/python/test/unit/core/test_tensor_wrapper.py
+7
-0
src/core/include/megbrain/dtype.h
src/core/include/megbrain/dtype.h
+1
-1
未找到文件。
imperative/python/megengine/core/_wrap.py
浏览文件 @
787a22a9
...
...
@@ -9,6 +9,7 @@
import
numpy
as
np
from
._imperative_rt
import
CompNode
from
._imperative_rt.core2
import
set_py_device_type
class
Device
:
...
...
@@ -53,3 +54,6 @@ def as_device(obj):
if
isinstance
(
obj
,
Device
):
return
obj
return
Device
(
obj
)
set_py_device_type
(
Device
)
imperative/python/megengine/tensor.py
浏览文件 @
787a22a9
...
...
@@ -72,39 +72,6 @@ class Tensor(_Tensor, ArrayMethodMixin):
_short_name
=
None
_prefix
=
None
def
__new__
(
cls
,
data
:
Union
[
"Tensor"
,
np
.
ndarray
,
list
,
int
,
float
]
=
None
,
dtype
:
np
.
dtype
=
None
,
device
:
str
=
None
,
is_const
:
bool
=
False
,
no_cache
:
bool
=
False
,
name
:
str
=
None
,
):
if
data
is
None
:
data
=
[]
if
device
is
None
:
cn
=
get_default_device
()
elif
isinstance
(
device
,
str
):
if
cls
.
dmap_callback
is
not
None
:
cn
=
CompNode
(
cls
.
dmap_callback
(
device
))
else
:
cn
=
CompNode
(
device
)
else
:
if
isinstance
(
device
,
CompNode
):
cn
=
device
else
:
cn
=
device
.
_cn
if
isinstance
(
data
,
_Tensor
):
obj
=
_Tensor
.
__new__
(
cls
,
data
)
else
:
if
isinstance
(
data
,
np
.
ndarray
):
if
0
in
data
.
strides
:
data
=
data
.
squeeze
().
reshape
(
data
.
shape
)
obj
=
_Tensor
.
__new__
(
cls
,
data
,
dtype
,
cn
,
is_const
,
no_cache
,
name
)
return
obj
def
__init__
(
self
,
data
:
Union
[
"Tensor"
,
np
.
ndarray
,
list
,
int
,
float
],
...
...
imperative/python/src/common.cpp
浏览文件 @
787a22a9
...
...
@@ -12,6 +12,7 @@
#include "./common.h"
#include <pybind11/operators.h>
#include <pybind11/pytypes.h>
#include "./helper.h"
#include "./numpy_dtypes.h"
...
...
@@ -56,6 +57,8 @@ std::string get_default_device() {
return
default_device
;
}
py
::
handle
py_comp_node_type
;
void
init_common
(
py
::
module
m
)
{
auto
PyCompNode
=
py
::
class_
<
CompNode
>
(
m
,
"CompNode"
)
...
...
@@ -117,6 +120,8 @@ void init_common(py::module m) {
},
[](
py
::
str
cn
)
{
return
CompNode
::
load
(
cn
);
}));
py_comp_node_type
=
PyCompNode
.
inc_ref
();
py
::
class_
<
CompNode
::
Event
,
std
::
shared_ptr
<
CompNode
::
Event
>>
(
PyCompNode
,
"Event"
)
.
def
(
"record"
,
&
CompNode
::
Event
::
record
)
.
def
(
"wait"
,
&
CompNode
::
Event
::
host_wait
);
...
...
imperative/python/src/common.h
浏览文件 @
787a22a9
...
...
@@ -17,3 +17,5 @@ void init_common(pybind11::module m);
void
set_default_device
(
const
std
::
string
&
device
);
std
::
string
get_default_device
();
extern
pybind11
::
handle
py_comp_node_type
;
imperative/python/src/tensor.cpp
浏览文件 @
787a22a9
...
...
@@ -42,6 +42,7 @@
#include <pybind11/operators.h>
#include <pybind11/pytypes.h>
#include <pyerrors.h>
#include <iterator>
#include <range/v3/all.hpp>
#include <string>
...
...
@@ -108,6 +109,7 @@ struct SymbolVarContext {
interpreter
::
Interpreter
::
Channel
*
interpreter_for_py
=
nullptr
;
PyTypeObject
*
py_tensor_type
=
nullptr
;
pybind11
::
handle
py_device_type
=
nullptr
;
PyObject
*
cpp_use_symbolic_shape
;
#define REGISTE_APPLY_FUNC(mode) \
...
...
@@ -233,70 +235,410 @@ PyObject* py_apply(
PYEXT17_TRANSLATE_EXC_RET
(
nullptr
)
}
TensorWrapper
::
TensorWrapper
(
PyObject
*
args
,
PyObject
*
kwargs
)
{
if
(
kwargs
&&
PyDict_Size
(
kwargs
))
{
throw
py
::
type_error
(
"keyword argument not allowed"
);
namespace
{
template
<
typename
T
>
py
::
handle
py_type
()
{
if
constexpr
(
std
::
is_same_v
<
T
,
py
::
int_
>
)
{
return
(
PyObject
*
)
&
PyLong_Type
;
}
else
if
constexpr
(
std
::
is_same_v
<
T
,
py
::
float_
>
)
{
return
(
PyObject
*
)
&
PyFloat_Type
;
}
else
if
constexpr
(
std
::
is_same_v
<
T
,
py
::
tuple
>
)
{
return
(
PyObject
*
)
&
PyTuple_Type
;
}
else
if
constexpr
(
std
::
is_same_v
<
T
,
py
::
list
>
)
{
return
(
PyObject
*
)
&
PyList_Type
;
}
else
{
static_assert
(
std
::
is_same_v
<
T
,
T
>
);
}
auto
nargs
=
PyTuple_Size
(
args
);
auto
tup
=
py
::
reinterpret_borrow
<
py
::
tuple
>
(
args
);
if
(
nargs
==
0
)
{
throw
py
::
type_error
(
"too few arguments"
);
}
template
<
typename
T
>
auto
scalar2storage
(
T
val
,
CompNode
cn
,
DType
dtype
)
{
using
max_ctype_t
=
DTypeScalar
::
max_ctype
;
DTypeScalar
scalar
(
dtype
);
scalar
.
set_retain_dtype
(
val
);
HostTensorStorage
storage
(
cn
);
auto
*
raw_ptr
=
reinterpret_cast
<
dt_byte
*>
(
new
max_ctype_t
());
std
::
shared_ptr
<
dt_byte
>
raw_storage
=
{
raw_ptr
,
[](
dt_byte
*
ptr
)
{
delete
reinterpret_cast
<
max_ctype_t
*>
(
ptr
);
}};
storage
.
only_reset_raw_storage
(
cn
,
dtype
.
size
(),
raw_storage
,
0
);
std
::
memcpy
(
storage
.
ptr
(),
scalar
.
storage
(),
dtype
.
size
());
return
HostStorage
::
make
(
std
::
move
(
storage
));
}
template
<
typename
ctype
>
auto
vec2storage
(
Span
<
DTypeScalar
>
vec
,
CompNode
cn
,
DType
dtype
)
{
mgb_assert
(
vec
.
size
()
<=
MEGDNN_MAX_NDIM
);
// TODO: use storage cache and modify ConstTensorCache to return (Host, Device)
auto
*
raw_ptr
=
new
ctype
[
MEGDNN_MAX_NDIM
];
for
(
size_t
i
=
0
;
i
<
vec
.
size
();
++
i
)
{
raw_ptr
[
i
]
=
vec
[
i
].
get_cast
<
ctype
>
();
}
mgb_assert
(
sizeof
(
ctype
)
==
dtype
.
size
());
std
::
shared_ptr
<
dt_byte
>
raw_storage
=
{
reinterpret_cast
<
dt_byte
*>
(
raw_ptr
),
[](
dt_byte
*
ptr
)
{
delete
[]
reinterpret_cast
<
ctype
*>
(
ptr
);
}};
HostTensorStorage
storage
(
cn
);
storage
.
only_reset_raw_storage
(
cn
,
sizeof
(
ctype
)
*
vec
.
size
(),
raw_storage
,
0
);
return
HostStorage
::
make
(
std
::
move
(
storage
));
}
struct
HostTensorArgs
{
ValueShape
shape
;
DType
dtype
;
HostStorage
::
ref_t
storage
;
HostTensorND
as_tensor_nd
()
const
{
HostTensorND
ret
(
CompNode
::
default_cpu
(),
shape
.
as_tensor_shape
(),
dtype
);
ret
.
only_reset_raw_storage
(
*
storage
);
return
ret
;
}
if
(
auto
*
t
=
try_cast
(
tup
[
0
].
ptr
()))
{
if
(
nargs
>
1
)
{
throw
py
::
type_error
(
"expect 1 argument"
);
};
template
<
typename
seq_type
,
typename
ctype
>
bool
pyseq2hval
(
seq_type
obj
,
CompNode
cn
,
DType
dtype
,
HostTensorArgs
&
ret
)
{
auto
size
=
obj
.
size
();
if
(
size
>
MEGDNN_MAX_NDIM
)
{
return
false
;
}
m_tensor
=
t
->
m_tensor
->
copy
();
ctype
items
[
size
];
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
py
::
handle
item
=
obj
[
i
];
if
(
item
.
get_type
().
is
(
py_type
<
py
::
int_
>
()))
{
items
[
i
]
=
(
ctype
)(
dt_int32
)
item
.
template
cast
<
py
::
int_
>();
}
else
if
(
item
.
get_type
().
is
(
py_type
<
py
::
float_
>
()))
{
items
[
i
]
=
(
ctype
)(
dt_float32
)
item
.
template
cast
<
py
::
float_
>();
}
else
{
if
(
nargs
==
1
)
{
auto
arg0
=
PyTuple_GetItem
(
args
,
0
);
// for DeviceTensorND
if
(
strstr
(
arg0
->
ob_type
->
tp_name
,
"DeviceTensorND"
))
{
auto
dv
=
py
::
handle
(
arg0
).
cast
<
DeviceTensorND
>
();
m_tensor
=
std
::
make_shared
<
Tensor
>
(
imperative
::
apply
(
CreateTensor
(
CreateTensor
::
Common
,
dv
.
comp_node
(),
dv
.
layout
()),
DeviceStorage
::
make
(
dv
.
storage
()))[
0
]);
return
false
;
}
}
mgb_assert
(
sizeof
(
ctype
)
==
dtype
.
size
());
auto
*
raw_ptr
=
new
ctype
[
size
];
std
::
shared_ptr
<
dt_byte
>
raw_storage
=
{
reinterpret_cast
<
dt_byte
*>
(
raw_ptr
),
[](
dt_byte
*
ptr
)
{
delete
[]
reinterpret_cast
<
ctype
*>
(
ptr
);
}};
HostTensorStorage
storage
(
cn
);
storage
.
only_reset_raw_storage
(
cn
,
sizeof
(
ctype
)
*
size
,
raw_storage
,
0
);
std
::
memcpy
(
storage
.
ptr
(),
items
,
sizeof
(
ctype
)
*
size
);
ret
.
dtype
=
dtype
;
ret
.
shape
=
{
size
};
ret
.
storage
=
HostStorage
::
make
(
std
::
move
(
storage
));
return
true
;
}
template
<
typename
seq_type
>
bool
pyseq2hval
(
seq_type
obj
,
CompNode
cn
,
HostTensorArgs
&
ret
)
{
auto
size
=
obj
.
size
();
if
(
size
>
MEGDNN_MAX_NDIM
)
{
return
false
;
}
DTypeScalar
items
[
size
];
DType
dtype
;
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
auto
&&
item
=
obj
[
i
];
if
(
item
.
get_type
().
is
(
py_type
<
py
::
int_
>
()))
{
items
[
i
]
=
(
dt_int32
)
item
.
template
cast
<
py
::
int_
>();
if
(
!
dtype
.
valid
())
{
dtype
=
dtype
::
Int32
();
}
else
if
(
dtype
!=
dtype
::
Int32
()
&&
dtype
!=
dtype
::
Float32
())
{
return
false
;
}
}
else
if
(
item
.
get_type
().
is
(
py_type
<
py
::
float_
>
()))
{
items
[
i
]
=
(
dt_float32
)
item
.
template
cast
<
py
::
float_
>();
if
(
!
dtype
.
valid
())
{
dtype
=
dtype
::
Float32
();
}
else
if
(
dtype
==
dtype
::
Int32
())
{
dtype
=
dtype
::
Float32
();
}
else
if
(
dtype
!=
dtype
::
Float32
())
{
return
false
;
}
}
else
{
return
false
;
}
}
if
(
!
dtype
.
valid
())
{
dtype
=
dtype
::
Float32
();
}
ret
.
dtype
=
dtype
;
ret
.
shape
=
{
size
};
if
(
dtype
==
dtype
::
Int32
())
{
ret
.
storage
=
vec2storage
<
dt_int32
>
({
items
,
size
},
cn
,
dtype
);
}
else
if
(
dtype
==
dtype
::
Float32
())
{
ret
.
storage
=
vec2storage
<
dt_float32
>
({
items
,
size
},
cn
,
dtype
);
}
else
{
mgb_assert
(
false
);
}
return
true
;
}
template
<
typename
seq_type
>
bool
pyseq2hval
(
seq_type
obj
,
CompNode
cn
,
DType
dtype
,
HostTensorArgs
&
ret
)
{
if
(
dtype
==
dtype
::
Int32
())
{
return
pyseq2hval
<
seq_type
,
dt_int32
>
(
obj
,
cn
,
dtype
,
ret
);
}
else
if
(
dtype
==
dtype
::
Float32
())
{
return
pyseq2hval
<
seq_type
,
dt_float32
>
(
obj
,
cn
,
dtype
,
ret
);
}
else
if
(
!
dtype
.
valid
())
{
return
pyseq2hval
<
seq_type
>
(
obj
,
cn
,
ret
);
}
else
{
return
false
;
}
}
bool
pyarr2hval
(
py
::
array
obj
,
CompNode
cn
,
DType
dtype
,
HostTensorArgs
&
ret
)
{
auto
data
=
obj
.
cast
<
py
::
array
>
();
auto
strides
=
data
.
strides
();
bool
need_squeeze
=
false
;
for
(
size_t
i
=
0
;
i
<
data
.
ndim
();
++
i
)
{
if
(
strides
[
i
]
==
0
)
{
need_squeeze
=
true
;
break
;
}
}
if
(
need_squeeze
)
{
std
::
vector
<
size_t
>
shape
;
for
(
size_t
i
=
0
;
i
<
data
.
ndim
();
++
i
)
{
shape
.
push_back
(
data
.
shape
(
i
));
}
data
=
data
.
squeeze
();
data
.
resize
(
shape
);
}
HostTensorND
retnd
(
cn
);
retnd
=
npy
::
np2tensor
(
data
.
ptr
(),
npy
::
Meth
::
copy_into
(
&
retnd
),
dtype
);
if
(
!
dtype
.
valid
())
{
dtype
=
retnd
.
dtype
();
}
mgb_assert
(
retnd
.
layout
().
is_empty
()
||
retnd
.
layout
().
is_contiguous
(),
"host value should be continuous"
);
for
(
size_t
i
=
0
;
i
<
data
.
ndim
();
++
i
)
{
ret
.
shape
[
ret
.
shape
.
ndim
++
]
=
data
.
shape
(
i
);
}
ret
.
dtype
=
dtype
;
ret
.
storage
=
HostStorage
::
make
(
retnd
.
storage
());
return
true
;
}
bool
pyint2hval
(
py
::
int_
obj
,
CompNode
cn
,
DType
dtype
,
HostTensorArgs
&
ret
)
{
if
(
!
dtype
.
valid
())
{
dtype
=
dtype
::
Int32
();
}
ret
.
dtype
=
dtype
;
ret
.
storage
=
scalar2storage
((
dt_int32
)
obj
,
cn
,
dtype
);
return
true
;
}
bool
pyfloat2hval
(
py
::
float_
obj
,
CompNode
cn
,
DType
dtype
,
HostTensorArgs
&
ret
)
{
if
(
!
dtype
.
valid
())
{
dtype
=
dtype
::
Float32
();
}
ret
.
dtype
=
dtype
;
ret
.
storage
=
scalar2storage
((
dt_float32
)
obj
,
cn
,
dtype
);
return
true
;
}
HostTensorArgs
pyobj2hval
(
py
::
object
obj
,
CompNode
cn
,
DType
dtype
)
{
HostTensorArgs
ret
;
bool
success
=
false
;
// check order: float -> int -> tuple(int -> float) -> list(int -> float)
// only handle `exact` pytype, isinstance also accepts subtype
// for example, isinstance(True, int) == True
if
(
obj
.
get_type
().
is
(
py_type
<
py
::
float_
>
()))
{
success
=
pyfloat2hval
(
py
::
float_
(
obj
),
cn
,
dtype
,
ret
);
}
else
if
(
obj
.
get_type
().
is
(
py_type
<
py
::
int_
>
()))
{
// py::bool_ is py::int_
success
=
pyint2hval
(
py
::
int_
(
obj
),
cn
,
dtype
,
ret
);
}
else
if
(
obj
.
get_type
().
is
(
py_type
<
py
::
tuple
>
()))
{
success
=
pyseq2hval
<
py
::
tuple
>
(
py
::
tuple
(
obj
),
cn
,
dtype
,
ret
);
}
else
if
(
obj
.
get_type
().
is
(
py_type
<
py
::
list
>
()))
{
success
=
pyseq2hval
<
py
::
list
>
(
py
::
list
(
obj
),
cn
,
dtype
,
ret
);
}
else
if
(
obj
.
is_none
())
{
obj
=
py
::
list
(
0
);
}
if
(
!
success
)
{
success
=
pyarr2hval
(
obj
,
cn
,
dtype
,
ret
);
}
mgb_assert
(
success
);
return
ret
;
}
struct
PyArgDesc
{
const
char
*
name
;
py
::
object
(
*
default_value
)();
};
struct
PyArgDescs
{
std
::
vector
<
PyArgDesc
>
items
;
ssize_t
(
*
name2idx
)(
const
char
*
name
);
};
py
::
tuple
parse_args
(
py
::
tuple
args
,
const
PyArgDescs
&
descs
)
{
size_t
nr_args
=
args
.
size
();
size_t
nr_items
=
descs
.
items
.
size
();
mgb_assert
(
nr_args
<=
nr_items
,
"too many args"
);
if
(
nr_args
==
nr_items
)
{
return
args
;
}
py
::
tuple
ret
(
nr_items
);
for
(
size_t
i
=
0
;
i
<
nr_args
;
++
i
)
{
ret
[
i
]
=
args
[
i
];
}
for
(
size_t
i
=
nr_args
;
i
<
nr_items
;
++
i
)
{
ret
[
i
]
=
descs
.
items
[
i
].
default_value
();
}
return
ret
;
}
py
::
tuple
parse_args_and_kwargs
(
py
::
tuple
args
,
py
::
dict
kwargs
,
const
PyArgDescs
&
descs
)
{
size_t
nr_args
=
args
.
size
();
size_t
nr_kwargs
=
kwargs
.
size
();
size_t
nr_items
=
descs
.
items
.
size
();
mgb_assert
(
nr_args
+
nr_kwargs
<=
nr_items
,
"too many args"
);
if
(
nr_args
==
nr_items
)
{
return
args
;
}
py
::
tuple
ret
(
nr_items
);
for
(
size_t
i
=
0
;
i
<
nr_args
;
++
i
)
{
ret
[
i
]
=
args
[
i
];
}
bool
has_value
[
nr_items
-
nr_args
];
for
(
size_t
i
=
nr_args
;
i
<
nr_items
;
++
i
)
{
has_value
[
i
-
nr_args
]
=
false
;
}
for
(
auto
&&
[
k
,
v
]
:
kwargs
)
{
auto
key
=
py
::
str
(
k
).
cast
<
std
::
string
>
();
ssize_t
index
=
descs
.
name2idx
(
key
.
c_str
());
mgb_assert
(
index
>=
nr_args
);
ret
[
index
]
=
v
;
has_value
[
index
-
nr_args
]
=
true
;
}
for
(
size_t
i
=
nr_args
;
i
<
nr_items
;
++
i
)
{
if
(
!
has_value
[
i
-
nr_args
])
{
ret
[
i
]
=
descs
.
items
[
i
].
default_value
();
}
}
return
ret
;
}
CompNode
as_comp_node
(
const
std
::
string
&
name
)
{
thread_local
struct
{
std
::
string
name
;
CompNode
cn
;
}
cached
;
if
(
cached
.
name
!=
name
)
{
cached
.
name
=
name
;
cached
.
cn
=
CompNode
::
load
(
name
);
}
return
cached
.
cn
;
}
CompNode
as_comp_node
(
py
::
object
py_device
)
{
std
::
optional
<
std
::
string
>
device_name
;
if
(
py_device
.
is_none
()
||
py
::
str
::
check_
(
py_device
))
{
auto
cls
=
py
::
handle
(
reinterpret_cast
<
PyObject
*>
(
py_tensor_type
));
auto
dmap_callback
=
cls
.
attr
(
"dmap_callback"
);
std
::
string
name
;
if
(
dmap_callback
.
is_none
()
&&
py_device
.
is_none
())
{
name
=
get_default_device
();
}
else
{
throw
py
::
type_error
(
"single argument is not tensor, varnode or devicetensor"
);
if
(
py_device
.
is_none
())
{
py_device
=
py
::
str
(
get_default_device
());
}
if
(
!
dmap_callback
.
is_none
())
{
py_device
=
dmap_callback
(
py_device
);
}
name
=
py
::
str
(
py_device
).
cast
<
std
::
string
>
();
}
return
as_comp_node
(
name
);
}
else
{
if
(
py
::
isinstance
(
py_device
,
py_device_type
))
{
py_device
=
py_device
.
attr
(
"_cn"
);
}
mgb_assert
(
py
::
isinstance
(
py_device
,
py_comp_node_type
));
return
py_device
.
cast
<
CompNode
>
();
}
}
template
<
char
...
Chars
>
bool
compare_cstr
(
const
char
*
cstr
)
{
return
(((
*
cstr
++
)
==
Chars
)
&&
...)
&&
*
cstr
==
'\0'
;
}
ssize_t
name2idx
(
const
char
*
name
)
{
const
char
*
ch
=
name
;
// TODO: trie
// clang-format off
switch
(
*
ch
++
)
{
case
'd'
:
switch
(
*
ch
++
)
{
// data
case
'a'
:
return
compare_cstr
<
't'
,
'a'
>
(
ch
)
?
0
:
-
1
;
// dtype
case
't'
:
return
compare_cstr
<
'y'
,
'p'
,
'e'
>
(
ch
)
?
1
:
-
1
;
// device
case
'e'
:
return
compare_cstr
<
'v'
,
'i'
,
'c'
,
'e'
>
(
ch
)
?
2
:
-
1
;
}
case
'i'
:
// is_const
return
compare_cstr
<
's'
,
'_'
,
'c'
,
'o'
,
'n'
,
's'
,
't'
>
(
ch
)
?
3
:
-
1
;
case
'n'
:
switch
(
*
ch
++
)
{
// no_cache
case
'o'
:
return
compare_cstr
<
'_'
,
'c'
,
'a'
,
'c'
,
'h'
,
'e'
>
(
ch
)
?
4
:
-
1
;
// name
case
'a'
:
return
compare_cstr
<
'm'
,
'e'
>
(
ch
)
?
5
:
-
1
;
}
}
// clang-format on
return
-
1
;
}
}
// namespace
TensorWrapper
::
TensorWrapper
(
PyObject
*
args
,
PyObject
*
kwargs
)
{
static
PyArgDescs
descs
=
{
{
{
"data"
,
[]()
->
py
::
object
{
return
py
::
none
();
}},
{
"dtype"
,
[]()
->
py
::
object
{
return
py
::
none
();
}},
{
"device"
,
[]()
->
py
::
object
{
return
py
::
none
();
}},
{
"is_const"
,
[]()
->
py
::
object
{
return
py
::
bool_
(
false
);
}},
{
"no_cache"
,
[]()
->
py
::
object
{
return
py
::
bool_
(
false
);
}},
{
"name"
,
[]()
->
py
::
object
{
return
py
::
none
();
}},
},
name2idx
};
py
::
detail
::
loader_life_support
life_sup
;
// FIXME!!!required to cast DType
if
(
nargs
!=
5
&&
nargs
!=
6
)
{
throw
py
::
type_error
(
"expect 5 or 6 arguments"
);
auto
tup
=
py
::
reinterpret_borrow
<
py
::
tuple
>
(
args
);
if
(
kwargs
)
{
tup
=
parse_args_and_kwargs
(
tup
,
py
::
reinterpret_borrow
<
py
::
dict
>
(
kwargs
),
descs
);
}
else
{
tup
=
parse_args
(
tup
,
descs
);
}
auto
data
=
tup
[
0
].
cast
<
py
::
array
>
();
mgb_assert
(
tup
.
size
()
==
6
);
if
(
auto
*
t
=
try_cast
(
tup
[
0
].
ptr
()))
{
m_tensor
=
t
->
m_tensor
->
copy
();
}
else
{
auto
data
=
tup
[
0
];
DType
dtype
=
tup
[
1
].
cast
<
DType
>
();
CompNode
cn
=
tup
[
2
].
cast
<
CompNode
>
();
bool
is_const
=
tup
[
3
].
cast
<
bool
>
();
bool
no_cache
=
nargs
==
6
?
tup
[
4
].
cast
<
bool
>
()
:
false
;
bool
no_cache
=
tup
[
4
].
cast
<
bool
>
()
;
std
::
string
name
;
if
(
tup
[
nargs
-
1
].
ptr
()
!=
Py_None
)
name
=
tup
[
nargs
-
1
].
cast
<
std
::
string
>
();
if
(
!
tup
[
5
].
is_none
())
{
name
=
tup
[
5
].
cast
<
std
::
string
>
();
}
CompNode
cn
=
as_comp_node
(
tup
[
2
]);
// const op
{
CreateTensor
::
Kind
kind
=
is_const
?
CreateTensor
::
Const
:
no_cache
?
CreateTensor
::
Unique
:
CreateTensor
::
Common
;
HostTensorND
ret
(
cn
);
ret
=
npy
::
np2tensor
(
data
.
ptr
(),
npy
::
Meth
::
copy_into
(
&
ret
),
dtype
);
mgb_assert
(
ret
.
layout
().
is_empty
()
||
ret
.
layout
().
is_contiguous
(),
"host value should be continuous"
);
ValueShape
shape
;
for
(
size_t
i
=
0
;
i
<
data
.
ndim
();
++
i
)
{
shape
[
shape
.
ndim
++
]
=
data
.
shape
(
i
);
}
m_tensor
=
std
::
make_shared
<
Tensor
>
(
imperative
::
apply
(
CreateTensor
(
kind
,
cn
,
ret
.
dtype
(),
shape
),
HostStorage
::
make
(
ret
.
storage
()))[
0
]);
auto
&&
hval
=
pyobj2hval
(
data
,
cn
,
dtype
);
auto
val
=
imperative
::
apply
(
CreateTensor
(
kind
,
cn
,
hval
.
dtype
,
hval
.
shape
),
hval
.
storage
)[
0
];
m_tensor
.
emplace
(
val
);
}
if
(
!
name
.
empty
())
{
m_tensor
->
reset
(
imperative
::
apply
(
RenameValue
(
name
),
m_tensor
->
data
())[
0
]);
}
m_tensor
->
reset
(
imperative
::
apply
(
RenameValue
(
name
),
m_tensor
->
data
())[
0
]);
}
}
mgb_assert
(
m_tensor
->
data
());
...
...
@@ -402,17 +744,16 @@ PyObject* TensorWrapper::isscalar() {
}
struct
TensorWeakRef
{
std
::
weak_ptr
<
Tensor
>
wptr
;
ValueWeakRef
data
;
TensorWeakRef
(
const
TensorWrapper
&
tw
)
:
wptr
(
tw
.
m_tensor
)
{}
TensorWeakRef
(
const
TensorWrapper
&
tw
)
:
data
(
tw
.
m_tensor
->
data
()
)
{}
py
::
object
operator
()()
{
if
(
auto
p
=
wptr
.
lock
())
{
if
(
auto
p
=
data
.
lock
())
{
return
TensorWrapper
::
make
(
py_tensor_type
,
p
);
}
return
py
::
none
();
}
int
_use_cnt
()
{
return
wptr
.
use_count
();
}
};
#ifdef METH_FASTCALL
...
...
@@ -528,7 +869,6 @@ void init_tensor(py::module m) {
// TODO: remove this
.
def
<&
TensorWrapper
::
_dev_tensor
>
(
"_dev_tensor"
)
.
def
<&
TensorWrapper
::
_drop
>
(
"_drop"
)
.
def
<&
TensorWrapper
::
_use_cnt
>
(
"_use_cnt"
)
.
def
<&
TensorWrapper
::
_detail
>
(
"_detail"
)
.
def
<&
TensorWrapper
::
_set_name
>
(
"_set_name"
)
.
def
<&
TensorWrapper
::
_watch
>
(
"_watch"
)
...
...
@@ -542,8 +882,7 @@ void init_tensor(py::module m) {
py
::
class_
<
TensorWeakRef
>
(
m
,
"TensorWeakRef"
)
.
def
(
py
::
init
<
const
TensorWrapper
&>
())
.
def
(
"__call__"
,
&
TensorWeakRef
::
operator
())
.
def
(
"_use_cnt"
,
&
TensorWeakRef
::
_use_cnt
);
.
def
(
"__call__"
,
&
TensorWeakRef
::
operator
());
py
::
class_
<
PySymbolVar
,
std
::
shared_ptr
<
PySymbolVar
>>
(
m
,
"SymbolVar"
)
.
def_property_readonly
(
...
...
@@ -693,6 +1032,9 @@ void init_tensor(py::module m) {
py_tensor_type
=
reinterpret_cast
<
PyTypeObject
*>
(
type_obj
.
inc_ref
().
ptr
());
});
m
.
def
(
"set_py_device_type"
,
[](
py
::
object
type_obj
)
{
py_device_type
=
type_obj
.
inc_ref
();
});
/**
* \brief trace proxy
*
...
...
imperative/python/src/tensor.h
浏览文件 @
787a22a9
...
...
@@ -38,13 +38,14 @@ namespace mgb::imperative::python {
extern
interpreter
::
Interpreter
::
Channel
*
interpreter_for_py
;
extern
PyTypeObject
*
py_tensor_type
;
extern
pybind11
::
handle
py_device_type
;
extern
PyObject
*
cpp_use_symbolic_shape
;
extern
PyObject
*
cpp_astensor1d
;
struct
Tensor
:
NonCopyableObj
{
struct
Tensor
{
private:
std
::
string
m_name
;
ValueRef
m_data
;
std
::
string
m_name
;
public:
using
Handle
=
interpreter
::
Interpreter
::
Handle
;
...
...
@@ -53,11 +54,7 @@ public:
~
Tensor
()
=
default
;
inline
std
::
shared_ptr
<
Tensor
>
copy
()
{
auto
ret
=
std
::
make_shared
<
Tensor
>
(
m_data
);
ret
->
m_name
=
m_name
;
return
ret
;
}
inline
Tensor
copy
()
{
return
*
this
;
}
inline
DType
dtype
()
{
return
*
data
().
dtype
();
}
inline
CompNode
comp_node
()
{
return
*
data
().
device
();
}
...
...
@@ -75,7 +72,7 @@ public:
set_name
(
m_name
);
}
}
inline
ValueRef
data
()
{
return
m_data
.
unwrap
();
}
inline
ValueRef
data
()
const
{
return
m_data
.
unwrap
();
}
bool
is_scalar
()
{
return
data
().
is_scalar
();
}
inline
std
::
string
name
()
{
return
m_name
;
}
inline
void
set_name
(
std
::
string
name
)
{
...
...
@@ -89,14 +86,9 @@ public:
struct
TensorWrapper
{
public:
std
::
shared_ptr
<
Tensor
>
m_tensor
;
inline
TensorWrapper
(
std
::
shared_ptr
<
Tensor
>
tensor
=
{})
:
m_tensor
(
std
::
move
(
tensor
))
{
mgb_assert
(
tensor
,
"empty storage"
);
}
std
::
optional
<
Tensor
>
m_tensor
;
inline
TensorWrapper
(
ValueRef
value
)
:
m_tensor
(
std
::
make_shared
<
Tensor
>
(
value
))
{
}
inline
TensorWrapper
(
ValueRef
value
)
{
m_tensor
.
emplace
(
value
);
}
TensorWrapper
(
PyObject
*
args
,
PyObject
*
kwargs
);
~
TensorWrapper
()
=
default
;
...
...
@@ -144,7 +136,6 @@ public:
PyObject
*
module_trace_info
();
void
set_module_trace_info
(
PyObject
*
);
void
_set_name
(
PyObject
*
);
PyObject
*
_use_cnt
()
{
return
PyLong_FromSize_t
(
m_tensor
.
use_count
());
};
PyObject
*
_detail
();
void
_watch
();
};
...
...
imperative/python/test/unit/core/test_tensor_wrapper.py
浏览文件 @
787a22a9
...
...
@@ -220,3 +220,10 @@ def test_tensor_type():
y1
=
x1
+
x2
y2
=
x2
+
x1
assert
type
(
y1
)
==
type
(
y2
)
def
test_tensor_from_bool
():
x
=
Tensor
(
True
)
assert
x
.
dtype
==
np
.
bool_
x
=
Tensor
([
True
,
False
])
assert
x
.
dtype
==
np
.
bool_
src/core/include/megbrain/dtype.h
浏览文件 @
787a22a9
...
...
@@ -46,7 +46,7 @@ namespace dtype = ::megdnn::dtype;
* \param nr_elem number of elements to write in *dest*
*/
template
<
typename
T
>
void
static_cast_dtype
(
MGE_WIN_DECLSPEC_FUC
void
static_cast_dtype
(
T
*
dest
,
DType
src_type
,
const
void
*
storage
,
size_t
nr_elem
=
1
);
/*!
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录