Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
73d84162
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
73d84162
编写于
5月 21, 2020
作者:
M
Megvii Engine Team
提交者:
Xu Xinran
6月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(dnn/aarch64): add matmul with dotprod for mk4
GitOrigin-RevId: feb391d635f5d19ff745e6426d385ebeedb1f0ef
上级
c1397792
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
1196 addition
and
0 deletion
+1196
-0
dnn/src/aarch64/matrix_mul/algos.cpp
dnn/src/aarch64/matrix_mul/algos.cpp
+70
-0
dnn/src/aarch64/matrix_mul/algos.h
dnn/src/aarch64/matrix_mul/algos.h
+13
-0
dnn/src/aarch64/matrix_mul/asm/common.h
dnn/src/aarch64/matrix_mul/asm/common.h
+25
-0
dnn/src/aarch64/matrix_mul/int8_dot/kernel_mk4_8x12x4.h
dnn/src/aarch64/matrix_mul/int8_dot/kernel_mk4_8x12x4.h
+933
-0
dnn/src/aarch64/matrix_mul/int8_dot/strategy.cpp
dnn/src/aarch64/matrix_mul/int8_dot/strategy.cpp
+88
-0
dnn/src/aarch64/matrix_mul/int8_dot/strategy.h
dnn/src/aarch64/matrix_mul/int8_dot/strategy.h
+3
-0
dnn/src/aarch64/matrix_mul/opr_impl.cpp
dnn/src/aarch64/matrix_mul/opr_impl.cpp
+2
-0
dnn/src/aarch64/matrix_mul/opr_impl.h
dnn/src/aarch64/matrix_mul/opr_impl.h
+2
-0
dnn/test/aarch64/matrix_mul.cpp
dnn/test/aarch64/matrix_mul.cpp
+60
-0
未找到文件。
dnn/src/aarch64/matrix_mul/algos.cpp
浏览文件 @
73d84162
...
...
@@ -474,6 +474,76 @@ MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32GemvDotProd::get_kern(
MIDOUT_END
();
return
nullptr
;
}
/* =================== Int8x8x32 MK4 8X12X4 Dotprod algo =================== */
namespace
{
void
int8x8x32_mk4_8x12x4_dotprod_kern
(
const
MatrixMulImpl
::
KernParam
&
kern_param
)
{
MIDOUT_BEGIN
(
megdnn_aarch64_matmul_kern
,
midout_iv
(
"int8x8x32_mk4_8x12x4_dotprod_kern"
_hash
))
{
auto
M
=
kern_param
.
M
,
N
=
kern_param
.
N
,
K
=
kern_param
.
K
;
auto
trA
=
kern_param
.
trA
,
trB
=
kern_param
.
trB
;
auto
LDA
=
kern_param
.
LDA
,
LDB
=
kern_param
.
LDB
,
LDC
=
kern_param
.
LDC
;
auto
A_type
=
kern_param
.
A_type
,
B_type
=
kern_param
.
B_type
,
C_type
=
kern_param
.
C_type
;
const
auto
Aptr
=
kern_param
.
A
<
dt_int8
>
(),
Bptr
=
kern_param
.
B
<
dt_int8
>
();
auto
Cptr
=
kern_param
.
C
<
dt_int32
>
();
aarch64
::
matmul
::
gemm_mk4_s8_8x12
strategy
(
M
,
N
,
K
,
A_type
,
B_type
,
C_type
);
megdnn
::
matmul
::
GemmInterleaved
<
aarch64
::
matmul
::
gemm_mk4_s8_8x12
>
(
M
,
N
,
K
,
trA
,
trB
,
strategy
)
.
execute
(
Aptr
,
LDA
,
Bptr
,
LDB
,
Cptr
,
LDC
,
kern_param
.
workspace_ptr
);
}
MIDOUT_END
();
}
}
// anonymous namespace
bool
MatrixMulImpl
::
AlgoInt8x8x32MK4_8x12x4DotProd
::
usable
(
const
KernSizeParam
&
kern_size_param
)
const
{
return
kern_size_param
.
A_type
.
enumv
()
==
kern_size_param
.
B_type
.
enumv
()
&&
(
kern_size_param
.
A_type
.
enumv
()
==
DTypeEnum
::
Int8
||
kern_size_param
.
A_type
.
enumv
()
==
DTypeEnum
::
QuantizedS8
)
&&
(
kern_size_param
.
C_type
.
enumv
()
==
DTypeEnum
::
Int32
||
kern_size_param
.
C_type
.
enumv
()
==
DTypeEnum
::
QuantizedS32
)
&&
kern_size_param
.
compute_mode
==
Param
::
ComputeMode
::
DEFAULT
&&
kern_size_param
.
format
==
param
::
MatrixMul
::
Format
::
MK4_DOT
&&
!
kern_size_param
.
trA
&&
!
kern_size_param
.
trB
;
}
size_t
MatrixMulImpl
::
AlgoInt8x8x32MK4_8x12x4DotProd
::
get_workspace
(
const
KernSizeParam
&
kern_size_param
)
const
{
MIDOUT_BEGIN
(
megdnn_aarch64_matmul_kern
,
midout_iv
(
"AlgoInt8x8x32MK4_8x12x4DotProd::get_workspace"
_hash
))
{
auto
M
=
kern_size_param
.
M
,
N
=
kern_size_param
.
N
,
K
=
kern_size_param
.
K
;
auto
trA
=
kern_size_param
.
trA
,
trB
=
kern_size_param
.
trB
;
auto
A_type
=
kern_size_param
.
A_type
,
B_type
=
kern_size_param
.
B_type
,
C_type
=
kern_size_param
.
C_type
;
aarch64
::
matmul
::
gemm_mk4_s8_8x12
strategy
(
M
,
N
,
K
,
A_type
,
B_type
,
C_type
);
return
megdnn
::
matmul
::
GemmInterleaved
<
aarch64
::
matmul
::
gemm_mk4_s8_8x12
>
(
M
,
N
,
K
,
trA
,
trB
,
strategy
)
.
get_workspace_size
();
}
MIDOUT_END
();
}
MatrixMulImpl
::
kern_t
MatrixMulImpl
::
AlgoInt8x8x32MK4_8x12x4DotProd
::
get_kern
(
const
KernSizeParam
&
)
const
{
return
int8x8x32_mk4_8x12x4_dotprod_kern
;
}
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL
(
AlgoInt8x8x32MK4_8x12x4DotProd
,
megdnn_aarch64_matmul_kern
,
"AlgoInt8x8x32MK4_8x12x4DotProdImpl"
_hash
,
aarch64
::
matmul
::
gemm_mk4_s8_8x12
,
int8_t
,
int32_t
);
#else
/* ===================== Int8x8x32 MK4 4x4x16 algo ===================== */
...
...
dnn/src/aarch64/matrix_mul/algos.h
浏览文件 @
73d84162
...
...
@@ -118,6 +118,19 @@ public:
AlgoSet
algoset
()
const
override
{
return
AlgoSet
::
ALGO_TYPE_GEMV
;
}
PackMode
packmode
()
const
override
{
return
PackMode
::
NO_PACK
;
}
};
class
MatrixMulImpl
::
AlgoInt8x8x32MK4_8x12x4DotProd
final
:
public
AlgoBase
{
public:
bool
is_reproducible
()
const
override
{
return
true
;
}
const
char
*
name
()
const
override
{
return
"AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD"
;
}
bool
usable
(
const
KernSizeParam
&
)
const
override
;
size_t
get_workspace
(
const
KernSizeParam
&
)
const
override
;
kern_t
get_kern
(
const
KernSizeParam
&
)
const
override
;
void
*
type
()
const
override
{
return
sm_arm_common_algo_type
;
}
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL
();
};
#else
class
MatrixMulImpl
::
AlgoInt8x8x32MK4_4x4x16
final
:
public
AlgoBase
{
...
...
dnn/src/aarch64/matrix_mul/asm/common.h
浏览文件 @
73d84162
...
...
@@ -615,6 +615,20 @@ static inline void interleave_12x4_4_b(const T*& inptr0, const T*& inptr1,
reinterpret_cast
<
int32_t
*&>
(
outptr
));
}
static
inline
void
interleave_2x1_4_s
(
const
int32_t
*&
inptr0
,
const
int32_t
*&
inptr1
,
int32_t
*&
outptr
)
{
asm
volatile
(
"ld1 {v0.4s}, [%[inptr0]], #16
\n
"
// d0 = A0A1A2A3
"ld1 {v1.4s}, [%[inptr1]], #16
\n
"
// d1 = B0B1B2B3
"st1 {v0.4s}, [%[outptr]], #16
\n
"
"st1 {v1.4s}, [%[outptr]], #16
\n
"
:
[
inptr0
]
"+r"
(
inptr0
),
[
inptr1
]
"+r"
(
inptr1
),
[
outptr
]
"+r"
(
outptr
)
:
:
"v0"
,
"v1"
,
"cc"
,
"memory"
);
}
static
inline
void
interleave_8x1_4_s
(
const
int32_t
*&
inptr0
,
const
int32_t
*&
inptr1
,
const
int32_t
*&
inptr2
,
const
int32_t
*&
inptr3
,
const
int32_t
*&
inptr4
,
const
int32_t
*&
inptr5
,
...
...
@@ -752,6 +766,17 @@ static inline void interleave_8x2_2_d(
"v11"
,
"v12"
,
"v13"
,
"v14"
,
"v15"
,
"cc"
,
"memory"
);
}
template
<
typename
T
>
static
inline
void
interleave_2x4_4_b
(
const
T
*&
inptr0
,
const
T
*&
inptr1
,
T
*&
outptr
)
{
static_assert
(
std
::
is_same
<
T
,
int8_t
>::
value
||
std
::
is_same
<
T
,
uint8_t
>::
value
,
"interleave_2x4_4_b only support uint8_t and int8_t"
);
interleave_2x1_4_s
(
reinterpret_cast
<
const
int32_t
*&>
(
inptr0
),
reinterpret_cast
<
const
int32_t
*&>
(
inptr1
),
reinterpret_cast
<
int32_t
*&>
(
outptr
));
}
template
<
typename
T
>
static
inline
void
interleave_8x4_4_b
(
const
T
*&
inptr0
,
const
T
*&
inptr1
,
const
T
*&
inptr2
,
const
T
*&
inptr3
,
...
...
dnn/src/aarch64/matrix_mul/int8_dot/kernel_mk4_8x12x4.h
0 → 100644
浏览文件 @
73d84162
此差异已折叠。
点击以展开。
dnn/src/aarch64/matrix_mul/int8_dot/strategy.cpp
浏览文件 @
73d84162
...
...
@@ -14,12 +14,14 @@
#include "src/arm_common/simd_macro/marm_neon.h"
#include "src/common/utils.h"
#include "src/aarch64/matrix_mul/int8_dot/kernel_8x12x4.h"
#include "src/aarch64/matrix_mul/int8_dot/kernel_mk4_8x12x4.h"
#if __ARM_FEATURE_DOTPROD
using
namespace
megdnn
;
using
namespace
aarch64
;
using
namespace
aarch64
::
matmul
;
/* ====================== gemm_s8_8x12 ===========================*/
MEGDNN_REG_GEMM_STRATEGY_IMPL
(
gemm_s8_8x12
);
void
gemm_s8_8x12
::
pack_A
(
dt_int8
*
outptr
,
const
dt_int8
*
inptr
,
int
ldin
,
...
...
@@ -109,5 +111,91 @@ void gemm_s8_8x12::kern(const dt_int8* packA, const dt_int8* packB, size_t M,
packA
+=
K4
;
}
}
/* ====================== gemm_mk4_s8_8x12 ===========================*/
MEGDNN_REG_GEMM_STRATEGY_IMPL
(
gemm_mk4_s8_8x12
);
void
gemm_mk4_s8_8x12
::
pack_A
(
dt_int8
*
outptr
,
const
dt_int8
*
inptr
,
int
ldin
,
int
y0
,
int
ymax
,
int
k0
,
int
kmax
,
bool
transpose
)
const
{
megdnn_assert
(
!
transpose
,
"matrix mul mk4 with transposed matrix A is not supported"
);
matmul_mk4_8x12x4
::
gemm_mk4_s8_8x12_pack_A
(
outptr
,
inptr
,
ldin
,
y0
,
ymax
,
k0
,
kmax
);
}
void
gemm_mk4_s8_8x12
::
pack_B
(
dt_int8
*
out
,
const
dt_int8
*
in
,
int
ldin
,
int
x0
,
int
xmax
,
int
k0
,
int
kmax
,
bool
transpose
)
const
{
megdnn_assert
(
!
transpose
,
"matrix mul mk4 with transposed matrix B is not supported"
);
matmul_mk4_8x12x4
::
gemm_mk4_s8_8x12_pack_B
(
out
,
in
,
ldin
,
x0
,
xmax
,
k0
,
kmax
);
}
void
gemm_mk4_s8_8x12
::
kern
(
const
dt_int8
*
packA
,
const
dt_int8
*
packB
,
size_t
M
,
size_t
N
,
size_t
K
,
dt_int32
*
C
,
size_t
LDC
,
bool
is_first_k
,
const
dt_int32
*
,
dt_int32
*
)
const
{
megdnn_assert
(
A_dtype
.
enumv
()
==
B_dtype
.
enumv
()
&&
((
A_dtype
.
enumv
()
==
DTypeEnum
::
Int8
&&
C_dtype
.
enumv
()
==
DTypeEnum
::
Int32
)
||
(
A_dtype
.
enumv
()
==
DTypeEnum
::
QuantizedS8
&&
C_dtype
.
enumv
()
==
DTypeEnum
::
QuantizedS32
)),
"A: %s B: %s C: %s"
,
A_dtype
.
name
(),
B_dtype
.
name
(),
C_dtype
.
name
());
MEGDNN_MARK_USED_VAR
(
A_dtype
);
MEGDNN_MARK_USED_VAR
(
B_dtype
);
MEGDNN_MARK_USED_VAR
(
C_dtype
);
constexpr
size_t
A_INTERLEAVE
=
8
;
constexpr
size_t
B_INTERLEAVE
=
12
;
//! K is packed to times of 4
K
=
round_up
<
size_t
>
(
K
,
4
);
const
int
K8
=
(
K
<<
3
);
const
int
K12
=
K
*
12
;
const
int
K4
=
K
*
4
;
size_t
m
=
0
;
for
(;
m
+
A_INTERLEAVE
-
1
<
M
;
m
+=
A_INTERLEAVE
)
{
int32_t
*
output
=
C
+
((
m
>>
2
)
*
LDC
);
size_t
n
=
0
;
const
dt_int8
*
cur_packB
=
packB
;
for
(;
n
+
B_INTERLEAVE
-
1
<
N
;
n
+=
B_INTERLEAVE
)
{
matmul_mk4_8x12x4
::
kern_8x12
(
packA
,
cur_packB
,
K
,
output
,
LDC
,
is_first_k
);
output
+=
(
B_INTERLEAVE
<<
2
);
cur_packB
+=
K12
;
}
for
(;
n
<
N
;
n
+=
4
)
{
matmul_mk4_8x12x4
::
kern_8x4
(
packA
,
cur_packB
,
K
,
output
,
LDC
,
is_first_k
,
std
::
min
<
size_t
>
(
N
-
n
,
4
));
output
+=
16
;
cur_packB
+=
K4
;
}
packA
+=
K8
;
}
for
(;
m
<
M
;
m
+=
4
)
{
int32_t
*
output
=
C
+
((
m
>>
2
)
*
LDC
);
const
dt_int8
*
cur_packB
=
packB
;
size_t
n
=
0
;
for
(;
n
+
B_INTERLEAVE
-
1
<
N
;
n
+=
B_INTERLEAVE
)
{
matmul_mk4_8x12x4
::
kern_4x12
(
packA
,
cur_packB
,
K
,
output
,
LDC
,
is_first_k
);
output
+=
(
B_INTERLEAVE
<<
2
);
cur_packB
+=
K12
;
}
for
(;
n
<
N
;
n
+=
4
)
{
matmul_mk4_8x12x4
::
kern_4x4
(
packA
,
cur_packB
,
K
,
output
,
LDC
,
is_first_k
,
std
::
min
<
size_t
>
(
N
-
n
,
4
));
output
+=
16
;
cur_packB
+=
K4
;
}
packA
+=
K4
;
}
}
#endif
// vim: syntax=cpp.doxygen
dnn/src/aarch64/matrix_mul/int8_dot/strategy.h
浏览文件 @
73d84162
...
...
@@ -19,6 +19,9 @@ namespace matmul {
MEGDNN_REG_GEMM_STRATEGY
(
dt_int8
,
dt_int32
,
dt_int32
,
8
,
12
,
4
,
false
,
true
,
gemm_s8_8x12
);
MEGDNN_REG_GEMM_STRATEGY
(
dt_int8
,
dt_int32
,
dt_int32
,
8
,
12
,
4
,
false
,
true
,
gemm_mk4_s8_8x12
);
}
// namespace aarch64
}
// namespace matmul
}
// namespace megdnn
...
...
dnn/src/aarch64/matrix_mul/opr_impl.cpp
浏览文件 @
73d84162
...
...
@@ -29,6 +29,7 @@ class MatrixMulImpl::AlgoPack : NonCopyableObj {
#if __ARM_FEATURE_DOTPROD
AlgoInt8x8x32K8x12x4DotProd
int8x8x32_k8x12x4_dotprod
;
AlgoInt8x8x32GemvDotProd
int8x8x32_gemv_dotprod
;
AlgoInt8x8x32MK4_8x12x4DotProd
int8x8x32_mk4_8x12x4_dotprod
;
#else
AlgoInt8x8x32MK4_4x4x16
int8x8x32_mk4_4x4x16
;
AlgoInt8x8x32K4x4x16
int8x8x32_k4x4x16
;
...
...
@@ -64,6 +65,7 @@ public:
#if __ARM_FEATURE_DOTPROD
all_algos
.
emplace_back
(
&
int8x8x32_gemv_dotprod
);
all_algos
.
emplace_back
(
&
int8x8x32_k8x12x4_dotprod
);
all_algos
.
emplace_back
(
&
int8x8x32_mk4_8x12x4_dotprod
);
#else
all_algos
.
emplace_back
(
&
int8x8x32_gemv
);
all_algos
.
emplace_back
(
&
int8x8x32_k4x4x16
);
...
...
dnn/src/aarch64/matrix_mul/opr_impl.h
浏览文件 @
73d84162
...
...
@@ -35,6 +35,8 @@ private:
class
AlgoInt8x8x32K8x12x4DotProd
;
// Aarch64 Int8x8x32 Kernel
// 8x12x4 DotProduct
class
AlgoInt8x8x32GemvDotProd
;
// Aarch64 Int8x8x32 Gemv DotProduct
class
AlgoInt8x8x32MK4_8x12x4DotProd
;
// Aarch64 nchw44 Int8x8x32 Kernel
// 8x12x4 DotProduct
#else
class
AlgoInt8x8x32MK4_4x4x16
;
// Aarch64 nchw44 Int8x8x32 Kernel 4x4x16
class
AlgoInt8x8x32K4x4x16
;
// Aarch64 Int8x8x32 Kernel 4x4x16
...
...
dnn/test/aarch64/matrix_mul.cpp
浏览文件 @
73d84162
...
...
@@ -64,6 +64,18 @@ TEST_F(AARCH64, MATRIX_MUL_INT8X8X32_K8X12X4_DOTPROD) {
matrix_mul
::
check_matrix_mul
(
dtype
::
Int8
{},
dtype
::
Int8
{},
dtype
::
Int32
{},
handle
(),
"AARCH64_INT8X8X32_K8X12X4_DOTPROD"
);
}
TEST_F
(
AARCH64
,
MATRIX_MUL_INT8X8X32_MK4_8X12X4_DOTPROD
)
{
std
::
vector
<
matrix_mul
::
TestArg
>
args
;
for
(
size_t
m
:
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
10
,
11
})
for
(
size_t
n
:
{
2
,
3
,
4
,
5
,
8
,
12
,
13
,
14
,
15
,
16
,
31
})
for
(
size_t
k
:
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
16
,
32
,
33
,
34
})
args
.
emplace_back
(
m
,
n
,
k
,
0
);
matrix_mul
::
check_matrix_mul
(
dtype
::
Int8
{},
dtype
::
Int8
{},
dtype
::
Int32
{},
handle
(),
"AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD"
,
param
::
MatrixMul
::
Format
::
MK4_DOT
,
1
,
1e-3
,
std
::
move
(
args
));
}
#else
TEST_F
(
AARCH64
,
MATRIX_MUL_INT8X8X32_K4X4X16
)
{
matrix_mul
::
check_matrix_mul
(
dtype
::
Int8
{},
dtype
::
Int8
{},
dtype
::
Int32
{},
...
...
@@ -460,6 +472,54 @@ TEST_F(AARCH64, BENCHMARK_GEMV_INT_8X8X32) {
run
(
M
,
N
,
K
);
}
TEST_F
(
AARCH64
,
BENCHMARK_MATRIX_MUL_INT8X8X32_MK4_8X12X4
)
{
constexpr
size_t
RUNS
=
50
;
param
::
MatrixMul
param
;
param
.
transposeA
=
false
;
param
.
transposeB
=
false
;
Benchmarker
<
MatrixMul
>
benchmarker
(
handle
());
Benchmarker
<
MatrixMul
>
benchmarker_mk4
(
handle
());
benchmarker
.
set_times
(
RUNS
)
.
set_dtype
(
0
,
dtype
::
Int8
{})
.
set_dtype
(
1
,
dtype
::
Int8
{})
.
set_dtype
(
2
,
dtype
::
Int32
{})
.
set_param
(
param
)
.
set_display
(
false
);
benchmarker
.
set_before_exec_callback
(
AlgoChecker
<
MatrixMul
>
(
"AARCH64_INT8X8X32_K8X12X4"
));
param
.
format
=
MatrixMul
::
Param
::
Format
::
MK4_DOT
;
benchmarker_mk4
.
set_before_exec_callback
(
AlgoChecker
<
MatrixMul
>
(
"AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD"
));
benchmarker_mk4
.
set_times
(
RUNS
)
.
set_dtype
(
0
,
dtype
::
Int8
{})
.
set_dtype
(
1
,
dtype
::
Int8
{})
.
set_dtype
(
2
,
dtype
::
Int32
{})
.
set_param
(
param
)
.
set_display
(
false
);
auto
run
=
[
&
](
size_t
M
,
size_t
N
,
size_t
K
)
{
auto
default_used
=
benchmarker
.
exec
({{
M
,
K
},
{
K
,
N
},
{}})
/
RUNS
;
auto
mk_used
=
benchmarker_mk4
.
exec
(
{{
M
/
4
,
K
/
4
,
4
,
4
},
{
K
/
4
,
N
,
4
},
{}})
/
RUNS
;
float
computations
=
2.
f
*
M
*
K
*
N
*
1e-6
;
printf
(
"run: {%zu{M} %zu{K} %zu{N}} normal: %f ms %f Gflops mk4: %f ms "
"%f Gflops speedup_vs_normal: %f
\n
"
,
M
,
K
,
N
,
default_used
,
computations
/
default_used
,
mk_used
,
computations
/
mk_used
,
default_used
/
mk_used
);
};
run
(
256
,
256
,
128
);
for
(
size_t
k
=
4
;
k
<=
512
;
k
*=
2
)
{
for
(
size_t
m
=
4
;
m
<=
512
;
m
*=
2
)
{
for
(
size_t
n
=
4
;
n
<=
512
;
n
*=
2
)
{
run
(
m
,
n
,
k
);
}
}
std
::
cout
<<
std
::
endl
;
}
}
#endif // __ARM_FEATURE_DOTPROD
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录