Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
6d4fd938
MegEngine
项目概览
MegEngine 天元
/
MegEngine
接近 2 年 前同步成功
通知
414
Star
4708
Fork
583
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
6d4fd938
编写于
9月 04, 2020
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(mge/optimizer): remove distributed optimizer
GitOrigin-RevId: 3e5d0612f0301f5d8e17eb0722ffe1fbc11a3858
上级
e50fa074
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
17 addition
and
21 deletion
+17
-21
imperative/python/megengine/optimizer/adadelta.py
imperative/python/megengine/optimizer/adadelta.py
+3
-4
imperative/python/megengine/optimizer/adagrad.py
imperative/python/megengine/optimizer/adagrad.py
+3
-4
imperative/python/megengine/optimizer/adam.py
imperative/python/megengine/optimizer/adam.py
+3
-4
imperative/python/megengine/optimizer/lr_scheduler.py
imperative/python/megengine/optimizer/lr_scheduler.py
+3
-3
imperative/python/megengine/optimizer/multi_step_lr.py
imperative/python/megengine/optimizer/multi_step_lr.py
+2
-2
imperative/python/megengine/optimizer/sgd.py
imperative/python/megengine/optimizer/sgd.py
+3
-4
未找到文件。
imperative/python/megengine/optimizer/adadelta.py
浏览文件 @
6d4fd938
...
...
@@ -12,10 +12,10 @@ import numpy as np
from
..functional
import
sqrt
from
..tensor_nn
import
Buffer
,
Parameter
from
.
distributed_optimizer
import
Distributed
Optimizer
from
.
optimizer
import
Optimizer
class
Adadelta
(
Distributed
Optimizer
):
class
Adadelta
(
Optimizer
):
r
"""Implements Adadelta algorithm.
It has been proposed in `"ADADELTA: An Adaptive Learning Rate Method" <https://arxiv.org/abs/1212.5701>`_.
...
...
@@ -38,7 +38,6 @@ class Adadelta(DistributedOptimizer):
rho
:
float
=
0.9
,
eps
:
float
=
1e-6
,
weight_decay
:
float
=
0.0
,
**
kwargs
):
assert
lr
>=
0.0
,
"Invalid learning rate: {}"
.
format
(
lr
)
assert
rho
>=
0.0
and
rho
<=
1.0
,
"Invalid rho value: {}"
.
format
(
rho
)
...
...
@@ -48,7 +47,7 @@ class Adadelta(DistributedOptimizer):
)
defaults
=
dict
(
lr
=
lr
,
rho
=
rho
,
eps
=
eps
,
weight_decay
=
weight_decay
)
super
().
__init__
(
params
,
defaults
,
**
kwargs
)
super
().
__init__
(
params
,
defaults
)
def
_create_state
(
self
,
param_group
):
for
param
in
param_group
[
"params"
]:
...
...
imperative/python/megengine/optimizer/adagrad.py
浏览文件 @
6d4fd938
...
...
@@ -12,10 +12,10 @@ import numpy as np
from
..functional
import
sqrt
from
..tensor_nn
import
Buffer
,
Parameter
from
.
distributed_optimizer
import
Distributed
Optimizer
from
.
optimizer
import
Optimizer
class
Adagrad
(
Distributed
Optimizer
):
class
Adagrad
(
Optimizer
):
r
"""Implements Adagrad algorithm.
It has been proposed in `"Adaptive Subgradient Methods for Online Learning
...
...
@@ -38,7 +38,6 @@ class Adagrad(DistributedOptimizer):
lr_decay
:
float
=
0.0
,
eps
:
float
=
1e-10
,
weight_decay
:
float
=
0.0
,
**
kwargs
):
assert
lr
>=
0.0
,
"Invalid learning rate: {}"
.
format
(
lr
)
assert
lr_decay
>=
0
,
"Invalid learning rate decay: {}"
.
format
(
lr_decay
)
...
...
@@ -48,7 +47,7 @@ class Adagrad(DistributedOptimizer):
)
defaults
=
dict
(
lr
=
lr
,
lr_decay
=
lr_decay
,
eps
=
eps
,
weight_decay
=
weight_decay
)
super
().
__init__
(
params
,
defaults
,
**
kwargs
)
super
().
__init__
(
params
,
defaults
)
def
_create_state
(
self
,
param_group
):
for
param
in
param_group
[
"params"
]:
...
...
imperative/python/megengine/optimizer/adam.py
浏览文件 @
6d4fd938
...
...
@@ -9,10 +9,10 @@
from
typing
import
Iterable
,
Tuple
,
Union
from
..tensor_nn
import
Buffer
,
Parameter
from
.
distributed_optimizer
import
Distributed
Optimizer
from
.
optimizer
import
Optimizer
class
Adam
(
Distributed
Optimizer
):
class
Adam
(
Optimizer
):
r
"""Implements Adam algorithm proposed in `"Adam: A Method for Stochastic Optimization" <https://arxiv.org/abs/1412.6980>`_.
:param params: iterable of parameters to optimize or dicts defining
...
...
@@ -32,7 +32,6 @@ class Adam(DistributedOptimizer):
betas
:
Tuple
[
float
,
float
]
=
(
0.9
,
0.999
),
eps
:
float
=
1e-8
,
weight_decay
:
float
=
0.0
,
**
kwargs
):
if
lr
<
0.0
:
raise
ValueError
(
"Invalid learning rate: {}"
.
format
(
lr
))
...
...
@@ -44,7 +43,7 @@ class Adam(DistributedOptimizer):
raise
ValueError
(
"Invalid beta parameter at index 1: {}"
.
format
(
betas
[
1
]))
defaults
=
dict
(
lr
=
lr
,
weight_decay
=
weight_decay
,
betas
=
betas
,
eps
=
eps
)
super
().
__init__
(
params
,
defaults
,
**
kwargs
)
super
().
__init__
(
params
,
defaults
)
def
_create_state
(
self
,
param_group
):
for
param
in
param_group
[
"params"
]:
...
...
imperative/python/megengine/optimizer/lr_scheduler.py
浏览文件 @
6d4fd938
...
...
@@ -8,7 +8,7 @@
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from
abc
import
ABCMeta
from
.
distributed_optimizer
import
Distributed
Optimizer
from
.
optimizer
import
Optimizer
class
LRScheduler
(
metaclass
=
ABCMeta
):
...
...
@@ -19,9 +19,9 @@ class LRScheduler(metaclass=ABCMeta):
"""
def
__init__
(
# pylint: disable=too-many-branches
self
,
optimizer
:
Distributed
Optimizer
,
current_epoch
:
int
=
-
1
self
,
optimizer
:
Optimizer
,
current_epoch
:
int
=
-
1
):
if
not
isinstance
(
optimizer
,
Distributed
Optimizer
):
if
not
isinstance
(
optimizer
,
Optimizer
):
raise
TypeError
(
"optimizer argument given to the lr_scheduler should be Optimizer"
)
...
...
imperative/python/megengine/optimizer/multi_step_lr.py
浏览文件 @
6d4fd938
...
...
@@ -9,7 +9,7 @@
from
bisect
import
bisect_right
from
typing
import
Iterable
as
Iter
from
.
distributed_optimizer
import
Distributed
Optimizer
from
.
optimizer
import
Optimizer
from
.lr_scheduler
import
LRScheduler
...
...
@@ -25,7 +25,7 @@ class MultiStepLR(LRScheduler):
def
__init__
(
self
,
optimizer
:
Distributed
Optimizer
,
optimizer
:
Optimizer
,
milestones
:
Iter
[
int
],
gamma
:
float
=
0.1
,
current_epoch
:
int
=
-
1
,
...
...
imperative/python/megengine/optimizer/sgd.py
浏览文件 @
6d4fd938
...
...
@@ -9,10 +9,10 @@
from
typing
import
Iterable
,
Union
from
..tensor_nn
import
Buffer
,
Parameter
from
.
distributed_optimizer
import
Distributed
Optimizer
from
.
optimizer
import
Optimizer
class
SGD
(
Distributed
Optimizer
):
class
SGD
(
Optimizer
):
r
"""Implements stochastic gradient descent.
Nesterov momentum is based on the formula from
...
...
@@ -31,7 +31,6 @@ class SGD(DistributedOptimizer):
lr
:
float
,
momentum
:
float
=
0.0
,
weight_decay
:
float
=
0.0
,
**
kwargs
):
assert
lr
>=
0.0
,
"Invalid learning rate: {}"
.
format
(
lr
)
assert
momentum
>=
0.0
,
"Invalid momentum value: {}"
.
format
(
momentum
)
...
...
@@ -40,7 +39,7 @@ class SGD(DistributedOptimizer):
)
defaults
=
dict
(
lr
=
lr
,
momentum
=
momentum
,
weight_decay
=
weight_decay
)
super
().
__init__
(
params
,
defaults
,
**
kwargs
)
super
().
__init__
(
params
,
defaults
)
def
_create_state
(
self
,
param_group
):
if
param_group
[
"momentum"
]
!=
0.0
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录