Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
6102b96c
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
403
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
6102b96c
编写于
12月 21, 2021
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #407 from ShrimpLau:docstring_all_reduce_xxx
GitOrigin-RevId: 3d15b14fd137235ff9cfc05ffe3c3f70da623973
上级
2881934c
da8b16fc
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
24 addition
and
24 deletion
+24
-24
imperative/python/megengine/distributed/functional.py
imperative/python/megengine/distributed/functional.py
+24
-24
未找到文件。
imperative/python/megengine/distributed/functional.py
浏览文件 @
6102b96c
...
...
@@ -410,28 +410,28 @@ def all_reduce_sum(
Returns:
A tensor with sum operation on each value across the group.
The shape of the output tensor must be the same as ``inp``, and the output
The shape of the output tensor must be the same as ``inp``, and the output
tensor is going to be bitwise identical in all processes across the group.
Examples:
>>> # We execute all_reduce_sum on rank 0 and rank 1
>>> input = F.arange(2) + 1 + 2 * rank
>>> input
>>> input = F.arange(2) + 1 + 2 * rank
# doctest: +SKIP
>>> input
# doctest: +SKIP
Tensor([1. 2.], device=xpux:0) # Rank 0
Tensor([3. 4.], device=xpux:0) # Rank 1
>>> F.distributed.all_reduce_sum(input, group=[0, 1])
>>> F.distributed.all_reduce_sum(input, group=[0, 1])
# doctest: +SKIP
Tensor([4. 6.], device=xpux:0) # Rank 0
Tensor([4. 6.], device=xpux:0) # Rank 1
>>> # We execute all_reduce_sum with on gpu0 with cuda stream 1
>>> megengine.set_default_device("gpu0")
>>> input = F.arange(2) + 1 + 2 * rank
>>> input
>>> megengine.set_default_device("gpu0")
# doctest: +SKIP
>>> input = F.arange(2) + 1 + 2 * rank
# doctest: +SKIP
>>> input
# doctest: +SKIP
Tensor([1. 2.], device=gpu0:0) # Rank 0
Tensor([3. 4.], device=gpu0:0) # Rank 1
>>> F.distributed.all_reduce_sum(input, device="gpu0:1")
>>> F.distributed.all_reduce_sum(input, device="gpu0:1")
# doctest: +SKIP
Tensor([4. 6.], device=gpu0:0) # Rank 0
Tensor([4. 6.], device=gpu0:0) # Rank 1
...
...
@@ -464,27 +464,27 @@ def all_reduce_max(
Returns:
A tensor with max operation on each value across the group.
The shape of the output tensor must be the same as ``inp``, and the output
The shape of the output tensor must be the same as ``inp``, and the output
tensor is going to be bitwise identical in all processes across the group.
Examples:
>>> # We execute all_reduce_max on rank 0 and rank 1
>>> input = F.arange(2) + 1 + 2 * rank
>>> input
>>> input = F.arange(2) + 1 + 2 * rank
# doctest: +SKIP
>>> input
# doctest: +SKIP
Tensor([1. 2.], device=xpux:0) # Rank 0
Tensor([3. 4.], device=xpux:0) # Rank 1
>>> F.distributed.all_reduce_max(input, group=[0, 1])
>>> F.distributed.all_reduce_max(input, group=[0, 1])
# doctest: +SKIP
Tensor([3. 4.], device=xpux:0) # Rank 0
Tensor([3. 4.], device=xpux:0) # Rank 1
>>> # We execute all_reduce_max with on gpu0 with cuda stream 1
>>> megengine.set_default_device("gpu0")
>>> input = F.arange(2) + 1 + 2 * rank
>>> input
>>> megengine.set_default_device("gpu0")
# doctest: +SKIP
>>> input = F.arange(2) + 1 + 2 * rank
# doctest: +SKIP
>>> input
# doctest: +SKIP
Tensor([1. 2.], device=gpu0:0) # Rank 0
Tensor([3. 4.], device=gpu0:0) # Rank 1
>>> F.distributed.all_reduce_max(input, device="gpu0:1")
>>> F.distributed.all_reduce_max(input, device="gpu0:1")
# doctest: +SKIP
Tensor([3. 4.], device=xpux:0) # Rank 0
Tensor([3. 4.], device=xpux:0) # Rank 1
...
...
@@ -518,27 +518,27 @@ def all_reduce_min(
Returns:
A tensor with min operation on each value across the group.
The shape of the output tensor must be the same as ``inp``, and the output
The shape of the output tensor must be the same as ``inp``, and the output
tensor is going to be bitwise identical in all processes across the group.
Examples:
>>> # We execute all_reduce_min on rank 0 and rank 1
>>> input = F.arange(2) + 1 + 2 * rank
>>> input
>>> input = F.arange(2) + 1 + 2 * rank
# doctest: +SKIP
>>> input
# doctest: +SKIP
Tensor([1. 2.], device=xpux:0) # Rank 0
Tensor([3. 4.], device=xpux:0) # Rank 1
>>> F.distributed.all_reduce_min(input, group=[0, 1])
>>> F.distributed.all_reduce_min(input, group=[0, 1])
# doctest: +SKIP
Tensor([1. 2.], device=xpux:0) # Rank 0
Tensor([1. 2.], device=xpux:0) # Rank 1
>>> # We execute all_reduce_min with on gpu0 with cuda stream 1
>>> megengine.set_default_device("gpu0")
>>> input = F.arange(2) + 1 + 2 * rank
>>> input
>>> megengine.set_default_device("gpu0")
# doctest: +SKIP
>>> input = F.arange(2) + 1 + 2 * rank
# doctest: +SKIP
>>> input
# doctest: +SKIP
Tensor([1. 2.], device=gpu0:0) # Rank 0
Tensor([3. 4.], device=gpu0:0) # Rank 1
>>> F.distributed.all_reduce_min(input, device="gpu0:1")
>>> F.distributed.all_reduce_min(input, device="gpu0:1")
# doctest: +SKIP
Tensor([1. 2.], device=xpux:0) # Rank 0
Tensor([1. 2.], device=xpux:0) # Rank 1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录