Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
55042195
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
55042195
编写于
11月 13, 2020
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
chore(winograd): add Convolutionv2 param
GitOrigin-RevId: 1a9e2ea340f6eb37b6a03db53038ccc053e77635
上级
7191c4bd
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
448 addition
and
81 deletion
+448
-81
dnn/scripts/opr_param_defs.py
dnn/scripts/opr_param_defs.py
+177
-28
dnn/src/cuda/convolution/opr_impl.cpp
dnn/src/cuda/convolution/opr_impl.cpp
+0
-1
dnn/src/x86/conv_bias/opr_impl.cpp
dnn/src/x86/conv_bias/opr_impl.cpp
+0
-1
imperative/src/test/imperative.cpp
imperative/src/test/imperative.cpp
+1
-1
src/gopt/impl/inference.cpp
src/gopt/impl/inference.cpp
+0
-1
src/gopt/impl/tensor_reformat.cpp
src/gopt/impl/tensor_reformat.cpp
+3
-3
src/opr/impl/dnn/dnn.oprdecl
src/opr/impl/dnn/dnn.oprdecl
+8
-8
src/opr/impl/dnn/dnn.sereg.h
src/opr/impl/dnn/dnn.sereg.h
+176
-21
src/opr/impl/imgproc.oprdecl
src/opr/impl/imgproc.oprdecl
+6
-4
src/opr/impl/imgproc.sereg.h
src/opr/impl/imgproc.sereg.h
+77
-12
src/serialization/impl/opr_registry.cpp
src/serialization/impl/opr_registry.cpp
+0
-1
未找到文件。
dnn/scripts/opr_param_defs.py
浏览文件 @
55042195
...
...
@@ -53,7 +53,7 @@ pdef('Axis').add_fields('int32', 'axis', 0)
'of convolution using CUDA/SASS. The channels are splitted to groups of 4 channels.'
))
)
(
pdef
(
'Convolution'
,
version
=
1
).
(
pdef
(
'Convolution'
,
version
=
1
,
is_legacy
=
True
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_fields
(
'uint32'
,
...
...
@@ -78,6 +78,39 @@ pdef('Axis').add_fields('int32', 'axis', 0)
name_field
=
'compute_mode'
)
)
(
pdef
(
'Convolution'
,
version
=
2
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_fields
(
'uint32'
,
Doc
(
'pad_h'
,
'padding on one side on the first dimension'
),
0
,
Doc
(
'pad_w'
,
'padding on one side on the second dimension'
),
0
,
Doc
(
'stride_h'
,
'kernel stride on the first dimension'
),
1
,
Doc
(
'stride_w'
,
'kernel stride on the second dimension'
),
1
,
Doc
(
'dilate_h'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
,
Doc
(
'dilate_w'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
).
add_enum_alias
(
'Sparse'
,
'ConvolutionV0'
).
add_enum
(
Doc
(
'Format'
,
'convolution data/filter/output format; see '
':class:`RelayoutFormat` for more details'
),
'NCHW'
,
'NHWC'
,
'NHWCD4'
,
'NCHW4'
,
'NCHW8'
,
'NCHW32'
,
'NCHW88'
,
'NCHW44'
,
'NCHW44_DOT'
,
Doc
(
'NCHW4_NCHW32'
,
'NCHW4_NCHW32 means input tensors are nchw4 layout, output tensor is nchw32 layout'
),
Doc
(
'NCHW32_NCHW4'
,
'NCHW32_NCHW4 means input tensors are nchw32 layout, output tensor is nchw4 layout'
),
Doc
(
'NCHW4_NCHW'
,
'NCHW4_NCHW means input tensors are nchw4 layout, output tensor is nchw layout'
),
Doc
(
'NHWC_NCHW'
,
'NHWC_NCHW means input tensors are nhwc layout, '
'output tensor is nchw layout'
),
Doc
(
'NHWC_NCHW4_IC_SMALL'
,
'NHWC_NCHW4_IC_SMALL means input tensors are nhwc(c < 4) layout, '
'output tensor is nchw4 layout, padding c=4'
),
Doc
(
'NCHW_NCHW4_IC_SMALL'
,
'NCHW_NCHW4_IC_SMALL means input tensors are nchw(c < 4) layout, '
'output tensor is nchw4 layout, padding c=4'
),
Doc
(
'CHWN4'
,
'CHWN4 is currently only used on Nvidia platform for fast implementation '
'of convolution using CUDA/SASS. The channels are splitted to groups of 4 channels.'
)).
add_enum_alias
(
'ComputeMode'
,
'ConvolutionV1'
,
name_field
=
'compute_mode'
)
)
(
pdef
(
'MaskPropagate'
).
add_fields
(
'uint32'
,
...
...
@@ -137,10 +170,10 @@ pdef('Axis').add_fields('int32', 'axis', 0)
'on the second dimension'
),
1
,
Doc
(
'dilate_w'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
).
add_enum_alias
(
'ComputeMode'
,
'Convolution'
,
name_field
=
'compute_mode'
)
add_enum_alias
(
'ComputeMode'
,
'Convolution
V1
'
,
name_field
=
'compute_mode'
)
)
(
pdef
(
'ConvBias'
,
'active(conv(x, w) + bias)'
,
version
=
3
).
(
pdef
(
'ConvBias'
,
'active(conv(x, w) + bias)'
,
version
=
3
,
is_legacy
=
True
).
add_enum_alias
(
'NonlineMode'
,
'ConvBiasV0'
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_enum_alias
(
'Sparse'
,
'ConvolutionV0'
).
...
...
@@ -156,9 +189,26 @@ pdef('Axis').add_fields('int32', 'axis', 0)
Doc
(
'dilate_w'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
,
Doc
(
'output_block_size'
,
'detail meaning \see winograd in conv bias'
),
0
).
add_enum_alias
(
'ComputeMode'
,
'Convolution'
,
name_field
=
'compute_mode'
)
add_enum_alias
(
'ComputeMode'
,
'Convolution
V1
'
,
name_field
=
'compute_mode'
)
)
(
pdef
(
'ConvBias'
,
'active(conv(x, w) + bias)'
,
version
=
4
).
add_enum_alias
(
'NonlineMode'
,
'ConvBiasV0'
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_enum_alias
(
'Sparse'
,
'ConvolutionV0'
).
add_enum_alias
(
'Format'
,
'Convolution'
).
add_fields
(
'uint32'
,
Doc
(
'pad_h'
,
'padding on one side on the first dimension'
),
0
,
Doc
(
'pad_w'
,
'padding on one side on the second dimension'
),
0
,
Doc
(
'stride_h'
,
'kernel stride on the first dimension'
),
1
,
Doc
(
'stride_w'
,
'kernel stride on the second dimension'
),
1
,
Doc
(
'dilate_h'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
,
Doc
(
'dilate_w'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
).
add_enum_alias
(
'ComputeMode'
,
'ConvolutionV1'
,
name_field
=
'compute_mode'
)
)
(
pdef
(
'SeparableConv'
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_enum
(
'BorderMode'
,
'BORDER_REPLICATE'
,
'BORDER_REFLECT'
,
...
...
@@ -172,7 +222,7 @@ pdef('Axis').add_fields('int32', 'axis', 0)
add_fields
(
'uint32'
,
'pad_h'
,
0
,
'pad_w'
,
0
,
'stride_h'
,
1
,
'stride_w'
,
1
,
'window_h'
,
3
,
'window_w'
,
3
))
(
pdef
(
'Pooling'
).
(
pdef
(
'Pooling'
,
version
=
0
,
is_legacy
=
True
).
add_enum
(
'Mode'
,
Doc
(
'MAX'
,
'maximum value inside pooling window'
),
...
...
@@ -188,11 +238,23 @@ pdef('Axis').add_fields('int32', 'axis', 0)
add_enum_alias
(
'Format'
,
'ConvolutionV0'
)
)
(
pdef
(
'AdaptivePooling'
).
add_enum_alias
(
'Mode'
,
'Pooling'
).
(
pdef
(
'Pooling'
,
version
=
1
).
add_enum_alias
(
'Mode'
,
'PoolingV0'
).
add_fields
(
'uint32'
,
'pad_h'
,
0
,
'pad_w'
,
0
,
'stride_h'
,
2
,
'stride_w'
,
2
,
'window_h'
,
2
,
'window_w'
,
2
).
add_enum_alias
(
'Format'
,
'Convolution'
)
)
(
pdef
(
'AdaptivePooling'
,
version
=
0
,
is_legacy
=
True
).
add_enum_alias
(
'Mode'
,
'PoolingV0'
).
add_enum_alias
(
'Format'
,
'ConvolutionV0'
)
)
(
pdef
(
'AdaptivePooling'
,
version
=
1
).
add_enum_alias
(
'Mode'
,
'PoolingV0'
).
add_enum_alias
(
'Format'
,
'Convolution'
)
)
(
pdef
(
'LRN'
,
'see ImageNet Classification with Deep Convolutional Neural Networks for'
' meaning of the fields'
).
...
...
@@ -239,7 +301,7 @@ BORDER_MODES = [Doc('REPLICATE', 'aaaaaa|abcdefgh|hhhhhhh'),
Doc
(
'CONSTANT'
,
'iiiiii|abcdefgh|iiiiiii'
),
Doc
(
'TRANSPARENT'
,
''
),
Doc
(
'ISOLATED'
,
''
)]
(
pdef
(
'WarpPerspective'
,
version
=
1
).
(
pdef
(
'WarpPerspective'
,
version
=
1
,
is_legacy
=
True
).
add_enum
(
'InterpolationMode'
,
*
INTERP_MODES
,
name_field
=
'imode'
,
default
=
1
,
member_alias
=
[(
i
,
'INTER_{}'
.
format
(
i
))
for
i
in
INTERP_MODES
]
...
...
@@ -251,6 +313,13 @@ BORDER_MODES = [Doc('REPLICATE', 'aaaaaa|abcdefgh|hhhhhhh'),
add_enum_alias
(
'Format'
,
'ConvolutionV0'
).
add_fields
(
'float32'
,
Doc
(
'border_val'
,
'used for CONSTANT bmode'
),
'.0f'
))
(
pdef
(
'WarpPerspective'
,
version
=
2
).
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspectiveV1'
,
name_field
=
"imode"
).
add_enum_alias
(
'BorderMode'
,
'WarpPerspectiveV1'
,
name_field
=
"bmode"
).
add_enum_alias
(
'Format'
,
'Convolution'
).
add_fields
(
'float32'
,
Doc
(
'border_val'
,
'used for CONSTANT bmode'
),
'.0f'
))
pdef
(
'SpatialTfGridGenerator'
).
add_enum
(
'Mode'
,
'AFFINE'
)
pdef
(
'SpatialTfSampler'
).
add_enum
(
'Mode'
,
'BILINEAR'
)
...
...
@@ -420,9 +489,12 @@ pdef('ElemwiseMultiType').add_enum(
pdef
(
'PowC'
,
'power with constant exponent'
).
add_fields
(
'float32'
,
'exp'
,
0
)
(
pdef
(
'DctChannelSelect'
,
'2d discrete cosine transform'
).
add_enum_alias
(
'Format'
,
'ConvolutionV0'
).
(
pdef
(
'DctChannelSelect'
,
'2d discrete cosine transform'
,
version
=
0
,
is_legacy
=
True
).
add_enum_alias
(
'Format'
,
'ConvolutionV0'
).
add_enum
(
'FastImpl'
,
'NONE'
,
'FIX_32_MASK'
).
add_fields
(
'int32'
,
'dct_block_size'
,
8
))
(
pdef
(
'DctChannelSelect'
,
'2d discrete cosine transform'
,
version
=
1
).
add_enum_alias
(
'Format'
,
'Convolution'
).
add_enum_alias
(
'FastImpl'
,
'DctChannelSelectV0'
).
add_fields
(
'int32'
,
'dct_block_size'
,
8
))
(
pdef
(
'MatrixMul'
,
version
=
0
,
is_legacy
=
True
).
add_fields
(
'bool'
,
'transposeA'
,
'false'
,
'transposeB'
,
'false'
).
add_enum
(
'DataType'
,
...
...
@@ -695,34 +767,51 @@ pdef('UniformRNG').add_fields('uint64', 'seed', 0)
name_field
=
'mode'
))
(
pdef
(
'WarpAffine'
,
version
=
0
,
is_legacy
=
True
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspective'
,
name_field
=
'border_mode'
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective
V1
'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspective
V1
'
,
name_field
=
'border_mode'
)
.
add_fields
(
'float32'
,
Doc
(
'border_val'
,
'used for CONSTANT bmode'
),
'.0f'
))
(
pdef
(
'WarpAffine'
,
version
=
1
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspective'
,
name_field
=
'border_mode'
)
(
pdef
(
'WarpAffine'
,
version
=
1
,
is_legacy
=
True
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective
V1
'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspective
V1
'
,
name_field
=
'border_mode'
)
.
add_fields
(
'float32'
,
Doc
(
'border_val'
,
'used for CONSTANT bmode'
),
'.0f'
)
.
add_enum_alias
(
'Format'
,
'ConvolutionV0'
,
default
=
1
))
(
pdef
(
'WarpAffine'
,
version
=
2
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspectiveV1'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspectiveV1'
,
name_field
=
'border_mode'
)
.
add_fields
(
'float32'
,
Doc
(
'border_val'
,
'used for CONSTANT bmode'
),
'.0f'
)
.
add_enum_alias
(
'Format'
,
'Convolution'
,
default
=
1
))
(
pdef
(
'GaussianBlur'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspective'
,
name_field
=
'border_mode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspective
V1
'
,
name_field
=
'border_mode'
)
.
add_fields
(
'uint32'
,
'kernel_height'
,
0
,
'kernel_width'
,
0
)
.
add_fields
(
'float32'
,
'sigma_x'
,
'0.f'
,
'sigma_y'
,
'0.f'
))
(
pdef
(
'Resize'
,
version
=
0
,
is_legacy
=
True
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective'
,
name_field
=
'imode'
))
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective
V1
'
,
name_field
=
'imode'
))
(
pdef
(
'Resize'
,
version
=
1
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective'
,
name_field
=
'imode'
)
(
pdef
(
'Resize'
,
version
=
1
,
is_legacy
=
True
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective
V1
'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'Format'
,
'ConvolutionV0'
,
default
=
1
))
(
pdef
(
'Remap'
,
version
=
0
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspective'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspective'
,
name_field
=
'border_type'
)
(
pdef
(
'Resize'
,
version
=
2
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspectiveV1'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'Format'
,
'Convolution'
,
default
=
1
))
(
pdef
(
'Remap'
,
version
=
0
,
is_legacy
=
True
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspectiveV1'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspectiveV1'
,
name_field
=
'border_type'
)
.
add_enum_alias
(
'Format'
,
'ConvolutionV0'
,
default
=
1
)
.
add_fields
(
'float32'
,
'scalar'
,
'0.f'
))
(
pdef
(
'Remap'
,
version
=
1
)
.
add_enum_alias
(
'InterpolationMode'
,
'WarpPerspectiveV1'
,
name_field
=
'imode'
)
.
add_enum_alias
(
'BorderMode'
,
'WarpPerspectiveV1'
,
name_field
=
'border_type'
)
.
add_enum_alias
(
'Format'
,
'Convolution'
,
default
=
1
)
.
add_fields
(
'float32'
,
'scalar'
,
'0.f'
))
(
pdef
(
'Convolution3D'
).
add_enum
(
'Mode'
,
'CROSS_CORRELATION'
,
'CONVOLUTION'
).
add_fields
(
...
...
@@ -879,13 +968,19 @@ when the ``I`` suffix is present.
)
(
pdef
(
'SeparableFilter'
).
(
pdef
(
'SeparableFilter'
,
version
=
0
,
is_legacy
=
True
).
add_enum_alias
(
'Format'
,
'ConvolutionV0'
).
add_enum_alias
(
'BorderMode'
,
'WarpPerspective'
).
add_enum_alias
(
'BorderMode'
,
'WarpPerspectiveV1'
).
add_fields
(
'bool'
,
'is_symm_kernel'
,
'true'
).
add_fields
(
'uint32'
,
'ksize_h'
,
3
,
'ksize_w'
,
3
,
'anchor_h'
,
1
,
'anchor_w'
,
1
))
(
pdef
(
'SeparableFilter'
,
version
=
1
).
add_enum_alias
(
'Format'
,
'Convolution'
).
add_enum_alias
(
'BorderMode'
,
'WarpPerspectiveV1'
).
add_fields
(
'bool'
,
'is_symm_kernel'
,
'true'
).
add_fields
(
'uint32'
,
'ksize_h'
,
3
,
'ksize_w'
,
3
,
'anchor_h'
,
1
,
'anchor_w'
,
1
))
(
pdef
(
'LocalShare'
,
'Local share convolution'
).
(
pdef
(
'LocalShare'
,
'Local share convolution'
,
version
=
0
,
is_legacy
=
True
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_fields
(
'uint32'
,
...
...
@@ -902,10 +997,31 @@ when the ``I`` suffix is present.
).
add_enum_alias
(
'Sparse'
,
'ConvolutionV0'
).
add_enum_alias
(
'Format'
,
'ConvolutionV0'
).
add_enum_alias
(
'ComputeMode'
,
'Convolution'
)
add_enum_alias
(
'ComputeMode'
,
'Convolution
V1
'
)
)
(
pdef
(
'ROIAlign'
).
(
pdef
(
'LocalShare'
,
'Local share convolution'
,
version
=
1
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_fields
(
'uint32'
,
Doc
(
'pad_h'
,
'padding on one side on the first dimension'
),
0
,
Doc
(
'pad_w'
,
'padding on one side on the second dimension'
),
0
,
Doc
(
'stride_h'
,
'kernel stride on the first dimension'
),
1
,
Doc
(
'stride_w'
,
'kernel stride on the second dimension'
),
1
,
Doc
(
'dilate_h'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
,
Doc
(
'dilate_w'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
,
Doc
(
'spatial_groups_h'
,
'spatial groups on the first dimension'
),
1
,
Doc
(
'spatial_groups_w'
,
'spatial groups on the second dimension'
),
1
).
add_enum_alias
(
'Sparse'
,
'ConvolutionV0'
).
add_enum_alias
(
'Format'
,
'Convolution'
).
add_enum_alias
(
'ComputeMode'
,
'ConvolutionV1'
)
)
(
pdef
(
'ROIAlign'
,
version
=
0
,
is_legacy
=
True
).
add_enum
(
'Mode'
,
'MAX'
,
'AVERAGE'
,
name_field
=
'mode'
).
add_enum_alias
(
'Format'
,
'ConvolutionV0'
).
add_fields
(
'float32'
,
'spatial_scale'
,
'1.0'
).
...
...
@@ -916,6 +1032,19 @@ when the ``I`` suffix is present.
'sample_height'
,
'2'
,
'sample_width'
,
'2'
)
)
(
pdef
(
'ROIAlign'
,
version
=
1
).
add_enum_alias
(
'Mode'
,
'ROIAlignV0'
,
name_field
=
'mode'
).
add_enum_alias
(
'Format'
,
'Convolution'
).
add_fields
(
'float32'
,
'spatial_scale'
,
'1.0'
).
add_fields
(
'float32'
,
'offset'
,
'0.0'
).
add_fields
(
'uint32'
,
'pooled_height'
,
'1'
,
'pooled_width'
,
'1'
,
'sample_height'
,
'2'
,
'sample_width'
,
'2'
)
)
(
pdef
(
'DeformablePSROIPooling'
).
add_fields
(
'bool'
,
'no_trans'
,
'true'
).
add_fields
(
'float32'
,
'spatial_scale'
,
1
,
...
...
@@ -926,7 +1055,7 @@ when the ``I`` suffix is present.
Doc
(
'part_size'
,
'size of each deformable part'
),
1
,
Doc
(
'sample_per_part'
,
'sample count of each bbox'
),
1
))
(
pdef
(
'BatchConvBias'
,
'Batch convolution (unshare weights on the batch dimension)'
).
(
pdef
(
'BatchConvBias'
,
'Batch convolution (unshare weights on the batch dimension)'
,
version
=
0
,
is_legacy
=
True
).
add_enum_alias
(
'NonlineMode'
,
'ConvBiasV0'
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_fields
(
...
...
@@ -942,8 +1071,28 @@ when the ``I`` suffix is present.
).
add_enum_alias
(
'Sparse'
,
'ConvolutionV0'
).
add_enum_alias
(
'Format'
,
'ConvolutionV0'
).
add_enum_alias
(
'ComputeMode'
,
'Convolution'
,
name_field
=
"compute_mode"
)
add_enum_alias
(
'ComputeMode'
,
'Convolution
V1
'
,
name_field
=
"compute_mode"
)
)
(
pdef
(
'BatchConvBias'
,
'Batch convolution (unshare weights on the batch dimension)'
,
version
=
1
).
add_enum_alias
(
'NonlineMode'
,
'ConvBiasV0'
).
add_enum_alias
(
'Mode'
,
'ConvolutionV0'
).
add_fields
(
'uint32'
,
Doc
(
'pad_h'
,
'padding on one side on the first dimension'
),
0
,
Doc
(
'pad_w'
,
'padding on one side on the second dimension'
),
0
,
Doc
(
'stride_h'
,
'kernel stride on the first dimension'
),
1
,
Doc
(
'stride_w'
,
'kernel stride on the second dimension'
),
1
,
Doc
(
'dilate_h'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
,
Doc
(
'dilate_w'
,
'dilation (i.e. size of each zero-padded kernel block) '
'on the second dimension'
),
1
,
).
add_enum_alias
(
'Sparse'
,
'ConvolutionV0'
).
add_enum_alias
(
'Format'
,
'Convolution'
).
add_enum_alias
(
'ComputeMode'
,
'ConvolutionV1'
,
name_field
=
"compute_mode"
)
)
(
pdef
(
'FakeQuant'
).
add_fields
(
'int32'
,
'qmin'
,
'-2147483648'
).
add_fields
(
'int32'
,
'qmax'
,
'2147483647'
)
...
...
dnn/src/cuda/convolution/opr_impl.cpp
浏览文件 @
55042195
...
...
@@ -68,7 +68,6 @@ ConvolutionForwardImpl::conv_bias_extra_data(const TensorLayout& src,
conv_param
.
stride_w
,
conv_param
.
dilate_h
,
conv_param
.
dilate_w
,
0
,
conv_param
.
compute_mode
};
ret
.
convbias_opr
->
execution_policy
()
=
{
this
->
execution_policy
().
algo
};
return
ret
;
...
...
dnn/src/x86/conv_bias/opr_impl.cpp
浏览文件 @
55042195
...
...
@@ -173,7 +173,6 @@ SmallVector<AlgoCategory> ConvBiasImpl::suggest_algo_category_order(
auto
FH
=
param
.
filter_meta
.
spatial
[
0
];
auto
FW
=
param
.
filter_meta
.
spatial
[
1
];
//! TODO: now winograd only support fast-run
//! nchw88 use mkl-dnn which algo is direct
if
(
param
.
filter_meta
.
format
==
param
::
ConvBias
::
Format
::
NCHW88
)
{
return
{
AlgoCategory
::
DIRECT
,
AlgoCategory
::
IM2COL
};
...
...
imperative/src/test/imperative.cpp
浏览文件 @
55042195
...
...
@@ -35,7 +35,7 @@ TEST(TestImperative, APlusB) {
}
TEST
(
TestImperative
,
Convolution
)
{
auto
op
=
OprAttr
::
make
(
"ConvolutionV
1
"
);
auto
op
=
OprAttr
::
make
(
"ConvolutionV
2
"
);
auto
&&
attr
=
op
->
cast_final_safe
<
OprAttr
>
();
using
Param
=
opr
::
Convolution
::
Param
;
using
Policy
=
opr
::
Convolution
::
ExecutionPolicy
;
...
...
src/gopt/impl/inference.cpp
浏览文件 @
55042195
...
...
@@ -1752,7 +1752,6 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const {
param
.
stride_w
,
param
.
dilate_h
,
param
.
dilate_w
,
0
,
param
.
compute_mode
};
};
...
...
src/gopt/impl/tensor_reformat.cpp
浏览文件 @
55042195
...
...
@@ -1945,7 +1945,7 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) {
megdnn
::
param
::
ConvBias
::
Format
conv_bias_format
=
megdnn
::
param
::
ConvBias
::
Format
::
NCHW88
;
megdnn
::
param
::
Convolution
::
Format
conv_format
=
megdnn
::
param
::
Convolution
V0
::
Format
::
NCHW88
;
megdnn
::
param
::
Convolution
::
Format
::
NCHW88
;
megdnn
::
param
::
Pooling
::
Format
pooling_format
=
megdnn
::
param
::
Pooling
::
Format
::
NCHW88
;
std
::
string
convter_pass_name
=
"conv_format_nchw88"
;
...
...
@@ -1958,7 +1958,7 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) {
src_to_nchwxx_mode
=
RelayoutMode
::
NCHW_TO_NCHW4
;
src_to_nchw_mode
=
RelayoutMode
::
NCHW4_TO_NCHW
;
conv_bias_format
=
megdnn
::
param
::
ConvBias
::
Format
::
NCHW44
;
conv_format
=
megdnn
::
param
::
Convolution
V0
::
Format
::
NCHW44
;
conv_format
=
megdnn
::
param
::
Convolution
::
Format
::
NCHW44
;
pooling_format
=
megdnn
::
param
::
Pooling
::
Format
::
NCHW44
;
convter_pass_name
=
"conv_format_nchw44"
;
}
...
...
@@ -2360,7 +2360,7 @@ EnableNchw44DotPass::make_nchw44_dot_converter() {
struct
TestTransResult
{
TransType
trans_type
;
RelayoutMode
relayout_mod
;
megdnn
::
param
::
Convolution
V0
::
Format
conv_format
;
megdnn
::
param
::
Convolution
::
Format
conv_format
;
};
constexpr
size_t
pack_c_size
=
4
_z
;
auto
test_trans_nchw44_dot
=
...
...
src/opr/impl/dnn/dnn.oprdecl
浏览文件 @
55042195
...
...
@@ -18,7 +18,7 @@ decl_opr('Convolution',
params
=
[(
'param'
,
'Convolution'
),
(
'execution_polity'
,
'ExecutionPolicy'
)],
desc
=
'batched convolution on channeled 2D images'
,
version
=
1
,
has_out_dtype
=
True
)
version
=
2
,
has_out_dtype
=
True
)
decl_opr
(
'ConvolutionBackwardData'
,
pyname
=
'deconvolution_v0'
,
...
...
@@ -51,7 +51,7 @@ decl_opr('ConvolutionBackwardData',
],
desc
=
'batched deconvolution on channeled 2D images; the underlying '
'computation is in fact gradient of convolution w.r.t. data'
,
version
=
1
)
version
=
2
)
decl_opr
(
'MaskConvolution'
,
inputs
=
[
Doc
(
'src'
,
...
...
@@ -138,14 +138,14 @@ decl_opr('LRN',
decl_opr
(
'Pooling'
,
inputs
=
[
'src'
],
params
=
'Pooling'
)
params
=
'Pooling'
,
version
=
1
)
decl_opr
(
'AdaptivePooling'
,
inputs
=
[
Doc
(
'src'
,
'input image, shape (n, c, ih, iw)'
),
Doc
(
'out_shape'
,
'output image shape, containing two elements specifying output height and width.'
)],
params
=
'AdaptivePooling'
,
desc
=
'Adaptive Pooling.'
'The output shape is (n, c, oh, ow), where (oh, ow) is given by *out_shape*.'
)
'The output shape is (n, c, oh, ow), where (oh, ow) is given by *out_shape*.'
,
version
=
1
)
decl_opr
(
'ROIPooling'
,
outputs
=
[
0
],
inputs
=
[
Doc
(
'src'
,
'input image, shape (n, c, ih, iw)'
),
...
...
@@ -215,7 +215,7 @@ decl_opr('ConvBiasForward',
(
'execution_policy'
,
'ExecutionPolicy'
)],
desc
=
(
'activation(convolution(src, filter) + bias) with specified '
'dtype'
),
version
=
3
,
has_out_dtype
=
True
)
version
=
4
,
has_out_dtype
=
True
)
decl_opr
(
'BatchNorm'
,
pyname
=
'batch_norm'
,
...
...
@@ -255,7 +255,7 @@ r"""
& iw=-pad_w+ow \\times stride_w \\\\
& grp_h = oh / (OH / spatial_groups_h) \\\\
& grp_w = ow / (OW / spatial_groups_w)
"""
),
"""
),
version
=
1
,
has_out_dtype
=
True
)
decl_opr
(
'ROIAlign'
,
outputs
=
[
0
],
...
...
@@ -270,7 +270,7 @@ decl_opr('ROIAlign', outputs=[0],
desc
=
'ROI Align, see '
'Mask-RCNN: https://arxiv.org/pdf/1703.06870.pdf, '
'The output shape is (m, c, pooled_height, pooled_width), where (pooled_height, pooled_width) is given by '
'*Param*.'
)
'*Param*.'
,
version
=
1
)
decl_opr
(
'DeformableConvForward'
,
pyname
=
'deformable_conv'
,
...
...
@@ -312,7 +312,7 @@ r"""
* filter_{n, oc, ic, kh, kw} \\\\
\\text{where} & ih=-pad_h+oh \\times stride_h \\\\
& iw=-pad_w+ow \\times stride_w
"""
),
"""
),
version
=
1
,
has_out_dtype
=
True
)
decl_opr
(
'FakeQuant'
,
...
...
src/opr/impl/dnn/dnn.sereg.h
浏览文件 @
55042195
...
...
@@ -22,10 +22,84 @@
#include "megbrain/opr/dnn/tqt.h"
#include "megbrain/serialization/sereg.h"
#include "megdnn/opr_param_defs.h"
#include "megdnn/oprs/nn.h"
namespace
mgb
{
namespace
serialization
{
template
<
class
MegDNNPooling
=
megdnn
::
Pooling
>
struct
MakePoolingCaller1
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNPooling
::
Param
&
param
,
const
OperatorNodeConfig
&
config
)
{
if
(
inputs
.
size
()
==
1
)
{
return
Opr
::
make
(
inputs
[
0
],
param
,
config
).
node
();
}
return
nullptr
;
}
};
template
<
class
MegDNNROIALIGN
=
megdnn
::
ROIAlign
>
struct
MakeROIAlignCaller1
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNROIALIGN
::
Param
&
param
,
const
OperatorNodeConfig
&
config
)
{
if
(
inputs
.
size
()
==
2
)
{
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
param
,
config
).
node
();
}
else
{
return
nullptr
;
}
}
};
template
<
class
MegDNNROIALIGN
=
megdnn
::
ROIAlignBackward
>
struct
MakeROIAlignCaller4
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNROIALIGN
::
Param
&
param
,
const
OperatorNodeConfig
&
config
)
{
if
(
inputs
.
size
()
==
4
)
{
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
],
inputs
[
3
],
param
,
config
)
.
node
();
}
else
{
return
nullptr
;
}
}
};
template
<
class
MegDNNPooling
=
megdnn
::
PoolingBackward
>
struct
MakePoolingBackwardCaller3
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNPooling
::
Param
&
param
,
const
OperatorNodeConfig
&
config
)
{
if
(
inputs
.
size
()
==
3
)
{
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
],
param
,
config
)
.
node
();
}
return
nullptr
;
}
};
template
<
class
MegDNNPooling
=
megdnn
::
AdaptivePoolingBackward
>
struct
MakeAdaptivePoolingBackwardCaller3
{
template
<
typename
Opr
>
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
typename
MegDNNPooling
::
Param
&
param
,
const
OperatorNodeConfig
&
config
)
{
if
(
inputs
.
size
()
==
4
)
{
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
],
inputs
[
3
],
param
,
config
)
.
node
();
}
return
nullptr
;
}
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
MakeConvCaller2
{
template
<
typename
Opr
>
...
...
@@ -41,6 +115,7 @@ namespace serialization {
return
nullptr
;
}
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
MakeConvCaller3
{
template
<
typename
Opr
>
...
...
@@ -56,6 +131,7 @@ namespace serialization {
return
nullptr
;
}
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
MakeConvCaller4
{
template
<
typename
Opr
>
...
...
@@ -71,6 +147,7 @@ namespace serialization {
return
nullptr
;
}
};
template
<
class
MegDNNConv
=
megdnn
::
Convolution
>
struct
MakeConvCaller5
{
template
<
typename
Opr
>
...
...
@@ -141,6 +218,75 @@ namespace serialization {
}
};
template
<
class
Opr
,
class
Maker0
,
typename
PoolingParam
=
megdnn
::
param
::
Pooling
>
struct
PoolingLoadDumpImpl
{
static
void
dump
(
OprDumpContext
&
ctx
,
const
cg
::
OperatorNodeBase
&
opr_
)
{
auto
&&
opr
=
opr_
.
cast_final_safe
<
Opr
>
();
ctx
.
write_param
<
PoolingParam
>
(
opr
.
param
());
}
static
VarNode
*
make
(
const
cg
::
VarNodeArray
&
inputs
,
const
PoolingParam
&
param
,
const
OperatorNodeConfig
&
config
)
{
VarNode
*
ret
=
Maker0
::
template
make
<
Opr
>(
inputs
,
param
,
config
);
mgb_assert
(
ret
);
return
ret
;
}
static
cg
::
OperatorNodeBase
*
load
(
OprLoadContext
&
ctx
,
const
cg
::
VarNodeArray
&
inputs
,
const
OperatorNodeConfig
&
config
)
{
auto
param
=
ctx
.
read_param
<
PoolingParam
>
();
return
make
(
inputs
,
param
,
config
)
->
owner_opr
();
}
};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
AdaptivePoolingBackward
,
0
>:
public
PoolingLoadDumpImpl
<
opr
::
AdaptivePoolingBackward
,
MakeAdaptivePoolingBackwardCaller3
<
megdnn
::
AdaptivePoolingBackward
>
,
megdnn
::
param
::
AdaptivePooling
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
AdaptivePooling
,
0
>:
public
PoolingLoadDumpImpl
<
opr
::
AdaptivePooling
,
MakeROIAlignCaller1
<
megdnn
::
AdaptivePooling
>
,
megdnn
::
param
::
AdaptivePooling
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
ROIAlign
,
0
>:
public
PoolingLoadDumpImpl
<
opr
::
ROIAlign
,
MakeROIAlignCaller1
<
megdnn
::
ROIAlign
>
,
megdnn
::
param
::
ROIAlign
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
ROIAlignBackward
,
0
>:
public
PoolingLoadDumpImpl
<
opr
::
ROIAlignBackward
,
MakeROIAlignCaller4
<
megdnn
::
ROIAlignBackward
>
,
megdnn
::
param
::
ROIAlign
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
Pooling
,
0
>:
public
PoolingLoadDumpImpl
<
opr
::
Pooling
,
MakePoolingCaller1
<
megdnn
::
Pooling
>
,
megdnn
::
param
::
Pooling
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
PoolingBackward
,
0
>:
public
PoolingLoadDumpImpl
<
opr
::
PoolingBackward
,
MakePoolingBackwardCaller3
<
megdnn
::
PoolingBackward
>
,
megdnn
::
param
::
Pooling
>
{};
template
<
>
struct
OprLoadDumpImpl
<
opr
::
Convolution
,
0
>:
public
ConvLoadDumpImpl
<
opr
::
Convolution
,
...
...
@@ -374,12 +520,12 @@ namespace serialization {
namespace
opr
{
using
ConvolutionV
1
=
Convolution
;
using
ConvolutionBackwardDataV
1
=
ConvolutionBackwardData
;
using
ConvolutionBackwardFilterV
1
=
ConvolutionBackwardFilter
;
MGB_SEREG_OPR
(
ConvolutionV
1
,
0
);
MGB_SEREG_OPR
(
ConvolutionBackwardDataV
1
,
0
);
MGB_SEREG_OPR
(
ConvolutionBackwardFilterV
1
,
0
);
using
ConvolutionV
2
=
Convolution
;
using
ConvolutionBackwardDataV
2
=
ConvolutionBackwardData
;
using
ConvolutionBackwardFilterV
2
=
ConvolutionBackwardFilter
;
MGB_SEREG_OPR
(
ConvolutionV
2
,
0
);
MGB_SEREG_OPR
(
ConvolutionBackwardDataV
2
,
0
);
MGB_SEREG_OPR
(
ConvolutionBackwardFilterV
2
,
0
);
MGB_SEREG_OPR
(
Images2Neibs
,
1
);
MGB_SEREG_OPR
(
Images2NeibsBackward
,
2
);
...
...
@@ -400,12 +546,14 @@ namespace opr {
MGB_SEREG_OPR
(
LRN
,
1
);
MGB_SEREG_OPR
(
LRNBackward
,
3
);
MGB_SEREG_OPR
(
Pooling
,
1
);
MGB_SEREG_OPR
(
PoolingBackward
,
3
);
MGB_SEREG_OPR
(
AdaptivePooling
,
2
);
MGB_SEREG_OPR
(
AdaptivePoolingBackward
,
4
);
using
PoolingV1
=
Pooling
;
using
PoolingBackwardV1
=
PoolingBackward
;
MGB_SEREG_OPR
(
PoolingV1
,
1
);
MGB_SEREG_OPR
(
PoolingBackwardV1
,
3
);
using
AdaptivePoolingV1
=
AdaptivePooling
;
using
AdaptivePoolingBackwardV1
=
AdaptivePoolingBackward
;
MGB_SEREG_OPR
(
AdaptivePoolingV1
,
2
);
MGB_SEREG_OPR
(
AdaptivePoolingBackwardV1
,
4
);
MGB_SEREG_OPR
(
ROIPooling
,
3
);
MGB_SEREG_OPR
(
ROIPoolingBackward
,
4
);
...
...
@@ -418,18 +566,23 @@ namespace opr {
MGB_SEREG_OPR
(
Convolution3DBackwardData
,
0
);
MGB_SEREG_OPR
(
Convolution3DBackwardFilter
,
0
);
using
ConvBiasForwardV
3
=
ConvBiasForward
;
MGB_SEREG_OPR
(
ConvBiasForwardV
3
,
0
);
using
ConvBiasForwardV
4
=
ConvBiasForward
;
MGB_SEREG_OPR
(
ConvBiasForwardV
4
,
0
);
MGB_SEREG_OPR
(
BatchNorm
,
0
);
MGB_SEREG_OPR
(
BatchNormBackward
,
5
);
MGB_SEREG_OPR
(
LocalShareForward
,
0
);
MGB_SEREG_OPR
(
LocalShareBackwardData
,
0
);
MGB_SEREG_OPR
(
LocalShareBackwardFilter
,
0
);
MGB_SEREG_OPR
(
ROIAlign
,
2
);
MGB_SEREG_OPR
(
ROIAlignBackward
,
4
);
using
LocalShareForwardV1
=
LocalShareForward
;
using
LocalShareBackwardDataV1
=
LocalShareBackwardData
;
using
LocalShareBackwardFilterV1
=
LocalShareBackwardFilter
;
MGB_SEREG_OPR
(
LocalShareForwardV1
,
0
);
MGB_SEREG_OPR
(
LocalShareBackwardDataV1
,
0
);
MGB_SEREG_OPR
(
LocalShareBackwardFilterV1
,
0
);
using
ROIAlignV1
=
ROIAlign
;
using
ROIAlignBackwardV1
=
ROIAlignBackward
;
MGB_SEREG_OPR
(
ROIAlignV1
,
2
);
MGB_SEREG_OPR
(
ROIAlignBackwardV1
,
4
);
MGB_SEREG_OPR
(
DeformableConvForward
,
0
);
MGB_SEREG_OPR
(
DeformableConvBackwardData
,
0
);
MGB_SEREG_OPR
(
DeformableConvBackwardFilter
,
0
);
...
...
@@ -437,7 +590,9 @@ namespace opr {
MGB_SEREG_OPR
(
DeformablePSROIPoolingForward
,
3
);
MGB_SEREG_OPR
(
DeformablePSROIPoolingBackward
,
5
);
MGB_SEREG_OPR
(
BatchConvBiasForward
,
0
);
using
BatchConvBiasForwardV1
=
BatchConvBiasForward
;
MGB_SEREG_OPR
(
BatchConvBiasForwardV1
,
0
);
MGB_SEREG_OPR
(
FakeQuant
,
3
);
MGB_SEREG_OPR
(
FakeQuantBackward
,
4
);
MGB_SEREG_OPR
(
TQT
,
2
);
...
...
src/opr/impl/imgproc.oprdecl
浏览文件 @
55042195
...
...
@@ -12,7 +12,8 @@ decl_opr(
params
=
'WarpPerspective'
,
desc
=
'Apply perspective transformation to batched 2D images; '
'see http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html '
'for details on perspective transformations.'
)
'for details on perspective transformations.'
,
version
=
2
)
decl_opr
(
'WarpPerspective'
,
...
...
@@ -62,7 +63,7 @@ decl_opr('Resize',
desc
=
'Resize an image. '
'see http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html?highlight=resize#cv2.resize'
' for details.'
,
version
=
1
)
version
=
2
)
decl_opr
(
'WarpAffine'
,
...
...
@@ -77,7 +78,7 @@ decl_opr(
desc
=
'Apply affine transformation to batched 2D images; '
'see http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html '
'for details on affine transformations.'
,
version
=
1
)
version
=
2
)
decl_opr
(
'Remap'
,
...
...
@@ -89,7 +90,8 @@ decl_opr(
params
=
'Remap'
,
desc
=
'Remap transformation to batched 2D images; '
'see https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html?highlight=remap'
'for details on remap transformations.'
)
'for details on remap transformations.'
,
version
=
1
)
decl_raw_opr
(
'dct_channel_select'
,
...
...
src/opr/impl/imgproc.sereg.h
浏览文件 @
55042195
...
...
@@ -9,8 +9,10 @@
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include <type_traits>
#include "megbrain/opr/imgproc.h"
#include "megbrain/serialization/sereg.h"
#include "megdnn/opr_param_defs.h"
namespace
mgb
{
namespace
serialization
{
...
...
@@ -38,6 +40,63 @@ namespace serialization {
}
};
template
<
>
struct
OprMaker
<
opr
::
Remap
,
0
>
{
using
Opr
=
opr
::
Remap
;
using
Param
=
Opr
::
Param
;
static
cg
::
OperatorNodeBase
*
make
(
const
Param
&
param
,
const
cg
::
VarNodeArray
&
inputs
,
ComputingGraph
&
graph
,
const
OperatorNodeConfig
&
config
)
{
MGB_MARK_USED_VAR
(
graph
);
if
(
inputs
.
size
()
==
2
)
{
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
param
,
config
)
.
node
()
->
owner_opr
();
}
else
{
return
nullptr
;
}
}
};
template
<
>
struct
OprMaker
<
opr
::
RemapBackwardMat
,
0
>
{
using
Opr
=
opr
::
RemapBackwardMat
;
using
Param
=
Opr
::
Param
;
static
cg
::
OperatorNodeBase
*
make
(
const
Param
&
param
,
const
cg
::
VarNodeArray
&
inputs
,
ComputingGraph
&
graph
,
const
OperatorNodeConfig
&
config
)
{
MGB_MARK_USED_VAR
(
graph
);
if
(
inputs
.
size
()
==
3
)
{
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
],
param
,
config
)
.
node
()
->
owner_opr
();
}
else
{
return
nullptr
;
}
}
};
template
<
>
struct
OprMaker
<
opr
::
RemapBackwardData
,
0
>
{
using
Opr
=
opr
::
RemapBackwardData
;
using
Param
=
Opr
::
Param
;
static
cg
::
OperatorNodeBase
*
make
(
const
Param
&
param
,
const
cg
::
VarNodeArray
&
inputs
,
ComputingGraph
&
graph
,
const
OperatorNodeConfig
&
config
)
{
MGB_MARK_USED_VAR
(
graph
);
if
(
inputs
.
size
()
==
3
)
{
return
Opr
::
make
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
],
param
,
config
)
.
node
()
->
owner_opr
();
}
else
{
return
nullptr
;
}
}
};
template
<
>
struct
OprMaker
<
opr
::
DctChannelSelectForward
,
0
>
{
using
Opr
=
opr
::
DctChannelSelectForward
;
...
...
@@ -106,29 +165,35 @@ namespace serialization {
}
// namespace serialization
namespace
opr
{
MGB_SEREG_OPR
(
WarpPerspective
,
0
);
MGB_SEREG_OPR
(
WarpPerspectiveBackwardData
,
0
);
MGB_SEREG_OPR
(
WarpPerspectiveBackwardMat
,
0
);
using
WarpPerspectiveV2
=
WarpPerspective
;
using
WarpPerspectiveBackwardDataV2
=
WarpPerspectiveBackwardData
;
using
WarpPerspectiveBackwardMatV2
=
WarpPerspectiveBackwardMat
;
MGB_SEREG_OPR
(
WarpPerspectiveV2
,
0
);
MGB_SEREG_OPR
(
WarpPerspectiveBackwardDataV2
,
0
);
MGB_SEREG_OPR
(
WarpPerspectiveBackwardMatV2
,
0
);
MGB_SEREG_OPR
(
Rotate
,
1
);
MGB_SEREG_OPR
(
CvtColor
,
1
);
MGB_SEREG_OPR
(
GaussianBlur
,
1
);
MGB_SEREG_OPR
(
ResizeBackward
,
2
);
MGB_SEREG_OPR
(
Remap
,
2
);
MGB_SEREG_OPR
(
RemapBackwardData
,
3
);
MGB_SEREG_OPR
(
RemapBackwardMat
,
3
);
using
RemapV1
=
Remap
;
using
RemapBackwardDataV1
=
RemapBackwardData
;
using
RemapBackwardMatV1
=
RemapBackwardMat
;
MGB_SEREG_OPR
(
RemapV1
,
2
);
MGB_SEREG_OPR
(
RemapBackwardDataV1
,
3
);
MGB_SEREG_OPR
(
RemapBackwardMatV1
,
3
);
//! current warp affine version
using
WarpAffineV
1
=
opr
::
WarpAffine
;
MGB_SEREG_OPR
(
WarpAffineV
1
,
3
);
using
WarpAffineV
2
=
opr
::
WarpAffine
;
MGB_SEREG_OPR
(
WarpAffineV
2
,
3
);
//! current resize version
using
ResizeV
1
=
opr
::
Resize
;
MGB_SEREG_OPR
(
ResizeV
1
,
2
);
using
ResizeV
2
=
opr
::
Resize
;
MGB_SEREG_OPR
(
ResizeV
2
,
2
);
MGB_SEREG_OPR
(
DctChannelSelect
,
0
);
using
DctChannelSelectV1
=
opr
::
DctChannelSelect
;
MGB_SEREG_OPR
(
DctChannelSelectV1
,
0
);
}
// namespace opr
...
...
src/serialization/impl/opr_registry.cpp
浏览文件 @
55042195
...
...
@@ -71,7 +71,6 @@ namespace {
void
OprRegistry
::
add
(
const
OprRegistry
&
record
)
{
auto
&&
sd
=
static_data
();
auto
persist_id
=
record
.
persist_type_id
;
auto
registry_ins
=
sd
.
id2reg
.
emplace
(
persist_id
,
record
);
mgb_assert
(
registry_ins
.
second
||
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录