提交 5207154e 编写于 作者: M Megvii Engine Team

Revert "fix(mgb): fix fastrun no_profiling_on_shape_change"

This reverts commit 27355364248c464089e6fcbbde52dcaf9a26b314.

GitOrigin-RevId: 6a641808f0ef385c8e77767eb6b3ac08b9ec2f0e
上级 cf2ae2eb
...@@ -508,15 +508,6 @@ AlgoChooser<Opr>::AlgoChooserHelper::AlgoChooserHelper( ...@@ -508,15 +508,6 @@ AlgoChooser<Opr>::AlgoChooserHelper::AlgoChooserHelper(
m_fastrun_layouts, m_dnn_opr->param(), fastrun_batch_size); m_fastrun_layouts, m_dnn_opr->param(), fastrun_batch_size);
} }
if (owner_graph()->options().no_profiling_on_shape_change) {
for (size_t i = 0; i < m_incache_layouts.size(); i++) {
for (size_t j = 0; j < m_incache_layouts.at(i).ndim; j++) {
m_incache_layouts.at(i)[j] = 0;
m_incache_layouts.at(i).stride[j] = 0;
}
}
}
mgb_assert(m_fastrun_layouts.size() == layouts.size()); mgb_assert(m_fastrun_layouts.size() == layouts.size());
static_assert( static_assert(
...@@ -571,6 +562,12 @@ typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::AlgoChooserHelp ...@@ -571,6 +562,12 @@ typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::AlgoChooserHelp
if (policy.algo.valid()) { if (policy.algo.valid()) {
return policy; return policy;
} }
if (is_matmul<Opr>()) {
mgb_log_warn(
"choose algo by heuristic, which may cause performance "
"regression.");
return choose_by_heuristic(selected_strategy);
}
} }
typename AlgoChooser<Opr>::ImplExecutionPolicy tmp_policy; typename AlgoChooser<Opr>::ImplExecutionPolicy tmp_policy;
...@@ -1016,8 +1013,6 @@ std::pair<AlgoAttribute, AlgoAttribute> AlgoChooser<Opr>::AlgoChooserHelper:: ...@@ -1016,8 +1013,6 @@ std::pair<AlgoAttribute, AlgoAttribute> AlgoChooser<Opr>::AlgoChooserHelper::
} }
//! from graph option //! from graph option
// FIXME: no_profiling_on_shape_change extract USABLE_DEPEND_ON_SHAPE attribute when
// fixed usable
if (owner_graph()->options().fast_run_config.shared_batch_size) { if (owner_graph()->options().fast_run_config.shared_batch_size) {
ret.second |= AlgoAttribute::USABLE_DEPEND_ON_SHAPE; ret.second |= AlgoAttribute::USABLE_DEPEND_ON_SHAPE;
} }
......
...@@ -58,6 +58,13 @@ constexpr bool opr_contain_bias() { ...@@ -58,6 +58,13 @@ constexpr bool opr_contain_bias() {
return std::is_same<Opr, megdnn::ConvBias>::value; return std::is_same<Opr, megdnn::ConvBias>::value;
} }
//! matmul and batchedMatrixMul
template <typename Opr>
constexpr bool is_matmul() {
return std::is_same<Opr, megdnn::MatrixMul>::value ||
std::is_same<Opr, megdnn::BatchedMatrixMul>::value;
}
template <typename Opr, bool has_prep> template <typename Opr, bool has_prep>
struct PreprocessFilterImpl { struct PreprocessFilterImpl {
using T = union {}; using T = union {};
......
...@@ -292,56 +292,6 @@ TEST(TestOprDNN, FastrunIgnoreBatchSizeBatchedMatrixMul) { ...@@ -292,56 +292,6 @@ TEST(TestOprDNN, FastrunIgnoreBatchSizeBatchedMatrixMul) {
{TensorShape{4, 6, 8}, TensorShape{4, 8, 4}}); {TensorShape{4, 6, 8}, TensorShape{4, 8, 4}});
} }
template <typename MgbOpr>
void test_no_profiling_on_shape_change(
const TensorShapeArray& inps0, const TensorShapeArray& inps1) {
using Policy = typename MgbOpr::ExecutionPolicy;
int nr_set = 0;
auto on_get = [](const std::string&, const void*, size_t, const void*, size_t) {};
auto on_set = [&nr_set](
const std::string&, const void*, size_t, const void*,
size_t) { nr_set++; };
PersistentCacheHook cache_hook{on_get, on_set};
auto cn = CompNode::load("xpu0");
auto run = [&cn](const TensorShapeArray& shapes) {
auto graph = ComputingGraph::make();
graph->options().no_profiling_on_shape_change = true;
HostTensorGenerator<> gen;
auto host_a = gen(shapes[0], cn);
auto host_b = gen(shapes[1], cn);
HostTensorND host_out;
auto a = opr::Host2DeviceCopy::make(*graph, host_a),
b = opr::Host2DeviceCopy::make(*graph, host_b);
Policy policy;
policy.strategy = Policy::Strategy::PROFILE;
auto out = MgbOpr::make(a, b, {}, policy, {});
std::unique_ptr<cg::AsyncExecutable> func = graph->compile({{out, {}}});
func->execute();
};
run(inps0);
int nr = nr_set;
ASSERT_GT(nr, 0);
run(inps1);
ASSERT_EQ(nr, nr_set);
}
TEST(TestOprDNN, FastrunNoProfilingOnShapeChange) {
REQUIRE_GPU(1);
megdnn::HeuristicCache::instance().clear();
test_no_profiling_on_shape_change<opr::Convolution>(
{{12, 3, 36, 36}, {4, 3, 3, 3}}, {{32, 3, 28, 28}, {4, 3, 3, 3}});
test_no_profiling_on_shape_change<opr::MatrixMul>(
{{20, 30}, {30, 40}}, {{30, 40}, {40, 60}});
}
#endif // MGB_ENABLE_FASTRUN #endif // MGB_ENABLE_FASTRUN
#endif // MGB_CUDA #endif // MGB_CUDA
......
...@@ -899,12 +899,11 @@ TEST(TestOprBlas, MatrixMulExePolicy) { ...@@ -899,12 +899,11 @@ TEST(TestOprBlas, MatrixMulExePolicy) {
graph->options().no_profiling_on_shape_change = true; graph->options().no_profiling_on_shape_change = true;
auto func = graph->compile({make_callback_copy(matmul, host_y)}); auto func = graph->compile({make_callback_copy(matmul, host_y)});
func->execute(); func->execute();
ASSERT_GT(nr_get, 0); ASSERT_EQ(nr_get, 0);
int nr = nr_get;
graph->options().no_profiling_on_shape_change = false; graph->options().no_profiling_on_shape_change = false;
func = graph->compile({make_callback_copy(matmul, host_y)}); func = graph->compile({make_callback_copy(matmul, host_y)});
func->execute(); func->execute();
ASSERT_GT(nr_get, nr); ASSERT_GT(nr_get, 0);
} }
#endif #endif
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册