Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
3b08bd9e
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
3b08bd9e
编写于
4月 30, 2020
作者:
M
Megvii Engine Team
提交者:
Xinran Xu
5月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(dnn/fallback): fix im2col thread safe problem
GitOrigin-RevId: f9f82d8c88379a7791aa72ea222567468df707ac
上级
3ef308e7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
85 addition
and
52 deletion
+85
-52
dnn/src/fallback/conv_bias/conv1x1/algos.h
dnn/src/fallback/conv_bias/conv1x1/algos.h
+1
-1
dnn/src/fallback/conv_bias/im2col/algos.cpp
dnn/src/fallback/conv_bias/im2col/algos.cpp
+78
-44
dnn/src/fallback/conv_bias/im2col/algos.h
dnn/src/fallback/conv_bias/im2col/algos.h
+6
-7
未找到文件。
dnn/src/fallback/conv_bias/conv1x1/algos.h
浏览文件 @
3b08bd9e
...
@@ -47,7 +47,7 @@ protected:
...
@@ -47,7 +47,7 @@ protected:
private:
private:
MatrixMulImpl
::
AlgoBase
*
m_matmul_algo
;
MatrixMulImpl
::
AlgoBase
*
m_matmul_algo
;
mutable
std
::
string
m_name
;
mutable
std
::
string
m_name
;
mutable
size_t
m_oc_block_size
=
0
;
const
size_t
m_oc_block_size
=
0
;
};
};
}
// namespace fallback
}
// namespace fallback
...
...
dnn/src/fallback/conv_bias/im2col/algos.cpp
浏览文件 @
3b08bd9e
...
@@ -350,7 +350,8 @@ ConvBiasImpl::AlgoIm2col ::get_matmul_kern_param(const NCBKernSizeParam& param,
...
@@ -350,7 +350,8 @@ ConvBiasImpl::AlgoIm2col ::get_matmul_kern_param(const NCBKernSizeParam& param,
}
}
void
ConvBiasImpl
::
AlgoIm2col
::
choice_ohw_oc_block
(
void
ConvBiasImpl
::
AlgoIm2col
::
choice_ohw_oc_block
(
const
NCBKernSizeParam
&
param
,
size_t
block_m
,
size_t
block_n
,
const
NCBKernSizeParam
&
param
,
size_t
&
oc_tile_size
,
size_t
&
ohw_tile_size
,
size_t
block_m
,
size_t
block_n
,
bool
need_pack
)
const
{
bool
need_pack
)
const
{
size_t
nr_threads
=
param
.
nr_threads
;
size_t
nr_threads
=
param
.
nr_threads
;
size_t
OC
=
param
.
filter_meta
.
ocpg
;
size_t
OC
=
param
.
filter_meta
.
ocpg
;
...
@@ -360,29 +361,29 @@ void ConvBiasImpl::AlgoIm2col::choice_ohw_oc_block(
...
@@ -360,29 +361,29 @@ void ConvBiasImpl::AlgoIm2col::choice_ohw_oc_block(
//! m_ohw_tile_size and m_oc_tile_size, if the two value changed, the
//! m_ohw_tile_size and m_oc_tile_size, if the two value changed, the
//! workspace size may change, will ocur workspace not match problem, so
//! workspace size may change, will ocur workspace not match problem, so
//! should use the original data init them to avoid the problem
//! should use the original data init them to avoid the problem
m_
oc_tile_size
=
DEFAULT_OC_TILE_SIZE
;
oc_tile_size
=
DEFAULT_OC_TILE_SIZE
;
m_ohw_tile_size
=
m_ohw_tile_origin
;
ohw_tile_size
=
m_ohw_tile_size
;
m_oc_tile_size
=
std
::
min
(
m_
oc_tile_size
,
OC
);
oc_tile_size
=
std
::
min
(
oc_tile_size
,
OC
);
m_ohw_tile_size
=
std
::
min
(
m_
ohw_tile_size
,
ohw
);
ohw_tile_size
=
std
::
min
(
ohw_tile_size
,
ohw
);
if
(
nr_threads
>
1
)
{
if
(
nr_threads
>
1
)
{
if
(
ohw
/
m_
ohw_tile_size
<
nr_threads
)
{
if
(
ohw
/
ohw_tile_size
<
nr_threads
)
{
m_
ohw_tile_size
=
round_up
(
div_ceil
(
ohw
,
nr_threads
),
block_n
);
ohw_tile_size
=
round_up
(
div_ceil
(
ohw
,
nr_threads
),
block_n
);
if
(
m_
ohw_tile_size
<
DEFAULT_OHW_MIN_TILE_SIZE
)
{
if
(
ohw_tile_size
<
DEFAULT_OHW_MIN_TILE_SIZE
)
{
m_
ohw_tile_size
=
ohw
;
ohw_tile_size
=
ohw
;
m_
oc_tile_size
=
round_up
(
div_ceil
(
OC
,
nr_threads
),
block_m
);
oc_tile_size
=
round_up
(
div_ceil
(
OC
,
nr_threads
),
block_m
);
if
(
m_
oc_tile_size
>
DEFAULT_OC_MAX_TILE_SIZE
)
{
if
(
oc_tile_size
>
DEFAULT_OC_MAX_TILE_SIZE
)
{
m_
oc_tile_size
=
DEFAULT_OC_MAX_TILE_SIZE
;
oc_tile_size
=
DEFAULT_OC_MAX_TILE_SIZE
;
}
else
if
(
m_
oc_tile_size
<
DEFAULT_OC_MIN_TILE_SIZE
)
{
}
else
if
(
oc_tile_size
<
DEFAULT_OC_MIN_TILE_SIZE
)
{
m_
oc_tile_size
=
DEFAULT_OC_MIN_TILE_SIZE
;
oc_tile_size
=
DEFAULT_OC_MIN_TILE_SIZE
;
}
}
}
}
}
}
}
else
{
}
else
{
if
(
!
need_pack
)
{
//! no pack ,usually in x86 save memroy
if
(
!
need_pack
)
{
//! no pack ,usually in x86 save memroy
m_
ohw_tile_size
=
ohw
;
ohw_tile_size
=
ohw
;
m_
oc_tile_size
=
OC
;
oc_tile_size
=
OC
;
}
}
}
}
}
}
...
@@ -406,20 +407,22 @@ WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle(
...
@@ -406,20 +407,22 @@ WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle(
size_t
GROUP
=
param
.
filter_meta
.
group
;
size_t
GROUP
=
param
.
filter_meta
.
group
;
bool
need_pack
=
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
DEFAULT
;
bool
need_pack
=
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
DEFAULT
;
bool
only_packA
=
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
ONLY_PACKA
;
bool
only_packA
=
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
ONLY_PACKA
;
size_t
oc_tile_size
=
0
,
ohw_tile_size
=
0
;
if
(
need_pack
||
only_packA
)
{
if
(
need_pack
||
only_packA
)
{
auto
inner_block
=
m_matmul_algo
->
get_inner_block_size
();
auto
inner_block
=
m_matmul_algo
->
get_inner_block_size
();
choice_ohw_oc_block
(
param
,
inner_block
.
m
,
inner_block
.
n
,
need_pack
);
choice_ohw_oc_block
(
param
,
oc_tile_size
,
ohw_tile_size
,
inner_block
.
m
,
inner_block
.
n
,
need_pack
);
auto
im2col_kern_param
=
get_matmul_kern_param
(
auto
im2col_kern_param
=
get_matmul_kern_param
(
param
,
m_ohw_tile_size
,
only_packA
?
m_
oc_tile_size
:
OC
);
param
,
ohw_tile_size
,
only_packA
?
oc_tile_size
:
OC
);
size_t
oc_parallel_times
=
div_ceil
<
size_t
>
(
OC
,
m_
oc_tile_size
);
size_t
oc_parallel_times
=
div_ceil
<
size_t
>
(
OC
,
oc_tile_size
);
WorkspaceBundle
wb
=
m_matmul_algo
->
get_bundle
(
im2col_kern_param
);
WorkspaceBundle
wb
=
m_matmul_algo
->
get_bundle
(
im2col_kern_param
);
packa_group_size
=
only_packA
?
oc_parallel_times
*
wb
.
get_size
(
0
)
packa_group_size
=
only_packA
?
oc_parallel_times
*
wb
.
get_size
(
0
)
:
wb
.
get_size
(
0
);
:
wb
.
get_size
(
0
);
}
else
{
//! not support pack,not need pack
}
else
{
//! not support pack,not need pack
size_t
nopack_default_blockm
=
8
;
size_t
nopack_default_blockm
=
8
;
size_t
nopack_default_blockn
=
16
;
size_t
nopack_default_blockn
=
16
;
choice_ohw_oc_block
(
param
,
nopack_default_blockm
,
nopack_default_blockn
,
choice_ohw_oc_block
(
param
,
oc_tile_size
,
ohw_tile_size
,
nopack_default_blockm
,
nopack_default_blockn
,
need_pack
);
need_pack
);
packa_group_size
=
0
;
packa_group_size
=
0
;
}
}
...
@@ -434,23 +437,23 @@ WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle(
...
@@ -434,23 +437,23 @@ WorkspaceBundle ConvBiasImpl::AlgoIm2col::get_bundle(
packa_size
=
GROUP
*
packa_group_size
;
//! for packA size = GROUP * a_size
packa_size
=
GROUP
*
packa_group_size
;
//! for packA size = GROUP * a_size
WorkspaceBundle
ws
=
{
nullptr
,
{}};
WorkspaceBundle
ws
=
{
nullptr
,
{}};
auto
im2col_kern_param
=
auto
im2col_kern_param
=
get_matmul_kern_param
(
param
,
m_ohw_tile_size
,
m_
oc_tile_size
);
get_matmul_kern_param
(
param
,
ohw_tile_size
,
oc_tile_size
);
if
(
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
DEFAULT
)
{
if
(
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
DEFAULT
)
{
Im2colKerns
<
Pack_Mode
::
DEFAULT
>
defaultkern
;
Im2colKerns
<
Pack_Mode
::
DEFAULT
>
defaultkern
;
ws
=
defaultkern
.
get_thread_bundle
(
param
,
im2col_kern_param
,
ws
=
defaultkern
.
get_thread_bundle
(
param
,
im2col_kern_param
,
m_matmul_algo
,
m_
ohw_tile_size
,
m_matmul_algo
,
ohw_tile_size
,
m_
oc_tile_size
);
oc_tile_size
);
}
else
if
(
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
ONLY_PACKA
)
{
}
else
if
(
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
ONLY_PACKA
)
{
Im2colKerns
<
Pack_Mode
::
ONLY_PACKA
>
onlypackakern
;
Im2colKerns
<
Pack_Mode
::
ONLY_PACKA
>
onlypackakern
;
ws
=
onlypackakern
.
get_thread_bundle
(
param
,
im2col_kern_param
,
ws
=
onlypackakern
.
get_thread_bundle
(
param
,
im2col_kern_param
,
m_matmul_algo
,
m_
ohw_tile_size
,
m_matmul_algo
,
ohw_tile_size
,
m_
oc_tile_size
);
oc_tile_size
);
}
else
{
}
else
{
Im2colKerns
<
Pack_Mode
::
NO_PACK
>
nopackkern
;
Im2colKerns
<
Pack_Mode
::
NO_PACK
>
nopackkern
;
ws
=
nopackkern
.
get_thread_bundle
(
param
,
im2col_kern_param
,
ws
=
nopackkern
.
get_thread_bundle
(
param
,
im2col_kern_param
,
m_matmul_algo
,
m_
ohw_tile_size
,
m_matmul_algo
,
ohw_tile_size
,
m_
oc_tile_size
);
oc_tile_size
);
}
}
return
{
nullptr
,
return
{
nullptr
,
...
@@ -476,45 +479,59 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
...
@@ -476,45 +479,59 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
MEGDNN_MARK_USED_VAR
(
IW
);
MEGDNN_MARK_USED_VAR
(
IW
);
MEGDNN_MARK_USED_VAR
(
FH
);
MEGDNN_MARK_USED_VAR
(
FH
);
MEGDNN_MARK_USED_VAR
(
FW
);
MEGDNN_MARK_USED_VAR
(
FW
);
size_t
oc_tile_size
=
0
,
ohw_tile_size
=
0
;
size_t
ohw
=
OH
*
OW
;
size_t
ohw
=
OH
*
OW
;
size_t
ohw_parallel_times
=
div_ceil
(
ohw
,
m_ohw_tile_size
);
size_t
GROUP
=
param
.
filter_meta
.
group
;
size_t
GROUP
=
param
.
filter_meta
.
group
;
WorkspaceBundle
bundle
=
get_bundle
(
param
);
WorkspaceBundle
bundle
=
get_bundle
(
param
);
WorkspaceBundle
bundle_thread
=
{
nullptr
,
{}};
WorkspaceBundle
bundle_thread
=
{
nullptr
,
{}};
size_t
oc_parallel_times
=
div_ceil
<
size_t
>
(
OC
,
m_oc_tile_size
);
bool
need_padding
=
(
PH
!=
0
||
PW
!=
0
);
bool
need_padding
=
(
PH
!=
0
||
PW
!=
0
);
Pack_Mode
packmode
=
m_matmul_algo
->
packmode
();
Pack_Mode
packmode
=
m_matmul_algo
->
packmode
();
bool
default_pack
=
packmode
==
Pack_Mode
::
DEFAULT
;
bool
default_pack
=
packmode
==
Pack_Mode
::
DEFAULT
;
bool
no_pack
=
packmode
==
Pack_Mode
::
NO_PACK
;
bool
no_pack
=
packmode
==
Pack_Mode
::
NO_PACK
;
bool
only_packA
=
packmode
==
Pack_Mode
::
ONLY_PACKA
;
bool
only_packA
=
packmode
==
Pack_Mode
::
ONLY_PACKA
;
if
(
default_pack
||
only_packA
)
{
auto
inner_block
=
m_matmul_algo
->
get_inner_block_size
();
choice_ohw_oc_block
(
param
,
oc_tile_size
,
ohw_tile_size
,
inner_block
.
m
,
inner_block
.
n
,
default_pack
);
}
else
{
//! not support pack,not need pack
size_t
nopack_default_blockm
=
8
;
size_t
nopack_default_blockn
=
16
;
choice_ohw_oc_block
(
param
,
oc_tile_size
,
ohw_tile_size
,
nopack_default_blockm
,
nopack_default_blockn
,
no_pack
);
}
size_t
ohw_parallel_times
=
div_ceil
(
ohw
,
ohw_tile_size
);
size_t
oc_parallel_times
=
div_ceil
<
size_t
>
(
OC
,
oc_tile_size
);
size_t
packa_parallel_times
=
0
;
size_t
packa_parallel_times
=
0
;
size_t
pack_oc_size
=
size_t
pack_oc_size
=
(
param
.
filter_meta
.
format
==
param
::
ConvBias
::
Format
::
NCHW
?
1
(
param
.
filter_meta
.
format
==
param
::
ConvBias
::
Format
::
NCHW
?
1
:
4
);
:
4
);
if
(
only_packA
)
{
if
(
only_packA
)
{
packa_parallel_times
=
div_ceil
<
size_t
>
(
OC
,
m_
oc_tile_size
);
packa_parallel_times
=
div_ceil
<
size_t
>
(
OC
,
oc_tile_size
);
}
else
if
(
default_pack
)
{
}
else
if
(
default_pack
)
{
packa_parallel_times
=
div_ceil
<
size_t
>
(
packa_parallel_times
=
div_ceil
<
size_t
>
(
OC
,
m_matmul_algo
->
get_inner_block_size
().
m
*
pack_oc_size
);
OC
,
m_matmul_algo
->
get_inner_block_size
().
m
*
pack_oc_size
);
}
}
auto
matmul_param
=
get_matmul_kern_param
(
auto
matmul_param
=
get_matmul_kern_param
(
param
,
m_ohw_tile_size
,
only_packA
?
m_
oc_tile_size
:
OC
);
param
,
ohw_tile_size
,
only_packA
?
oc_tile_size
:
OC
);
if
(
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
DEFAULT
)
{
if
(
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
DEFAULT
)
{
Im2colKerns
<
Pack_Mode
::
DEFAULT
>
defaultkern
;
Im2colKerns
<
Pack_Mode
::
DEFAULT
>
defaultkern
;
bundle_thread
=
defaultkern
.
get_thread_bundle
(
bundle_thread
=
defaultkern
.
get_thread_bundle
(
param
,
matmul_param
,
m_matmul_algo
,
m_
ohw_tile_size
,
param
,
matmul_param
,
m_matmul_algo
,
ohw_tile_size
,
m_
oc_tile_size
);
oc_tile_size
);
}
else
if
(
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
ONLY_PACKA
)
{
}
else
if
(
m_matmul_algo
->
packmode
()
==
Pack_Mode
::
ONLY_PACKA
)
{
Im2colKerns
<
Pack_Mode
::
ONLY_PACKA
>
onlypackakern
;
Im2colKerns
<
Pack_Mode
::
ONLY_PACKA
>
onlypackakern
;
bundle_thread
=
onlypackakern
.
get_thread_bundle
(
bundle_thread
=
onlypackakern
.
get_thread_bundle
(
param
,
matmul_param
,
m_matmul_algo
,
m_
ohw_tile_size
,
param
,
matmul_param
,
m_matmul_algo
,
ohw_tile_size
,
m_
oc_tile_size
);
oc_tile_size
);
}
else
{
}
else
{
Im2colKerns
<
Pack_Mode
::
NO_PACK
>
nopackkern
;
Im2colKerns
<
Pack_Mode
::
NO_PACK
>
nopackkern
;
bundle_thread
=
nopackkern
.
get_thread_bundle
(
bundle_thread
=
nopackkern
.
get_thread_bundle
(
param
,
matmul_param
,
m_matmul_algo
,
m_
ohw_tile_size
,
param
,
matmul_param
,
m_matmul_algo
,
ohw_tile_size
,
m_
oc_tile_size
);
oc_tile_size
);
}
}
StrategyParam
strategyparam
;
StrategyParam
strategyparam
;
...
@@ -524,10 +541,10 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
...
@@ -524,10 +541,10 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
param
.
dst_type
.
enumv
()
==
DTypeEnum
::
QuantizedS8
)
||
param
.
dst_type
.
enumv
()
==
DTypeEnum
::
QuantizedS8
)
||
(
param
.
src_type
.
enumv
()
==
DTypeEnum
::
Quantized8Asymm
&&
(
param
.
src_type
.
enumv
()
==
DTypeEnum
::
Quantized8Asymm
&&
param
.
dst_type
.
enumv
()
==
DTypeEnum
::
Quantized8Asymm
);
param
.
dst_type
.
enumv
()
==
DTypeEnum
::
Quantized8Asymm
);
strategyparam
.
is_ohw_size_bigger
=
(
m_
ohw_tile_size
>=
ohw
);
strategyparam
.
is_ohw_size_bigger
=
(
ohw_tile_size
>=
ohw
);
strategyparam
.
skip_copy_dst
=
strategyparam
.
skip_copy_dst
=
strategyparam
.
is_ohw_size_bigger
&&
!
strategyparam
.
is_dst_8bit
;
strategyparam
.
is_ohw_size_bigger
&&
!
strategyparam
.
is_dst_8bit
;
strategyparam
.
oc_tile_size
=
m_
oc_tile_size
;
strategyparam
.
oc_tile_size
=
oc_tile_size
;
strategyparam
.
pack_oc_size
=
pack_oc_size
;
strategyparam
.
pack_oc_size
=
pack_oc_size
;
SmallVector
<
ConvBiasImpl
::
NCBKern
>
ret_kern
;
SmallVector
<
ConvBiasImpl
::
NCBKern
>
ret_kern
;
...
@@ -556,7 +573,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
...
@@ -556,7 +573,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
auto
kern_compute_default
=
auto
kern_compute_default
=
[
bundle
,
bundle_thread
,
matmul_param
,
[
bundle
,
bundle_thread
,
matmul_param
,
matmul_algo
=
m_matmul_algo
,
matmul_algo
=
m_matmul_algo
,
ohw_tile_size
=
m_
ohw_tile_size
,
ohw_tile_size
=
ohw_tile_size
,
strategyparam
=
strategyparam
,
strategyparam
=
strategyparam
,
im2colstrategy
](
const
NCBKernParam
&
param
,
im2colstrategy
](
const
NCBKernParam
&
param
,
const
NCBKernIndex
&
ncb_index
)
{
const
NCBKernIndex
&
ncb_index
)
{
...
@@ -579,7 +596,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
...
@@ -579,7 +596,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
[
bundle
,
bundle_thread
,
matmul_param
,
[
bundle
,
bundle_thread
,
matmul_param
,
matmul_algo
=
m_matmul_algo
,
matmul_algo
=
m_matmul_algo
,
strategyparam
=
strategyparam
,
strategyparam
=
strategyparam
,
ohw_tile_size
=
m_
ohw_tile_size
,
ohw_tile_size
=
ohw_tile_size
,
im2colstrategy
](
const
NCBKernParam
&
param
,
im2colstrategy
](
const
NCBKernParam
&
param
,
const
NCBKernIndex
&
ncb_index
)
{
const
NCBKernIndex
&
ncb_index
)
{
Im2colKerns
<
Pack_Mode
::
ONLY_PACKA
>::
kerns
(
Im2colKerns
<
Pack_Mode
::
ONLY_PACKA
>::
kerns
(
...
@@ -599,7 +616,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
...
@@ -599,7 +616,7 @@ SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoIm2col::dispatch_kerns(
[
bundle
,
bundle_thread
,
matmul_param
,
[
bundle
,
bundle_thread
,
matmul_param
,
matmul_algo
=
m_matmul_algo
,
matmul_algo
=
m_matmul_algo
,
strategyparam
=
strategyparam
,
strategyparam
=
strategyparam
,
ohw_tile_size
=
m_
ohw_tile_size
,
ohw_tile_size
=
ohw_tile_size
,
im2colstrategy
](
const
NCBKernParam
&
param
,
im2colstrategy
](
const
NCBKernParam
&
param
,
const
NCBKernIndex
&
ncb_index
)
{
const
NCBKernIndex
&
ncb_index
)
{
Im2colKerns
<
Pack_Mode
::
NO_PACK
>::
kerns
(
Im2colKerns
<
Pack_Mode
::
NO_PACK
>::
kerns
(
...
@@ -650,8 +667,25 @@ bool ConvBiasImpl::AlgoIm2col::usable(
...
@@ -650,8 +667,25 @@ bool ConvBiasImpl::AlgoIm2col::usable(
return
false
;
return
false
;
}
}
size_t
oc_tile_size
=
0
,
ohw_tile_size
=
0
;
Pack_Mode
packmode
=
m_matmul_algo
->
packmode
();
bool
default_pack
=
packmode
==
Pack_Mode
::
DEFAULT
;
bool
no_pack
=
packmode
==
Pack_Mode
::
NO_PACK
;
bool
only_packA
=
packmode
==
Pack_Mode
::
ONLY_PACKA
;
if
(
default_pack
||
only_packA
)
{
auto
inner_block
=
m_matmul_algo
->
get_inner_block_size
();
choice_ohw_oc_block
(
param
,
oc_tile_size
,
ohw_tile_size
,
inner_block
.
m
,
inner_block
.
n
,
default_pack
);
}
else
{
//! not support pack,not need pack
size_t
nopack_default_blockm
=
8
;
size_t
nopack_default_blockn
=
16
;
choice_ohw_oc_block
(
param
,
oc_tile_size
,
ohw_tile_size
,
nopack_default_blockm
,
nopack_default_blockn
,
no_pack
);
}
fallback
::
MatrixMulImpl
::
KernSizeParam
matmul_param
=
fallback
::
MatrixMulImpl
::
KernSizeParam
matmul_param
=
get_matmul_kern_param
(
param
,
m_ohw_tile_size
,
m_
oc_tile_size
);
get_matmul_kern_param
(
param
,
ohw_tile_size
,
oc_tile_size
);
bool
matmulusable
=
m_matmul_algo
->
usable
(
matmul_param
);
bool
matmulusable
=
m_matmul_algo
->
usable
(
matmul_param
);
return
matmulusable
&&
return
matmulusable
&&
(
opr
->
param
().
format
==
param
::
ConvBias
::
Format
::
NCHW
||
(
opr
->
param
().
format
==
param
::
ConvBias
::
Format
::
NCHW
||
...
...
dnn/src/fallback/conv_bias/im2col/algos.h
浏览文件 @
3b08bd9e
...
@@ -36,20 +36,21 @@ class ConvBiasImpl::AlgoIm2col final : public AlgoBase {
...
@@ -36,20 +36,21 @@ class ConvBiasImpl::AlgoIm2col final : public AlgoBase {
const
NCBKernSizeParam
&
param
,
size_t
ohw_tile_size
,
const
NCBKernSizeParam
&
param
,
size_t
ohw_tile_size
,
size_t
oc_tile_size
)
const
;
size_t
oc_tile_size
)
const
;
WorkspaceBundle
get_bundle
(
const
NCBKernSizeParam
&
param
)
const
;
WorkspaceBundle
get_bundle
(
const
NCBKernSizeParam
&
param
)
const
;
void
choice_ohw_oc_block
(
const
NCBKernSizeParam
&
param
,
size_t
block_m
,
void
choice_ohw_oc_block
(
const
NCBKernSizeParam
&
param
,
size_t
block_n
,
bool
pack_default
)
const
;
size_t
&
oc_tile_size
,
size_t
&
ohw_tile_size
,
size_t
block_m
,
size_t
block_n
,
bool
pack_default
)
const
;
public:
public:
AlgoIm2col
(
MatrixMulImpl
::
AlgoBase
*
matmul_algo
,
size_t
ohw_tile_size
)
AlgoIm2col
(
MatrixMulImpl
::
AlgoBase
*
matmul_algo
,
size_t
ohw_tile_size
)
:
m_matmul_algo
(
matmul_algo
),
:
m_matmul_algo
(
matmul_algo
),
m_ohw_tile_origin
(
ohw_tile_size
),
m_ohw_tile_size
(
ohw_tile_size
)
{}
m_ohw_tile_size
(
ohw_tile_size
)
{}
bool
is_reproducible
()
const
override
{
return
true
;
}
bool
is_reproducible
()
const
override
{
return
true
;
}
const
char
*
name
()
const
override
{
const
char
*
name
()
const
override
{
if
(
m_name
.
empty
())
{
if
(
m_name
.
empty
())
{
m_name
=
ssprintf
(
"IM2COLMATMUL:%s:%zu"
,
m_matmul_algo
->
name
(),
m_name
=
ssprintf
(
"IM2COLMATMUL:%s:%zu"
,
m_matmul_algo
->
name
(),
m_ohw_tile_
origin
);
m_ohw_tile_
size
);
}
}
return
m_name
.
c_str
();
return
m_name
.
c_str
();
}
}
...
@@ -72,9 +73,7 @@ public:
...
@@ -72,9 +73,7 @@ public:
private:
private:
MatrixMulImpl
::
AlgoBase
*
m_matmul_algo
;
MatrixMulImpl
::
AlgoBase
*
m_matmul_algo
;
mutable
std
::
string
m_name
;
mutable
std
::
string
m_name
;
const
size_t
m_ohw_tile_origin
;
const
size_t
m_ohw_tile_size
;
mutable
size_t
m_ohw_tile_size
;
mutable
size_t
m_oc_tile_size
=
DEFAULT_OC_TILE_SIZE
;
};
};
}
// namespace fallback
}
// namespace fallback
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录