Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
26738d99
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
26738d99
编写于
4月 26, 2020
作者:
M
Megvii Engine Team
提交者:
Xinran Xu
5月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(mge/data): add objects365 dataset
GitOrigin-RevId: 8eccebfc1de6a03b549f3dae1783fe17015cd723
上级
aa2bfd2d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
497 addition
and
0 deletion
+497
-0
python_module/megengine/data/dataset/vision/__init__.py
python_module/megengine/data/dataset/vision/__init__.py
+1
-0
python_module/megengine/data/dataset/vision/objects365.py
python_module/megengine/data/dataset/vision/objects365.py
+496
-0
未找到文件。
python_module/megengine/data/dataset/vision/__init__.py
浏览文件 @
26738d99
...
@@ -13,4 +13,5 @@ from .folder import ImageFolder
...
@@ -13,4 +13,5 @@ from .folder import ImageFolder
from
.imagenet
import
ImageNet
from
.imagenet
import
ImageNet
from
.meta_vision
import
VisionDataset
from
.meta_vision
import
VisionDataset
from
.mnist
import
MNIST
from
.mnist
import
MNIST
from
.objects365
import
Objects365
from
.voc
import
PascalVOC
from
.voc
import
PascalVOC
python_module/megengine/data/dataset/vision/objects365.py
0 → 100644
浏览文件 @
26738d99
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# ---------------------------------------------------------------------
# Part of the following code in this file refs to maskrcnn-benchmark
# MIT License
#
# Copyright (c) 2018 Facebook
# ---------------------------------------------------------------------
import
json
import
os
from
collections
import
defaultdict
import
cv2
import
numpy
as
np
from
.meta_vision
import
VisionDataset
class
Objects365
(
VisionDataset
):
r
"""`Objects365 <https://www.objects365.org/overview.html>`_ Dataset.
"""
supported_order
=
(
"image"
,
"boxes"
,
"boxes_category"
,
"info"
,
)
def
__init__
(
self
,
root
,
ann_file
,
remove_images_without_annotations
=
False
,
*
,
order
=
None
):
super
().
__init__
(
root
,
order
=
order
,
supported_order
=
self
.
supported_order
)
with
open
(
ann_file
,
"r"
)
as
f
:
dataset
=
json
.
load
(
f
)
self
.
imgs
=
dict
()
for
img
in
dataset
[
"images"
]:
self
.
imgs
[
img
[
"id"
]]
=
img
self
.
img_to_anns
=
defaultdict
(
list
)
for
ann
in
dataset
[
"annotations"
]:
# for saving memory
if
(
"boxes"
not
in
self
.
order
and
"boxes_category"
not
in
self
.
order
and
"bbox"
in
ann
):
del
ann
[
"bbox"
]
self
.
img_to_anns
[
ann
[
"image_id"
]].
append
(
ann
)
self
.
cats
=
dict
()
for
cat
in
dataset
[
"categories"
]:
self
.
cats
[
cat
[
"id"
]]
=
cat
self
.
ids
=
list
(
sorted
(
self
.
imgs
.
keys
()))
# filter images without detection annotations
if
remove_images_without_annotations
:
ids
=
[]
for
img_id
in
self
.
ids
:
anno
=
self
.
img_to_anns
[
img_id
]
# filter crowd annotations
anno
=
[
obj
for
obj
in
anno
if
obj
[
"iscrowd"
]
==
0
]
anno
=
[
obj
for
obj
in
anno
if
obj
[
"bbox"
][
2
]
>
0
and
obj
[
"bbox"
][
3
]
>
0
]
if
len
(
anno
)
>
0
:
ids
.
append
(
img_id
)
self
.
img_to_anns
[
img_id
]
=
anno
else
:
del
self
.
imgs
[
img_id
]
del
self
.
img_to_anns
[
img_id
]
self
.
ids
=
ids
self
.
json_category_id_to_contiguous_id
=
{
v
:
i
+
1
for
i
,
v
in
enumerate
(
self
.
cats
.
keys
())
}
self
.
contiguous_category_id_to_json_id
=
{
v
:
k
for
k
,
v
in
self
.
json_category_id_to_contiguous_id
.
items
()
}
def
__getitem__
(
self
,
index
):
img_id
=
self
.
ids
[
index
]
anno
=
self
.
img_to_anns
[
img_id
]
target
=
[]
for
k
in
self
.
order
:
if
k
==
"image"
:
file_name
=
self
.
imgs
[
img_id
][
"file_name"
]
path
=
os
.
path
.
join
(
self
.
root
,
file_name
)
image
=
cv2
.
imread
(
path
,
cv2
.
IMREAD_COLOR
)
target
.
append
(
image
)
elif
k
==
"boxes"
:
boxes
=
[
obj
[
"bbox"
]
for
obj
in
anno
]
boxes
=
np
.
array
(
boxes
,
dtype
=
np
.
float32
).
reshape
(
-
1
,
4
)
# transfer boxes from xywh to xyxy
boxes
[:,
2
:]
+=
boxes
[:,
:
2
]
target
.
append
(
boxes
)
elif
k
==
"boxes_category"
:
boxes_category
=
[
obj
[
"category_id"
]
for
obj
in
anno
]
boxes_category
=
[
self
.
json_category_id_to_contiguous_id
[
c
]
for
c
in
boxes_category
]
boxes_category
=
np
.
array
(
boxes_category
,
dtype
=
np
.
int32
)
target
.
append
(
boxes_category
)
elif
k
==
"info"
:
info
=
self
.
imgs
[
img_id
]
info
=
[
info
[
"height"
],
info
[
"width"
],
info
[
"file_name"
]]
target
.
append
(
info
)
else
:
raise
NotImplementedError
return
tuple
(
target
)
def
__len__
(
self
):
return
len
(
self
.
ids
)
def
get_img_info
(
self
,
index
):
img_id
=
self
.
ids
[
index
]
img_info
=
self
.
imgs
[
img_id
]
return
img_info
class_name
=
(
"person"
,
"sneakers"
,
"chair"
,
"hat"
,
"lamp"
,
"bottle"
,
"cabinet/shelf"
,
"cup"
,
"car"
,
"glasses"
,
"picture/frame"
,
"desk"
,
"handbag"
,
"street lights"
,
"book"
,
"plate"
,
"helmet"
,
"leather shoes"
,
"pillow"
,
"glove"
,
"potted plant"
,
"bracelet"
,
"flower"
,
"tv"
,
"storage box"
,
"vase"
,
"bench"
,
"wine glass"
,
"boots"
,
"bowl"
,
"dining table"
,
"umbrella"
,
"boat"
,
"flag"
,
"speaker"
,
"trash bin/can"
,
"stool"
,
"backpack"
,
"couch"
,
"belt"
,
"carpet"
,
"basket"
,
"towel/napkin"
,
"slippers"
,
"barrel/bucket"
,
"coffee table"
,
"suv"
,
"toy"
,
"tie"
,
"bed"
,
"traffic light"
,
"pen/pencil"
,
"microphone"
,
"sandals"
,
"canned"
,
"necklace"
,
"mirror"
,
"faucet"
,
"bicycle"
,
"bread"
,
"high heels"
,
"ring"
,
"van"
,
"watch"
,
"sink"
,
"horse"
,
"fish"
,
"apple"
,
"camera"
,
"candle"
,
"teddy bear"
,
"cake"
,
"motorcycle"
,
"wild bird"
,
"laptop"
,
"knife"
,
"traffic sign"
,
"cell phone"
,
"paddle"
,
"truck"
,
"cow"
,
"power outlet"
,
"clock"
,
"drum"
,
"fork"
,
"bus"
,
"hanger"
,
"nightstand"
,
"pot/pan"
,
"sheep"
,
"guitar"
,
"traffic cone"
,
"tea pot"
,
"keyboard"
,
"tripod"
,
"hockey"
,
"fan"
,
"dog"
,
"spoon"
,
"blackboard/whiteboard"
,
"balloon"
,
"air conditioner"
,
"cymbal"
,
"mouse"
,
"telephone"
,
"pickup truck"
,
"orange"
,
"banana"
,
"airplane"
,
"luggage"
,
"skis"
,
"soccer"
,
"trolley"
,
"oven"
,
"remote"
,
"baseball glove"
,
"paper towel"
,
"refrigerator"
,
"train"
,
"tomato"
,
"machinery vehicle"
,
"tent"
,
"shampoo/shower gel"
,
"head phone"
,
"lantern"
,
"donut"
,
"cleaning products"
,
"sailboat"
,
"tangerine"
,
"pizza"
,
"kite"
,
"computer box"
,
"elephant"
,
"toiletries"
,
"gas stove"
,
"broccoli"
,
"toilet"
,
"stroller"
,
"shovel"
,
"baseball bat"
,
"microwave"
,
"skateboard"
,
"surfboard"
,
"surveillance camera"
,
"gun"
,
"life saver"
,
"cat"
,
"lemon"
,
"liquid soap"
,
"zebra"
,
"duck"
,
"sports car"
,
"giraffe"
,
"pumpkin"
,
"piano"
,
"stop sign"
,
"radiator"
,
"converter"
,
"tissue "
,
"carrot"
,
"washing machine"
,
"vent"
,
"cookies"
,
"cutting/chopping board"
,
"tennis racket"
,
"candy"
,
"skating and skiing shoes"
,
"scissors"
,
"folder"
,
"baseball"
,
"strawberry"
,
"bow tie"
,
"pigeon"
,
"pepper"
,
"coffee machine"
,
"bathtub"
,
"snowboard"
,
"suitcase"
,
"grapes"
,
"ladder"
,
"pear"
,
"american football"
,
"basketball"
,
"potato"
,
"paint brush"
,
"printer"
,
"billiards"
,
"fire hydrant"
,
"goose"
,
"projector"
,
"sausage"
,
"fire extinguisher"
,
"extension cord"
,
"facial mask"
,
"tennis ball"
,
"chopsticks"
,
"electronic stove and gas stove"
,
"pie"
,
"frisbee"
,
"kettle"
,
"hamburger"
,
"golf club"
,
"cucumber"
,
"clutch"
,
"blender"
,
"tong"
,
"slide"
,
"hot dog"
,
"toothbrush"
,
"facial cleanser"
,
"mango"
,
"deer"
,
"egg"
,
"violin"
,
"marker"
,
"ship"
,
"chicken"
,
"onion"
,
"ice cream"
,
"tape"
,
"wheelchair"
,
"plum"
,
"bar soap"
,
"scale"
,
"watermelon"
,
"cabbage"
,
"router/modem"
,
"golf ball"
,
"pine apple"
,
"crane"
,
"fire truck"
,
"peach"
,
"cello"
,
"notepaper"
,
"tricycle"
,
"toaster"
,
"helicopter"
,
"green beans"
,
"brush"
,
"carriage"
,
"cigar"
,
"earphone"
,
"penguin"
,
"hurdle"
,
"swing"
,
"radio"
,
"CD"
,
"parking meter"
,
"swan"
,
"garlic"
,
"french fries"
,
"horn"
,
"avocado"
,
"saxophone"
,
"trumpet"
,
"sandwich"
,
"cue"
,
"kiwi fruit"
,
"bear"
,
"fishing rod"
,
"cherry"
,
"tablet"
,
"green vegetables"
,
"nuts"
,
"corn"
,
"key"
,
"screwdriver"
,
"globe"
,
"broom"
,
"pliers"
,
"volleyball"
,
"hammer"
,
"eggplant"
,
"trophy"
,
"dates"
,
"board eraser"
,
"rice"
,
"tape measure/ruler"
,
"dumbbell"
,
"hamimelon"
,
"stapler"
,
"camel"
,
"lettuce"
,
"goldfish"
,
"meat balls"
,
"medal"
,
"toothpaste"
,
"antelope"
,
"shrimp"
,
"rickshaw"
,
"trombone"
,
"pomegranate"
,
"coconut"
,
"jellyfish"
,
"mushroom"
,
"calculator"
,
"treadmill"
,
"butterfly"
,
"egg tart"
,
"cheese"
,
"pig"
,
"pomelo"
,
"race car"
,
"rice cooker"
,
"tuba"
,
"crosswalk sign"
,
"papaya"
,
"hair drier"
,
"green onion"
,
"chips"
,
"dolphin"
,
"sushi"
,
"urinal"
,
"donkey"
,
"electric drill"
,
"spring rolls"
,
"tortoise/turtle"
,
"parrot"
,
"flute"
,
"measuring cup"
,
"shark"
,
"steak"
,
"poker card"
,
"binoculars"
,
"llama"
,
"radish"
,
"noodles"
,
"yak"
,
"mop"
,
"crab"
,
"microscope"
,
"barbell"
,
"bread/bun"
,
"baozi"
,
"lion"
,
"red cabbage"
,
"polar bear"
,
"lighter"
,
"seal"
,
"mangosteen"
,
"comb"
,
"eraser"
,
"pitaya"
,
"scallop"
,
"pencil case"
,
"saw"
,
"table tennis paddle"
,
"okra"
,
"starfish"
,
"eagle"
,
"monkey"
,
"durian"
,
"game board"
,
"rabbit"
,
"french horn"
,
"ambulance"
,
"asparagus"
,
"hoverboard"
,
"pasta"
,
"target"
,
"hotair balloon"
,
"chainsaw"
,
"lobster"
,
"iron"
,
"flashlight"
,
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录