Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
2293385e
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
403
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
2293385e
编写于
1月 26, 2022
作者:
M
Megvii Engine Team
提交者:
王彪
2月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(mge): add conv padding mode
GitOrigin-RevId: 147ced856e196437cfc5b371c91094ebcbba6ea8
上级
afe9c4b5
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
217 addition
and
12 deletion
+217
-12
dnn/src/cuda/padding/opr_impl.cpp
dnn/src/cuda/padding/opr_impl.cpp
+1
-0
dnn/src/cuda/padding/padding.cu
dnn/src/cuda/padding/padding.cu
+3
-1
dnn/src/naive/padding/opr_impl.cpp
dnn/src/naive/padding/opr_impl.cpp
+6
-3
dnn/test/cuda/padding.cpp
dnn/test/cuda/padding.cpp
+30
-0
dnn/test/naive/padding.cpp
dnn/test/naive/padding.cpp
+30
-0
imperative/python/megengine/module/conv.py
imperative/python/megengine/module/conv.py
+56
-2
imperative/python/megengine/module/conv_bn.py
imperative/python/megengine/module/conv_bn.py
+2
-0
imperative/python/megengine/module/qat/conv.py
imperative/python/megengine/module/qat/conv.py
+1
-0
imperative/python/megengine/module/qat/conv_bn.py
imperative/python/megengine/module/qat/conv_bn.py
+1
-0
imperative/python/megengine/module/quantized/conv.py
imperative/python/megengine/module/quantized/conv.py
+23
-1
imperative/python/megengine/module/quantized/conv_bn.py
imperative/python/megengine/module/quantized/conv_bn.py
+1
-0
imperative/python/megengine/traced_module/compat.py
imperative/python/megengine/traced_module/compat.py
+36
-0
imperative/python/test/unit/module/test_qat.py
imperative/python/test/unit/module/test_qat.py
+19
-2
imperative/python/test/unit/quantization/test_module.py
imperative/python/test/unit/quantization/test_module.py
+8
-3
未找到文件。
dnn/src/cuda/padding/opr_impl.cpp
浏览文件 @
2293385e
...
...
@@ -35,6 +35,7 @@ void PaddingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) {
param().padding_val, stream); \
}
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
#undef cb
}
...
...
dnn/src/cuda/padding/padding.cu
浏览文件 @
2293385e
...
...
@@ -60,7 +60,8 @@ __global__ void paddingConst_kernel(
params.src_stride[dim].divisor();
*/
}
dst
[
out_index
]
=
in_src_valid_area
?
src
[
in_index
]
:
padding_val
;
dst
[
out_index
]
=
in_src_valid_area
?
src
[
in_index
]
:
static_cast
<
T
>
(
padding_val
);
}
}
...
...
@@ -256,6 +257,7 @@ void padding_backward_proxy(
const float_t padding_val, cudaStream_t stream);
#define cb(DType) INST(typename DTypeTrait<DType>::ctype)
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
#undef cb
#undef INST
...
...
dnn/src/naive/padding/opr_impl.cpp
浏览文件 @
2293385e
...
...
@@ -171,7 +171,7 @@ void PaddingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) {
switch
(
param
().
padding_mode
)
{
case
param
::
Padding
::
PaddingMode
::
CONSTANT
:
#define cb(DType) \
if (src.layout.dtype
== DType()) {
\
if (src.layout.dtype
.enumv() == DTypeTrait<DType>::enumv) {
\
using T = typename DTypeTrait<DType>::ctype; \
MEGDNN_DISPATCH_CPU_KERN_OPR(exec_const_internal<T>( \
src.layout.ndim, n, src.ptr<T>(), dst.ptr<T>(), params, \
...
...
@@ -179,28 +179,31 @@ void PaddingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) {
return; \
}
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
#undef cb
break
;
case
param
::
Padding
::
PaddingMode
::
REPLICATE
:
#define cb(DType) \
if (src.layout.dtype
== DType()) {
\
if (src.layout.dtype
.enumv() == DTypeTrait<DType>::enumv) {
\
using T = typename DTypeTrait<DType>::ctype; \
MEGDNN_DISPATCH_CPU_KERN_OPR(exec_replicate_internal<T>( \
src.layout.ndim, n, src.ptr<T>(), dst.ptr<T>(), params)); \
return; \
}
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
#undef cb
break
;
case
param
::
Padding
::
PaddingMode
::
REFLECT
:
#define cb(DType) \
if (src.layout.dtype
== DType()) {
\
if (src.layout.dtype
.enumv() == DTypeTrait<DType>::enumv) {
\
using T = typename DTypeTrait<DType>::ctype; \
MEGDNN_DISPATCH_CPU_KERN_OPR(exec_reflect_internal<T>( \
src.layout.ndim, n, src.ptr<T>(), dst.ptr<T>(), params)); \
return; \
}
MEGDNN_FOREACH_COMPUTING_DTYPE
(
cb
)
MEGDNN_FOREACH_QUANTIZED_DTYPE
(
cb
)
#undef cb
break
;
default:
...
...
dnn/test/cuda/padding.cpp
浏览文件 @
2293385e
...
...
@@ -101,6 +101,36 @@ TEST_F(CUDA, PADDING_REFLECT2) {
4
,
1
,
6
,
3
,
6
,
1
,
6
,
3
})});
}
TEST_F
(
CUDA
,
PADDING_REFLECT2_QUANTIZED
)
{
Checker
<
Padding
>
checker
(
handle_cuda
(),
false
);
param
::
Padding
param
;
param
.
padding_mode
=
param
::
Padding
::
PaddingMode
::
REFLECT
;
param
.
front_offset_dim0
=
2
;
param
.
front_offset_dim1
=
1
;
param
.
front_offset_dim2
=
0
;
param
.
front_offset_dim3
=
0
;
param
.
front_offset_dim4
=
0
;
param
.
front_offset_dim5
=
0
;
param
.
front_offset_dim6
=
0
;
param
.
back_offset_dim0
=
0
;
param
.
back_offset_dim1
=
2
;
param
.
back_offset_dim2
=
0
;
param
.
back_offset_dim3
=
0
;
param
.
back_offset_dim4
=
0
;
param
.
back_offset_dim5
=
0
;
param
.
back_offset_dim6
=
0
;
checker
.
set_param
(
param
).
exect
(
Testcase
{
TensorValue
(
{
3
,
3
},
dtype
::
QuantizedS8
(),
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
}),
{}},
Testcase
{{},
TensorValue
({
5
,
6
},
dtype
::
QuantizedS8
(),
{
8
,
7
,
8
,
9
,
8
,
7
,
5
,
4
,
5
,
6
,
5
,
4
,
2
,
1
,
2
,
3
,
2
,
1
,
5
,
4
,
5
,
6
,
5
,
4
,
8
,
7
,
8
,
9
,
8
,
7
})});
}
TEST_F
(
CUDA
,
PADDING_REPLICATE
)
{
Checker
<
Padding
>
checker
(
handle_cuda
(),
false
);
param
::
Padding
param
;
...
...
dnn/test/naive/padding.cpp
浏览文件 @
2293385e
...
...
@@ -83,6 +83,36 @@ TEST_F(NAIVE, PADDING_REFLECT) {
{
10
},
dtype
::
Float32
(),
{
3
,
2
,
1
,
2
,
3
,
4
,
5
,
4
,
3
,
2
})});
}
TEST_F
(
NAIVE
,
PADDING_REFLECT2
)
{
Checker
<
Padding
>
checker
(
handle
(),
false
);
param
::
Padding
param
;
param
.
padding_mode
=
param
::
Padding
::
PaddingMode
::
REFLECT
;
param
.
front_offset_dim0
=
2
;
param
.
front_offset_dim1
=
1
;
param
.
front_offset_dim2
=
0
;
param
.
front_offset_dim3
=
0
;
param
.
front_offset_dim4
=
0
;
param
.
front_offset_dim5
=
0
;
param
.
front_offset_dim6
=
0
;
param
.
back_offset_dim0
=
0
;
param
.
back_offset_dim1
=
2
;
param
.
back_offset_dim2
=
0
;
param
.
back_offset_dim3
=
0
;
param
.
back_offset_dim4
=
0
;
param
.
back_offset_dim5
=
0
;
param
.
back_offset_dim6
=
0
;
checker
.
set_param
(
param
).
exect
(
Testcase
{
TensorValue
(
{
3
,
3
},
dtype
::
QuantizedS8
(),
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
}),
{}},
Testcase
{{},
TensorValue
({
5
,
6
},
dtype
::
QuantizedS8
(),
{
8
,
7
,
8
,
9
,
8
,
7
,
5
,
4
,
5
,
6
,
5
,
4
,
2
,
1
,
2
,
3
,
2
,
1
,
5
,
4
,
5
,
6
,
5
,
4
,
8
,
7
,
8
,
9
,
8
,
7
})});
}
TEST_F
(
NAIVE
,
PADDING_REPLICATE
)
{
Checker
<
Padding
>
checker
(
handle
(),
false
);
param
::
Padding
param
;
...
...
imperative/python/megengine/module/conv.py
浏览文件 @
2293385e
...
...
@@ -18,6 +18,7 @@ from ..functional import (
conv_transpose3d
,
deformable_conv2d
,
local_conv2d
,
pad
,
relu
,
)
from
..tensor
import
Parameter
...
...
@@ -126,7 +127,7 @@ class Conv1d(_ConvNd):
kernel_size: size of weight on spatial dimensions.
stride: stride of the 1D convolution operation.
padding: size of the paddings added to the input on both sides of its
spatial dimensions.
Only zero-padding is supported.
Default: 0
spatial dimensions. Default: 0
dilation: dilation of the 1D convolution operation. Default: 1
groups: number of groups to divide input and output channels into,
so as to perform a "grouped convolution". When ``groups`` is not 1,
...
...
@@ -139,6 +140,8 @@ class Conv1d(_ConvNd):
placed on the precision of intermediate results. When set to "float32",
"float32" would be used for accumulator and intermediate result, but only
effective when input and output are of float16 dtype.
padding_mode: "zeros", "reflect" or "replicate". Default: "zeros".
Refer to :class:`~.module.padding.Pad` for more information.
Note:
* ``weight`` usually has shape ``(out_channels, in_channels, kernel_size)`` ,
...
...
@@ -177,6 +180,7 @@ class Conv1d(_ConvNd):
bias
:
bool
=
True
,
conv_mode
:
str
=
"cross_correlation"
,
compute_mode
:
str
=
"default"
,
padding_mode
:
str
=
"zeros"
,
**
kwargs
):
kernel_size
=
kernel_size
...
...
@@ -185,6 +189,7 @@ class Conv1d(_ConvNd):
dilation
=
dilation
self
.
conv_mode
=
conv_mode
self
.
compute_mode
=
compute_mode
self
.
padding_mode
=
padding_mode
super
().
__init__
(
in_channels
,
out_channels
,
...
...
@@ -223,7 +228,27 @@ class Conv1d(_ConvNd):
# Assume format is NCH(W=1)
return
(
1
,
self
.
out_channels
,
1
)
def
get_pad_witdth
(
self
):
return
((
0
,
0
),
(
0
,
0
),
(
self
.
padding
,
self
.
padding
))
def
calc_conv
(
self
,
inp
,
weight
,
bias
):
assert
self
.
padding_mode
in
[
"zeros"
,
"reflect"
,
"replicate"
,
]
if
self
.
padding_mode
!=
"zeros"
:
return
conv1d
(
pad
(
inp
,
self
.
get_pad_witdth
(),
self
.
padding_mode
),
weight
,
bias
,
self
.
stride
,
0
,
self
.
dilation
,
self
.
groups
,
self
.
conv_mode
,
self
.
compute_mode
,
)
return
conv1d
(
inp
,
weight
,
...
...
@@ -287,7 +312,7 @@ class Conv2d(_ConvNd):
``(kernel_size, kernel_size)``.
stride: stride of the 2D convolution operation. Default: 1
padding: size of the paddings added to the input on both sides of its
spatial dimensions.
Only zero-padding is supported.
Default: 0
spatial dimensions. Default: 0
dilation: dilation of the 2D convolution operation. Default: 1
groups: number of groups into which the input and output channels are divided,
so as to perform a ``grouped convolution``. When ``groups`` is not 1,
...
...
@@ -300,6 +325,8 @@ class Conv2d(_ConvNd):
placed on the precision of intermediate results. When set to "float32",
"float32" would be used for accumulator and intermediate result, but only
effective when input and output are of float16 dtype.
padding_mode: "zeros", "reflect" or "replicate". Default: "zeros".
Refer to :class:`~.module.padding.Pad` for more information.
Note:
* ``weight`` usually has shape ``(out_channels, in_channels, height, width)`` ,
...
...
@@ -338,6 +365,7 @@ class Conv2d(_ConvNd):
bias
:
bool
=
True
,
conv_mode
:
str
=
"cross_correlation"
,
compute_mode
:
str
=
"default"
,
padding_mode
:
str
=
"zeros"
,
**
kwargs
):
kernel_size
=
_pair_nonzero
(
kernel_size
)
...
...
@@ -346,6 +374,7 @@ class Conv2d(_ConvNd):
dilation
=
_pair_nonzero
(
dilation
)
self
.
conv_mode
=
conv_mode
self
.
compute_mode
=
compute_mode
self
.
padding_mode
=
padding_mode
super
().
__init__
(
in_channels
,
out_channels
,
...
...
@@ -384,7 +413,32 @@ class Conv2d(_ConvNd):
# Assume format is NCHW
return
(
1
,
self
.
out_channels
,
1
,
1
)
def
get_pad_witdth
(
self
):
return
(
(
0
,
0
),
(
0
,
0
),
(
self
.
padding
[
0
],
self
.
padding
[
0
]),
(
self
.
padding
[
1
],
self
.
padding
[
1
]),
)
def
calc_conv
(
self
,
inp
,
weight
,
bias
):
assert
self
.
padding_mode
in
[
"zeros"
,
"reflect"
,
"replicate"
,
]
if
self
.
padding_mode
!=
"zeros"
:
return
conv2d
(
pad
(
inp
,
self
.
get_pad_witdth
(),
self
.
padding_mode
),
weight
,
bias
,
self
.
stride
,
0
,
self
.
dilation
,
self
.
groups
,
self
.
conv_mode
,
self
.
compute_mode
,
)
return
conv2d
(
inp
,
weight
,
...
...
imperative/python/megengine/module/conv_bn.py
浏览文件 @
2293385e
...
...
@@ -30,6 +30,7 @@ class _ConvBnActivation2d(Module):
momentum
=
0.9
,
affine
=
True
,
track_running_stats
=
True
,
padding_mode
:
str
=
"zeros"
,
**
kwargs
):
super
().
__init__
(
**
kwargs
)
...
...
@@ -44,6 +45,7 @@ class _ConvBnActivation2d(Module):
bias
,
conv_mode
,
compute_mode
,
padding_mode
,
**
kwargs
,
)
self
.
bn
=
BatchNorm2d
(
out_channels
,
eps
,
momentum
,
affine
,
track_running_stats
)
...
...
imperative/python/megengine/module/qat/conv.py
浏览文件 @
2293385e
...
...
@@ -38,6 +38,7 @@ class Conv2d(Float.Conv2d, QATModule):
float_module
.
bias
is
not
None
,
float_module
.
conv_mode
,
float_module
.
compute_mode
,
float_module
.
padding_mode
,
name
=
float_module
.
name
,
)
qat_module
.
weight
=
float_module
.
weight
...
...
imperative/python/megengine/module/qat/conv_bn.py
浏览文件 @
2293385e
...
...
@@ -147,6 +147,7 @@ class _ConvBnActivation2d(Float._ConvBnActivation2d, QATModule):
float_module
.
conv
.
bias
is
not
None
,
float_module
.
conv
.
conv_mode
,
float_module
.
conv
.
compute_mode
,
padding_mode
=
float_module
.
conv
.
padding_mode
,
name
=
float_module
.
name
,
)
qat_module
.
conv
.
weight
=
float_module
.
conv
.
weight
...
...
imperative/python/megengine/module/quantized/conv.py
浏览文件 @
2293385e
...
...
@@ -11,7 +11,7 @@ import numpy as np
from
...
import
module
as
Float
from
...core.tensor
import
dtype
from
...functional.nn
import
conv_bias_activation
from
...functional.nn
import
conv_bias_activation
,
pad
from
...functional.quantized
import
conv_transpose2d
from
...tensor
import
Parameter
from
..qat
import
conv
as
QAT
...
...
@@ -38,6 +38,7 @@ class Conv2d(Float.Conv2d, QuantizedModule):
conv_mode
:
str
=
"cross_correlation"
,
compute_mode
:
str
=
"default"
,
dtype
=
None
,
padding_mode
:
str
=
"zeros"
,
**
kwargs
):
super
().
__init__
(
...
...
@@ -51,13 +52,33 @@ class Conv2d(Float.Conv2d, QuantizedModule):
True
,
conv_mode
,
compute_mode
,
padding_mode
,
)
self
.
output_dtype
=
dtype
def
calc_conv_quantized
(
self
,
inp
,
nonlinear_mode
=
"identity"
):
assert
self
.
padding_mode
in
[
"zeros"
,
"reflect"
,
"replicate"
,
]
inp_scale
=
dtype
.
get_scale
(
inp
.
dtype
)
w_scale
=
dtype
.
get_scale
(
self
.
weight
.
dtype
)
bias_scale
=
inp_scale
*
w_scale
if
self
.
padding_mode
!=
"zeros"
:
return
conv_bias_activation
(
pad
(
inp
,
self
.
get_pad_witdth
(),
self
.
padding_mode
),
self
.
weight
,
self
.
bias
.
astype
(
dtype
.
qint32
(
bias_scale
)),
self
.
output_dtype
,
self
.
stride
,
0
,
self
.
dilation
,
self
.
groups
,
conv_mode
=
self
.
conv_mode
,
compute_mode
=
self
.
compute_mode
,
nonlinear_mode
=
nonlinear_mode
,
)
return
conv_bias_activation
(
inp
,
self
.
weight
,
...
...
@@ -88,6 +109,7 @@ class Conv2d(Float.Conv2d, QuantizedModule):
qat_module
.
dilation
,
qat_module
.
groups
,
dtype
=
output_dtype
,
padding_mode
=
qat_module
.
padding_mode
,
name
=
qat_module
.
name
,
)
weight
=
qat_module
.
weight
.
astype
(
qat_module
.
get_weight_dtype
())
...
...
imperative/python/megengine/module/quantized/conv_bn.py
浏览文件 @
2293385e
...
...
@@ -31,6 +31,7 @@ class _ConvBnActivation2d(Conv2d):
qat_module
.
conv
.
groups
,
dtype
=
output_dtype
,
name
=
qat_module
.
name
,
padding_mode
=
qat_module
.
conv
.
padding_mode
,
)
w_fold
,
b_fold
=
qat_module
.
fold_weight_bias
(
qat_module
.
bn
.
running_mean
,
qat_module
.
bn
.
running_var
...
...
imperative/python/megengine/traced_module/compat.py
浏览文件 @
2293385e
...
...
@@ -126,6 +126,9 @@ def convbn2d_module_loader(expr):
module
=
expr
.
inputs
[
0
].
owner
if
not
hasattr
(
module
.
bn
,
"param_dim"
):
module
.
bn
.
param_dim
=
"dim_1c11"
module
=
expr
.
inputs
[
0
].
owner
if
not
hasattr
(
module
.
conv
,
"padding_mode"
):
module
.
conv
.
padding_mode
=
"zeros"
@
register_opdef_loader
(
BatchNorm
)
...
...
@@ -162,3 +165,36 @@ def tensor_gen_func_loader(expr):
else
:
device
=
None
expr
.
set_args_kwargs
(
shape
,
dtype
=
dtype
,
device
=
device
)
@
register_functional_loader
((
"megengine.functional.nn"
,
"pad"
))
def
pad_func_loader
(
expr
):
if
"pad_witdth"
in
expr
.
kwargs
:
kwargs
=
expr
.
kwargs
kwargs
[
"pad_width"
]
=
kwargs
.
pop
(
"pad_witdth"
)
expr
.
set_args_kwargs
(
*
expr
.
args
,
**
kwargs
)
@
register_module_loader
(
(
"megengine.module.conv"
,
"Conv1d"
),
(
"megengine.module.conv"
,
"Conv2d"
),
(
"megengine.module.conv"
,
"ConvRelu2d"
),
(
"megengine.module.qat.conv"
,
"Conv2d"
),
(
"megengine.module.qat.conv"
,
"ConvRelu2d"
),
(
"megengine.module.quantized.conv"
,
"Conv2d"
),
(
"megengine.module.quantized.conv"
,
"ConvRelu2d"
),
)
def
conv2d_module_loader
(
expr
):
module
=
expr
.
inputs
[
0
].
owner
if
not
hasattr
(
module
,
"padding_mode"
):
module
.
padding_mode
=
"zeros"
@
register_module_loader
(
(
"megengine.module.quantized.conv_bn"
,
"ConvBn2d"
),
(
"megengine.module.quantized.conv_bn"
,
"ConvBnRelu2d"
),
)
def
quantized_convbn2d_module_loader
(
expr
):
module
=
expr
.
inputs
[
0
].
owner
if
not
hasattr
(
module
,
"padding_mode"
):
module
.
padding_mode
=
"zeros"
imperative/python/test/unit/module/test_qat.py
浏览文件 @
2293385e
...
...
@@ -60,7 +60,18 @@ def test_qat_convbn2d():
)
def
test_qat_conv
():
@
pytest
.
mark
.
parametrize
(
"padding, padding_mode"
,
[
(
0
,
"zeros"
),
((
1
,
2
),
"zeros"
),
(
3
,
"reflect"
),
((
1
,
2
),
"reflect"
),
(
4
,
"replicate"
),
((
1
,
2
),
"replicate"
),
],
)
def
test_qat_conv
(
padding
,
padding_mode
):
in_channels
=
32
out_channels
=
64
...
...
@@ -72,7 +83,13 @@ def test_qat_conv():
self
.
quant
=
QuantStub
()
self
.
dequant
=
DequantStub
()
self
.
conv
=
Conv2d
(
in_channels
,
out_channels
,
kernel_size
,
groups
=
groups
,
bias
=
bias
in_channels
,
out_channels
,
kernel_size
,
groups
=
groups
,
bias
=
bias
,
padding
=
padding
,
padding_mode
=
padding_mode
,
)
self
.
conv_relu
=
ConvRelu2d
(
out_channels
,
in_channels
,
kernel_size
,
groups
=
groups
,
bias
=
bias
...
...
imperative/python/test/unit/quantization/test_module.py
浏览文件 @
2293385e
...
...
@@ -236,11 +236,16 @@ def test_linear():
@
pytest
.
mark
.
parametrize
(
"module"
,
[
"Conv2d"
,
"ConvBn2d"
,
"ConvBnRelu2d"
])
def
test_conv
(
module
):
normal_net
=
getattr
(
Float
,
module
)(
3
,
3
,
3
,
1
,
1
,
1
,
bias
=
True
)
@
pytest
.
mark
.
parametrize
(
"padding_mode"
,
[
"zeros"
,
"reflect"
,
"replicate"
])
def
test_conv
(
module
,
padding_mode
):
normal_net
=
getattr
(
Float
,
module
)(
3
,
3
,
3
,
1
,
1
,
1
,
bias
=
True
,
padding_mode
=
padding_mode
)
normal_net
.
eval
()
qat_net
=
getattr
(
QAT
,
module
)(
3
,
3
,
3
,
1
,
1
,
1
,
bias
=
True
)
qat_net
=
getattr
(
QAT
,
module
)(
3
,
3
,
3
,
1
,
1
,
1
,
bias
=
True
,
padding_mode
=
padding_mode
)
qat_net
.
eval
()
disable_observer
(
qat_net
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录