提交 111fa975 编写于 作者: M Megvii Engine Team

Merge pull request #422 from Asthestarsfalll:zeroslike

GitOrigin-RevId: 4b464446b55e2619b7cc43bb321aeae8a3cb41ef
...@@ -113,7 +113,7 @@ def full( ...@@ -113,7 +113,7 @@ def full(
data type must be inferred from ``value``. If the value is an ``int``, data type must be inferred from ``value``. If the value is an ``int``,
the output tensor data type must be the default integer data type. If the the output tensor data type must be the default integer data type. If the
value is a ``float``, the output tensor data type must be the default value is a ``float``, the output tensor data type must be the default
floating-point data type. If the value is a ``bool``, the output tensor floating-point data type. If the value is a ``bool``, the output tensor
must have boolean data type. Default: ``None``. must have boolean data type. Default: ``None``.
device: device on which to place the created tensor. Default: ``None``. device: device on which to place the created tensor. Default: ``None``.
...@@ -222,33 +222,20 @@ def zeros( ...@@ -222,33 +222,20 @@ def zeros(
def zeros_like(inp: Union[Tensor, SymbolVar]) -> Union[Tensor, SymbolVar]: def zeros_like(inp: Union[Tensor, SymbolVar]) -> Union[Tensor, SymbolVar]:
r"""Returns a zero tensor with the same shape as input tensor. r"""Returns a tensor filled with zeros with the same shape and data type as input tensor.
Args: Args:
inp: input tensor. inp (Tensor): input tensor.
Return: Return:
output tensor. a tensor containing zeros.
Examples: Examples:
>>> input = F.arange(9, dtype='int32').reshape(3,3)
.. testcode:: >>> F.zeros_like(input)
Tensor([[0 0 0]
import numpy as np [0 0 0]
from megengine import tensor [0 0 0]], dtype=int32, device=xpux:0)
import megengine.functional as F
inp = tensor(np.arange(1, 7, dtype=np.int32).reshape(2,3))
out = F.zeros_like(inp)
print(out.numpy())
Outputs:
.. testoutput::
[[0 0 0]
[0 0 0]]
""" """
return full_like(inp, 0.0) return full_like(inp, 0.0)
...@@ -1095,18 +1082,18 @@ def arange( ...@@ -1095,18 +1082,18 @@ def arange(
dtype="float32", dtype="float32",
device: Optional[CompNode] = None, device: Optional[CompNode] = None,
) -> Tensor: ) -> Tensor:
r"""Returns evenly spaced values within the half-open interval ``[start, stop)`` as a one-dimensional tensor. r"""Returns evenly spaced values within the half-open interval ``[start, stop)`` as a one-dimensional tensor.
Note: Note:
This function cannot guarantee that the interval does not include the stop value in those cases This function cannot guarantee that the interval does not include the stop value in those cases
where step is not an integer and floating-point rounding errors affect the length of the output tensor. where step is not an integer and floating-point rounding errors affect the length of the output tensor.
Args: Args:
start: if ``stop`` is specified, the start of interval (inclusive); otherwise, start: if ``stop`` is specified, the start of interval (inclusive); otherwise,
the end of the interval (exclusive). If ``stop`` is not specified, the default starting value is ``0``. the end of the interval (exclusive). If ``stop`` is not specified, the default starting value is ``0``.
stop: the end of the interval. Default: ``None``. stop: the end of the interval. Default: ``None``.
step: the distance between two adjacent elements ( ``out[i+1] - out[i]`` ). Must not be 0 ; step: the distance between two adjacent elements ( ``out[i+1] - out[i]`` ). Must not be 0 ;
may be negative, this results i an empty tensor if stop >= start . Default: 1 . may be negative, this results i an empty tensor if stop >= start . Default: 1 .
Keyword args: Keyword args:
dtype( :attr:`.Tensor.dtype` ): output tensor data type. Default: ``float32``. dtype( :attr:`.Tensor.dtype` ): output tensor data type. Default: ``float32``.
...@@ -1115,7 +1102,7 @@ def arange( ...@@ -1115,7 +1102,7 @@ def arange(
Returns: Returns:
A one-dimensional tensor containing evenly spaced values. A one-dimensional tensor containing evenly spaced values.
The length of the output tensor must be ``ceil((stop-start)/step)`` The length of the output tensor must be ``ceil((stop-start)/step)``
if ``stop - start`` and ``step`` have the same sign, and length 0 otherwise. if ``stop - start`` and ``step`` have the same sign, and length 0 otherwise.
Examples: Examples:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册