提交 04b03532 编写于 作者: M Megvii Engine Team

feat(jit/opencl): add OpenCL jit test

GitOrigin-RevId: 9467bc7d51e3a1d343b3745d7ad0ce577ddffae8
上级 6ce3040f
......@@ -53,7 +53,7 @@ void gen_input_code_and_gen_input_data_update(
(is_half ? "half4 x_after_read" : "float4 x_after_read") +
std::to_string(i));
std::string coord = "coord";
if (LayoutType::BROADCAST == b_info[i]) {
if (LayoutType::CHANNEL_BROADCAST == b_info[i]) {
coord = "coord_b";
}
std::string read_method = read_image_func + "(" +
......@@ -102,6 +102,7 @@ __kernel void {{KERNEL_NAME}} (
__private const int global_size_dim1,
__private const int wc_size,
__private const int hb_size,
__private const int h,
__private const uint w_size
) {
#if OPENCL_ENABLE_FP16
......@@ -121,7 +122,7 @@ __kernel void {{KERNEL_NAME}} (
for (; hb < hb_size; hb += global_size_dim1) {
for (; wc < wc_size; wc += global_size_dim0) {
int2 coord = (int2)(wc, hb);
int2 coord_b = (int2)(wc / w_size, 0);
int2 coord_b = (int2)(wc / w_size, hb/h);
{{INTERNAL_DECL_EXPRS}}
{{ASSIGN_EXPRS}}
{{INTERNAL_ASSIGN_EXPRS}}
......
......@@ -109,6 +109,7 @@ void OpenCLExecutable::execute(JITExecutor* fusion_opr) {
}
mgb_assert(
args.outputs.size() == 1, "OpenCL elemwise jit output size should be one");
size_t h = args.outputs[0].layout[1];
//! create kernel
std::string compile_options;
......@@ -175,7 +176,8 @@ void OpenCLExecutable::execute(JITExecutor* fusion_opr) {
{{&i_WGSX, sizeof(int)},
{&i_WGSY, sizeof(int)},
{&wc_size, sizeof(int)},
{&hb_size, sizeof(int)}});
{&hb_size, sizeof(int)},
{&h, sizeof(int)}});
//! have broadcasted_channel_like_input case
int may_w_size = args.outputs[0].layout[3];
kernel.add_arg({&may_w_size, sizeof(cl_uint)});
......
......@@ -32,7 +32,7 @@ std::vector<LayoutType> get_channel_broadcast_info(
if (ih == h && iw == w) {
ret.push_back(LayoutType::VEC);
} else {
ret.push_back(LayoutType::BROADCAST);
ret.push_back(LayoutType::CHANNEL_BROADCAST);
mgb_assert(ih == 1 && iw == 1, "invalid args for OpenCL jit");
}
}
......
......@@ -21,7 +21,7 @@ int safe_int(S val) {
enum class LayoutType {
SCALAR = 0,
BROADCAST = 1,
CHANNEL_BROADCAST = 1,
VEC = 2,
};
......
#include <memory>
#include "./helper.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/gopt/inference.h"
#include "megbrain/jit/executor_opr.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/basic_arith_wrapper.h"
......@@ -279,7 +281,6 @@ void run_mlir_mode(CompNode cn) {
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_jit, opt.maxerr);
}
#endif
} // anonymous namespace
/* ===================== TestJITHalideCodeGenCude ===================== */
......@@ -323,32 +324,11 @@ TEST(TestJITMlirCodeGen, BasicGPU) {
}
/* ===================== TestJITMlirUnaryElemwise ===================== */
#define FOREACH_UNARY_MODE(cb) \
cb(RELU) cb(ABS) cb(NEGATE) cb(ACOS) cb(ASIN) cb(CEIL) cb(EXP) cb(FLOOR) cb(LOG) \
cb(LOG1P) cb(SIN) cb(COS) cb(TANH) cb(FAST_TANH) cb(H_SWISH) cb(SIGMOID) \
cb(EXPM1) cb(ROUND) cb(ERF) cb(ERFINV) cb(ERFC) cb(ERFCINV)
// clang-format off
#define FOREACH_UNARY_MODE(cb) \
cb(RELU) \
cb(ABS) \
cb(NEGATE) \
cb(ACOS) \
cb(ASIN) \
cb(CEIL) \
cb(EXP) \
cb(FLOOR) \
cb(LOG) \
cb(LOG1P) \
cb(SIN) \
cb(COS) \
cb(TANH) \
cb(FAST_TANH) \
cb(H_SWISH) \
cb(SIGMOID) \
cb(EXPM1) \
cb(ROUND) \
cb(ERF) \
cb(ERFINV) \
cb(ERFC) \
cb(ERFCINV)
// clang-format on
template <typename tag>
class TestJITMlirUnaryElemwise : public ::testing::Test {};
......@@ -388,34 +368,13 @@ TYPED_TEST(TestJITMlirUnaryElemwise, runGpu) {
}
/* ===================== TestJITMlirBinaryElemwise ===================== */
#define FOREACH_BINARY_MODE(cb) \
cb(ADD) cb(FLOOR_DIV) cb(MUL) cb(MAX) cb(MIN) cb(MOD) cb(SUB) cb(TRUE_DIV) cb(POW) \
cb(ABS_GRAD) cb(SIGMOID_GRAD) cb(SWITCH_GT0) cb(TANH_GRAD) cb(LT) cb(LEQ) \
cb(EQ) cb(FUSE_ADD_RELU) cb(LOG_SUM_EXP) cb(FUSE_ADD_TANH) \
cb(FAST_TANH_GRAD) cb(FUSE_ADD_SIGMOID) cb(H_SWISH_GRAD) \
cb(FUSE_ADD_H_SWISH) cb(ATAN2)
// clang-format off
#define FOREACH_BINARY_MODE(cb) \
cb(ADD) \
cb(FLOOR_DIV) \
cb(MUL) \
cb(MAX) \
cb(MIN) \
cb(MOD) \
cb(SUB) \
cb(TRUE_DIV) \
cb(POW) \
cb(ABS_GRAD) \
cb(SIGMOID_GRAD) \
cb(SWITCH_GT0) \
cb(TANH_GRAD) \
cb(LT) \
cb(LEQ) \
cb(EQ) \
cb(FUSE_ADD_RELU) \
cb(LOG_SUM_EXP) \
cb(FUSE_ADD_TANH) \
cb(FAST_TANH_GRAD) \
cb(FUSE_ADD_SIGMOID) \
cb(H_SWISH_GRAD) \
cb(FUSE_ADD_H_SWISH) \
cb(ATAN2)
// clang-format on
template <typename tag>
class TestJITMlirBinaryElemwise : public ::testing::Test {};
......@@ -445,13 +404,8 @@ TYPED_TEST(TestJITMlirBinaryElemwise, runGpu) {
}
/* ===================== TestJITMlirTenaryElemwise ===================== */
#define FOREACH_TERNARY_MODE(cb) cb(COND_LEQ_MOV) cb(COND_LT_MOV) cb(FUSE_MUL_ADD3)
// clang-format off
#define FOREACH_TERNARY_MODE(cb) \
cb(COND_LEQ_MOV) \
cb(COND_LT_MOV) \
cb(FUSE_MUL_ADD3) \
// clang-format on
template <typename tag>
class TestJITMlirTernaryElemwise : public ::testing::Test {};
......@@ -463,8 +417,8 @@ FOREACH_TERNARY_MODE(def_tag)
#undef def_tag
#define t(n) n,
using mlir_elemwise_ternary_types =
::testing::Types<FOREACH_TERNARY_MODE(t) COND_LEQ_MOV>;
using mlir_elemwise_ternary_types =
::testing::Types<FOREACH_TERNARY_MODE(t) COND_LEQ_MOV>;
#undef t
TYPED_TEST_CASE(TestJITMlirTernaryElemwise, mlir_elemwise_ternary_types);
TYPED_TEST(TestJITMlirTernaryElemwise, run) {
......@@ -480,7 +434,6 @@ TYPED_TEST(TestJITMlirTernaryElemwise, runGpu) {
#undef SKIP_MODE
/* ===================== TestJITMlirTypeCvt ===================== */
template <typename itype, typename otype>
......@@ -505,35 +458,35 @@ void run_typecvt(CompNode cn) {
auto y_jit = JITExecutor::make(igraph, ig_gen->orig_inps());
HostTensorND host_y, host_y_jit;
auto func = graph->compile({make_callback_copy(y, host_y),
make_callback_copy(y_jit, host_y_jit)});
auto func = graph->compile(
{make_callback_copy(y, host_y), make_callback_copy(y_jit, host_y_jit)});
func->execute();
MGB_ASSERT_TENSOR_EQ(host_y, host_y_jit);
};
#define add_typecvt_gtest(itype, otype) \
TEST(TestJITMlirTypeCvt, itype##_to_##otype) { \
#define add_typecvt_gtest(itype, otype) \
TEST(TestJITMlirTypeCvt, itype##_to_##otype) { \
run_typecvt<dtype::itype, dtype::otype>(CompNode::load("cpu0")); \
} \
TEST(TestJITMlirTypeCvt, itype##_to_##otype##_GPU) { \
REQUIRE_GPU(1); \
} \
TEST(TestJITMlirTypeCvt, itype##_to_##otype##_GPU) { \
REQUIRE_GPU(1); \
run_typecvt<dtype::itype, dtype::otype>(CompNode::load("gpu0")); \
}
#if !MEGDNN_DISABLE_FLOAT16
// TODO: the support for f16 and bf16 is currently not complete in mlir
// TODO: the support for f16 and bf16 is currently not complete in mlir
// FPExtOp
// add_typecvt_gtest(Float16, Float32);
// add_typecvt_gtest(BFloat16, Float32);
// add_typecvt_gtest(Float16, BFloat16);
// FPExtOp
// add_typecvt_gtest(Float16, Float32);
// add_typecvt_gtest(BFloat16, Float32);
// add_typecvt_gtest(Float16, BFloat16);
// FPTruncOp
// add_typecvt_gtest(Float32, Float16);
// add_typecvt_gtest(Float32, BFloat16);
// add_typecvt_gtest(Float16, BFloat16);
// FPTruncOp
// add_typecvt_gtest(Float32, Float16);
// add_typecvt_gtest(Float32, BFloat16);
// add_typecvt_gtest(Float16, BFloat16);
#endif
......@@ -557,8 +510,7 @@ add_typecvt_gtest(Uint8, Float32);
/* ===================== TestJITMlirDimshuffle ===================== */
void run_dimshuffle(CompNode cn, TensorShape ishape,
const std::vector<int>& pattern) {
void run_dimshuffle(CompNode cn, TensorShape ishape, const std::vector<int>& pattern) {
set_backend(Backend::MLIR);
auto graph = ComputingGraph::make();
HostTensorGenerator<> gen;
......@@ -579,8 +531,8 @@ void run_dimshuffle(CompNode cn, TensorShape ishape,
auto y_jit = JITExecutor::make(igraph, ig_gen->orig_inps());
HostTensorND host_y, host_y_jit;
auto func = graph->compile({make_callback_copy(y, host_y),
make_callback_copy(y_jit, host_y_jit)});
auto func = graph->compile(
{make_callback_copy(y, host_y), make_callback_copy(y_jit, host_y_jit)});
func->execute();
MGB_ASSERT_TENSOR_EQ(host_y, host_y_jit);
......
......@@ -462,7 +462,7 @@ void run<all_oprs>(Backend backend, CompNode cn) {
CHECK_ELEM2(FUSE_ADD_TANH, true, none);
CHECK_ELEM2(FUSE_ADD_H_SWISH, true, none);
ASSERT_EQ(ast_c::elem_opr_generator().size(), tasks.size());
ASSERT_EQ(ast_c::elem_opr_generator(cn.device_type()).size(), tasks.size());
auto type_cvt_test = [&](const char* name, DType src_dtype, DType dst_dtype) {
tasks.emplace_back(name, [cn, src_dtype, dst_dtype]() {
......@@ -496,7 +496,7 @@ void run<all_oprs>(Backend backend, CompNode cn) {
}
if (!::testing::Test::HasFailure()) {
mgb_log("going to run %s on worker %d", tasks[id].first, wid);
ASSERT_NO_THROW(tasks[id].second()) << "failed for " << tasks[id].first;
ASSERT_NO_THROW(tasks[id].second());
}
}
};
......@@ -1449,7 +1449,9 @@ TEST(TestJITNvrtc, JITConfig) {
x = opr::Reduce::make(x + 2, {ReduceMode::SUM, 2}); // Reduce
auto func = cg->compile({make_callback_copy(x + 1, *host_x)});
auto comp_seq = dynamic_cast<CompSeq*>(func.get());
//! cg->compile always return CompSeq* cast to AsyncExecutable*, so it`s safe
//! use static_cast, as Android bazel -copt will disable rtti
auto comp_seq = static_cast<CompSeq*>(func.get());
ASSERT_TRUE(comp_seq != nullptr);
bool dimshuffle_found = false, reduce_found = false, jit_executor_found = false;
......
......@@ -27,6 +27,9 @@ void jit::set_backend(Backend backend) {
case Backend::MLIR:
setenv("MGB_JIT_BACKEND", "MLIR", 1);
return;
case Backend::TINYOPENCL:
setenv("MGB_JIT_BACKEND", "TINYOPENCL", 1);
return;
default:
mgb_assert(0);
}
......
......@@ -4,7 +4,7 @@
namespace mgb {
namespace jit {
enum class Backend { NONE, HALIDE, NVRTC, MLIR };
enum class Backend { NONE, HALIDE, NVRTC, MLIR, TINYOPENCL };
void set_backend(Backend backend);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册