Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
03e80759
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
03e80759
编写于
8月 23, 2021
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(mge/distributed): add hybird parallel Opr
GitOrigin-RevId: ff26671746839e0a83886bafdc032eaf0ff945c3
上级
61a5df32
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
284 addition
and
16 deletion
+284
-16
imperative/python/megengine/distributed/functional.py
imperative/python/megengine/distributed/functional.py
+142
-16
imperative/python/test/unit/functional/test_functional_distributed_axis.py
.../test/unit/functional/test_functional_distributed_axis.py
+142
-0
未找到文件。
imperative/python/megengine/distributed/functional.py
浏览文件 @
03e80759
...
...
@@ -185,7 +185,7 @@ def reduce_sum(
output = reduce_sum(input)
# Rank 0 # output: Tensor([1])
# Rank 1 # output: None
input = Tensor([rank])
group = Group([1, 0]) # first rank is root
output = reduce_sum(input, group)
...
...
@@ -248,7 +248,7 @@ def broadcast(
output = broadcast(input)
# Rank 0 # output: Tensor([0])
# Rank 1 # output: Tensor([0])
input = Tensor([rank])
group = Group([1, 0]) # first rank is root
output = broadcast(input, group)
...
...
@@ -276,7 +276,7 @@ def _bcast_param(
def
all_gather
(
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
axis
=
0
,
)
->
Tensor
:
r
"""
Gather tensors across the specified group and concat them at first dimension.
...
...
@@ -290,6 +290,8 @@ def all_gather(
None default device means the device of inp will be used.
Specify "gpu0:1" to execute this operator on diffrent cuda stream,
1 is stream id, and default stream id is 0.
axis: The concat axis for collective_comm result
The default axis is 0
Returns:
Result tensor.
...
...
@@ -304,7 +306,7 @@ def all_gather(
output = all_gather(input)
# Rank 0 # output: Tensor([0 1])
# Rank 1 # output: Tensor([0 1])
input = Tensor([rank])
group = Group([1, 0])
output = all_gather(input, group)
...
...
@@ -313,11 +315,28 @@ def all_gather(
"""
mode
=
CollectiveComm
.
Mode
.
ALL_GATHER
return
collective_comm
(
inp
,
mode
,
group
,
device
)
out
=
collective_comm
(
inp
,
mode
,
group
,
device
)
if
axis
==
0
:
return
out
else
:
group_size
=
group
.
size
if
group
is
not
None
else
1
transformed_shape
=
list
(
inp
.
_tuple_shape
)
transformed_shape
[
axis
]
*=
group_size
n
,
*
shp
=
out
.
_tuple_shape
index
=
(
[
_
for
_
in
range
(
1
,
axis
)]
+
[
axis
,
0
]
+
[
_
for
_
in
range
(
axis
+
1
,
out
.
ndim
+
1
)]
)
return
(
out
.
reshape
(
group_size
,
n
//
group_size
,
*
shp
)
.
transpose
(
index
)
.
reshape
(
transformed_shape
)
)
def
reduce_scatter_sum
(
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
axis
=
0
)
->
Tensor
:
r
"""
Reduce tensors across the specified group by sum and split them at first dimension.
...
...
@@ -331,6 +350,8 @@ def reduce_scatter_sum(
None default device means the device of inp will be used.
Specify "gpu0:1" to execute this operator on diffrent cuda stream,
1 is stream id, and default stream id is 0.
axis: The split axis for collective_comm result
The default axis is 0, the data will split in the 0 axis
Returns:
Split tensor.
...
...
@@ -345,7 +366,7 @@ def reduce_scatter_sum(
output = reduce_scatter_sum(input)
# Rank 0 # output: Tensor([0])
# Rank 1 # output: Tensor([2])
input = Tensor([0 1])
group = Group([1, 0])
output = reduce_scatter_sum(input, group)
...
...
@@ -353,6 +374,23 @@ def reduce_scatter_sum(
# Rank 1 # output: Tensor([0])
"""
group_size
=
group
.
size
if
group
is
not
None
else
1
assert
(
list
(
inp
.
_tuple_shape
)[
axis
]
%
group_size
==
0
),
"current axis: {} can't devided by group size"
.
format
(
axis
)
if
axis
!=
0
:
k_new_shape
=
list
(
inp
.
_tuple_shape
)
k_new_shape
[
axis
]
//=
group_size
k_new_shape
[
0
]
*=
group_size
new_shape
=
list
(
inp
.
_tuple_shape
)
new_shape
[
axis
]
//=
group_size
new_shape
.
insert
(
axis
,
group_size
)
index
=
(
[
axis
]
+
[
_
for
_
in
range
(
0
,
axis
)]
+
[
_
for
_
in
range
(
axis
+
1
,
inp
.
ndim
+
1
)]
)
inp
=
inp
.
reshape
(
new_shape
).
transpose
(
index
).
reshape
(
k_new_shape
)
mode
=
CollectiveComm
.
Mode
.
REDUCE_SCATTER_SUM
return
collective_comm
(
inp
,
mode
,
group
,
device
)
...
...
@@ -480,7 +518,7 @@ class _Gather(Function):
def
gather
(
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
axis
=
0
,
)
->
Tensor
:
r
"""
Gather tensors across the specified group.
...
...
@@ -495,7 +533,8 @@ def gather(
None default device means the device of inp will be used.
Specify "gpu0:1" to execute this operator on diffrent cuda stream,
1 is stream id, and default stream id is 0.
axis: The concat axis for collective_comm result
The default axis is 0
Returns:
Result tensor if in root process, None if in other process
...
...
@@ -509,7 +548,7 @@ def gather(
output = gather(input)
# Rank 0 # output: Tensor([0 1])
# Rank 1 # output: None
input = Tensor([rank])
group = Group([1, 0]) # first rank is root
output = gather(input, group)
...
...
@@ -517,12 +556,33 @@ def gather(
# Rank 1 # output: Tensor([1 0])
"""
assert
(
axis
<
inp
.
ndim
),
"your concat_axis exceeds the dim of the tensor, the tensor shape is {}"
.
format
(
inp
.
shape
)
op
=
_Gather
(
group
,
device
)
(
out
,)
=
apply
(
op
,
inp
)
if
group
.
rank
==
0
:
return
out
if
axis
==
0
:
return
out
else
:
group_size
=
group
.
size
transformed_shape
=
list
(
inp
.
_tuple_shape
)
transformed_shape
[
axis
]
*=
group_size
n
,
*
shp
=
out
.
_tuple_shape
index
=
(
[
_
for
_
in
range
(
1
,
axis
)]
+
[
axis
,
0
]
+
[
_
for
_
in
range
(
axis
+
1
,
out
.
ndim
+
1
)]
)
return
(
out
.
reshape
(
group_size
,
n
//
group_size
,
*
shp
)
.
transpose
(
index
)
.
reshape
(
transformed_shape
)
)
else
:
_save_output_for_autodiff
(
inp
,
out
)
...
...
@@ -545,7 +605,7 @@ class _Scatter(Function):
def
scatter
(
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
axis
=
0
,
)
->
Tensor
:
r
"""
Split tensor in root process at first dimension.
...
...
@@ -559,6 +619,8 @@ def scatter(
None default device means the device of inp will be used.
Specify "gpu0:1" to execute this operator on diffrent cuda stream,
1 is stream id, and default stream id is 0.
axis: The concat axis for collective_comm result
The default axis is 0
Returns:
Split tensor.
...
...
@@ -573,7 +635,7 @@ def scatter(
output = scatter(input)
# Rank 0 # output: Tensor([0])
# Rank 1 # output: Tensor([1])
input = Tensor([0 1]) + rank*2
group = Group([1, 0]) # first rank is root
output = scatter(input, group)
...
...
@@ -588,13 +650,35 @@ def scatter(
_bcast_tracer_state
(
group
,
inp
)
assert
(
list
(
inp
.
_tuple_shape
)[
axis
]
%
group
.
size
==
0
),
"current axis: {} can't devided by group size"
.
format
(
axis
)
if
axis
!=
0
:
group_size
=
group
.
size
k_new_shape
=
list
(
inp
.
_tuple_shape
)
k_new_shape
[
axis
]
//=
group_size
k_new_shape
[
0
]
*=
group_size
new_shape
=
list
(
inp
.
_tuple_shape
)
new_shape
[
axis
]
//=
group_size
new_shape
.
insert
(
axis
,
group_size
)
index
=
(
[
axis
]
+
[
_
for
_
in
range
(
0
,
axis
)]
+
[
_
for
_
in
range
(
axis
+
1
,
inp
.
ndim
+
1
)]
)
inp
=
inp
.
reshape
(
new_shape
).
transpose
(
index
).
reshape
(
k_new_shape
)
op
=
_Scatter
(
group
,
device
)
(
out
,)
=
apply
(
op
,
inp
)
return
out
def
all_to_all
(
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
inp
:
Tensor
,
group
:
Optional
[
Group
]
=
WORLD
,
device
:
Optional
[
str
]
=
None
,
split_axis
:
int
=
0
,
concat_axis
:
int
=
0
,
)
->
Tensor
:
r
"""
Each process scatter input tensor to all processes and return gathered tensor.
...
...
@@ -608,6 +692,10 @@ def all_to_all(
None default device means the device of inp will be used.
Specify "gpu0:1" to execute this operator on diffrent cuda stream,
1 is stream id, and default stream id is 0.
split_axis: The axis that collectivecomm will split data
the default axis is 0
split_axis: The axis that collectivecomm will concat data
the default axis is 0
Returns:
Result tensor.
...
...
@@ -622,7 +710,7 @@ def all_to_all(
output = all_to_all(input)
# Rank 0 # output: Tensor([0 2])
# Rank 1 # output: Tensor([1 3])
input = Tensor([0 1]) + rank*2
group = Group([1, 0])
output = all_to_all(input, group)
...
...
@@ -630,8 +718,46 @@ def all_to_all(
# Rank 1 # output: Tensor([2 1])
"""
group_size
=
group
.
size
if
group
is
not
None
else
1
assert
(
list
(
inp
.
_tuple_shape
)[
split_axis
]
%
group_size
==
0
),
"current axis: {} can't devided by group size"
.
format
(
split_axis
)
origin_shape
=
inp
.
_tuple_shape
if
split_axis
!=
0
:
k_new_shape
=
list
(
inp
.
_tuple_shape
)
k_new_shape
[
split_axis
]
//=
group_size
k_new_shape
[
0
]
*=
group_size
new_shape
=
list
(
inp
.
_tuple_shape
)
new_shape
[
split_axis
]
//=
group_size
new_shape
.
insert
(
split_axis
,
group_size
)
index
=
(
[
split_axis
]
+
[
_
for
_
in
range
(
0
,
split_axis
)]
+
[
_
for
_
in
range
(
split_axis
+
1
,
inp
.
ndim
+
1
)]
)
inp
=
inp
.
reshape
(
new_shape
).
transpose
(
index
).
reshape
(
k_new_shape
)
mode
=
CollectiveComm
.
Mode
.
ALL_TO_ALL
return
collective_comm
(
inp
,
mode
,
group
,
device
)
out
=
collective_comm
(
inp
,
mode
,
group
,
device
)
if
concat_axis
==
0
:
return
out
transformed_shape
=
list
(
origin_shape
)
transformed_shape
[
concat_axis
]
*=
group_size
transformed_shape
[
split_axis
]
//=
group_size
n
,
*
shp
=
out
.
_tuple_shape
index
=
(
[
_
for
_
in
range
(
1
,
concat_axis
)]
+
[
concat_axis
,
0
]
+
[
_
for
_
in
range
(
concat_axis
+
1
,
out
.
ndim
+
1
)]
)
return
(
out
.
reshape
(
group_size
,
n
//
group_size
,
*
shp
)
.
transpose
(
index
)
.
reshape
(
transformed_shape
)
)
class
_SendRecvGroup
:
...
...
imperative/python/test/unit/functional/test_functional_distributed_axis.py
0 → 100644
浏览文件 @
03e80759
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import
numpy
as
np
import
pytest
import
megengine
as
mge
import
megengine.distributed
as
dist
from
megengine
import
tensor
from
megengine.distributed.functional
import
(
all_gather
,
all_to_all
,
gather
,
reduce_scatter_sum
,
scatter
,
)
from
megengine.jit
import
trace
@
pytest
.
mark
.
require_ngpu
(
2
)
@
pytest
.
mark
.
parametrize
(
"shape"
,
[(
2
,
3
),
(
8
,
10
),
(
99
,
77
),
(
2
,
2
,
2
,
2
)],
ids
=
str
)
@
pytest
.
mark
.
parametrize
(
"symbolic"
,
[
False
,
True
],
ids
=
str
)
@
pytest
.
mark
.
parametrize
(
"axis"
,
[
0
,
1
],
ids
=
str
)
@
pytest
.
mark
.
isolated_distributed
def
test_all_gather
(
shape
,
symbolic
,
axis
):
@
dist
.
launcher
(
n_gpus
=
2
)
def
worker
(
data
,
expect
):
rank
=
dist
.
get_rank
()
inp
=
tensor
(
data
[
rank
])
def
func
():
output
=
all_gather
(
inp
,
axis
=
axis
)
return
output
func
=
trace
(
symbolic
=
symbolic
)(
func
)
output
=
func
()
assert
np
.
allclose
(
output
.
numpy
(),
expect
[
rank
])
x
=
np
.
random
.
random_sample
(
shape
).
astype
(
"float32"
)
y
=
np
.
random
.
random_sample
(
shape
).
astype
(
"float32"
)
z
=
np
.
concatenate
((
x
,
y
),
axis
=
axis
)
data
=
(
x
,
y
)
expect
=
(
z
,
z
)
worker
(
data
,
expect
)
@
pytest
.
mark
.
require_ngpu
(
2
)
@
pytest
.
mark
.
parametrize
(
"shape,symbolic"
,
[((
2
,
4
,
6
,
8
),
False
),
((
2
,
4
,
6
,
8
),
True
)],
ids
=
str
)
@
pytest
.
mark
.
parametrize
(
"axis"
,
[
1
,
0
,
2
,
3
],
ids
=
str
)
@
pytest
.
mark
.
isolated_distributed
def
test_reduce_scatter_sum
(
shape
,
symbolic
,
axis
):
@
dist
.
launcher
(
n_gpus
=
2
)
def
worker
(
data
,
expect
):
rank
=
dist
.
get_rank
()
inp
=
tensor
(
data
[
rank
])
def
func
():
output
=
reduce_scatter_sum
(
inp
,
axis
=
axis
)
return
output
func
=
trace
(
symbolic
=
symbolic
)(
func
)
output
=
func
()
assert
np
.
allclose
(
output
.
numpy
(),
expect
[
rank
])
x
=
np
.
random
.
random_sample
(
shape
).
astype
(
"float32"
)
y
=
np
.
random
.
random_sample
(
shape
).
astype
(
"float32"
)
z
=
x
+
y
data
=
(
x
,
y
)
z
=
np
.
split
(
z
,
2
,
axis
=
axis
)
z
=
np
.
concatenate
(
z
,
axis
=
0
)
expect
=
(
z
[:
z
.
shape
[
0
]
//
2
],
z
[
z
.
shape
[
0
]
//
2
:])
worker
(
data
,
expect
)
@
pytest
.
mark
.
require_ngpu
(
2
)
@
pytest
.
mark
.
parametrize
(
"shape,symbolic"
,
[((
2
,
4
,
6
,
8
),
True
),
((
2
,
4
,
6
,
8
),
False
)],
ids
=
str
)
@
pytest
.
mark
.
parametrize
(
"axis"
,
[
1
,
0
,
2
,
3
],
ids
=
str
)
@
pytest
.
mark
.
isolated_distributed
def
test_scatter
(
shape
,
symbolic
,
axis
):
@
dist
.
launcher
(
n_gpus
=
2
)
def
worker
(
data
,
expect
):
rank
=
dist
.
get_rank
()
inp
=
tensor
(
data
[
rank
])
def
func
():
output
=
scatter
(
inp
,
axis
=
axis
)
return
output
func
=
trace
(
symbolic
=
symbolic
)(
func
)
output
=
func
()
assert
np
.
allclose
(
output
.
numpy
(),
expect
[
rank
])
x
=
np
.
random
.
random_sample
(
shape
).
astype
(
"float32"
)
y
=
x
+
1
data
=
(
x
,
y
)
_x
=
np
.
split
(
x
,
2
,
axis
=
axis
)
_x
=
np
.
concatenate
(
_x
,
axis
=
0
)
expect
=
(
_x
[:
_x
.
shape
[
0
]
//
2
],
_x
[
_x
.
shape
[
0
]
//
2
:])
worker
(
data
,
expect
)
@
pytest
.
mark
.
require_ngpu
(
2
)
@
pytest
.
mark
.
parametrize
(
"shape"
,
[(
2
,
4
,
6
,
8
)],
ids
=
str
)
@
pytest
.
mark
.
parametrize
(
"symbolic"
,
[
False
,
True
],
ids
=
str
)
@
pytest
.
mark
.
parametrize
(
"split_axis,concat_axis"
,
[(
0
,
1
),
(
1
,
0
),
(
2
,
0
),
(
0
,
2
),
(
2
,
3
)],
ids
=
str
)
@
pytest
.
mark
.
isolated_distributed
def
test_all_to_all
(
shape
,
symbolic
,
split_axis
,
concat_axis
):
@
dist
.
launcher
(
n_gpus
=
2
)
def
worker
(
data
):
rank
=
dist
.
get_rank
()
inp
=
tensor
(
data
[
rank
])
def
func
():
all_to_all_output
=
all_to_all
(
inp
,
split_axis
=
split_axis
,
concat_axis
=
concat_axis
)
gather_C
=
gather
(
inp
,
axis
=
concat_axis
)
gather_B
=
gather
(
all_to_all_output
,
axis
=
split_axis
)
if
rank
==
0
:
return
gather_B
,
gather_C
return
all_to_all_output
func
=
trace
(
symbolic
=
symbolic
)(
func
)
ret
=
func
()
if
rank
==
0
:
assert
np
.
allclose
(
ret
[
0
],
ret
[
1
])
x
=
np
.
random
.
random_sample
(
shape
).
astype
(
"float32"
)
y
=
np
.
random
.
random_sample
(
shape
).
astype
(
"float32"
)
data
=
(
x
,
y
)
worker
(
data
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录