Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
02df634d
MegEngine
项目概览
MegEngine 天元
/
MegEngine
大约 1 年 前同步成功
通知
399
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
02df634d
编写于
2月 03, 2021
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(mge/quantization): set ``q_dict`` as an instance property
GitOrigin-RevId: 2f32008aadd9d0302285fda8667f71cbfb9552b4
上级
193e77d4
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
93 addition
and
56 deletion
+93
-56
imperative/python/megengine/quantization/observer.py
imperative/python/megengine/quantization/observer.py
+1
-1
imperative/python/megengine/tensor.py
imperative/python/megengine/tensor.py
+8
-2
imperative/python/test/unit/core/test_serialization.py
imperative/python/test/unit/core/test_serialization.py
+9
-5
imperative/python/test/unit/functional/test_tensor.py
imperative/python/test/unit/functional/test_tensor.py
+16
-0
imperative/python/test/unit/module/test_module_tensor.py
imperative/python/test/unit/module/test_module_tensor.py
+1
-0
imperative/python/test/unit/quantization/test_module.py
imperative/python/test/unit/quantization/test_module.py
+47
-36
imperative/python/test/unit/quantization/test_quantize.py
imperative/python/test/unit/quantization/test_quantize.py
+11
-12
未找到文件。
imperative/python/megengine/quantization/observer.py
浏览文件 @
02df634d
...
@@ -467,7 +467,7 @@ class PassiveObserver(Observer):
...
@@ -467,7 +467,7 @@ class PassiveObserver(Observer):
@
scale
.
setter
@
scale
.
setter
def
scale
(
self
,
value
):
def
scale
(
self
,
value
):
assert
value
>
0
assert
value
>
0
self
.
q_dict
[
"scale"
]
.
set_value
(
value
)
self
.
q_dict
[
"scale"
]
[...]
=
Tensor
(
value
)
def
get_qparams
(
self
):
def
get_qparams
(
self
):
return
self
.
q_dict
return
self
.
q_dict
...
...
imperative/python/megengine/tensor.py
浏览文件 @
02df634d
...
@@ -25,7 +25,7 @@ from .utils.deprecation import deprecated
...
@@ -25,7 +25,7 @@ from .utils.deprecation import deprecated
class
Tensor
(
_Tensor
,
ArrayMethodMixin
):
class
Tensor
(
_Tensor
,
ArrayMethodMixin
):
grad
=
None
grad
=
None
dmap_callback
=
None
dmap_callback
=
None
q_dict
=
{
"mode"
:
None
,
"scale"
:
None
,
"zero_point"
:
None
}
_q_dict
=
None
def
__new__
(
cls
,
data
,
dtype
=
None
,
device
=
None
,
is_const
=
False
,
no_cache
=
False
):
def
__new__
(
cls
,
data
,
dtype
=
None
,
device
=
None
,
is_const
=
False
,
no_cache
=
False
):
if
device
is
None
:
if
device
is
None
:
...
@@ -70,6 +70,12 @@ class Tensor(_Tensor, ArrayMethodMixin):
...
@@ -70,6 +70,12 @@ class Tensor(_Tensor, ArrayMethodMixin):
def
dtype
(
self
)
->
np
.
dtype
:
def
dtype
(
self
)
->
np
.
dtype
:
return
super
().
dtype
return
super
().
dtype
@
property
def
q_dict
(
self
):
if
self
.
_q_dict
is
None
:
self
.
_q_dict
=
{
"mode"
:
None
,
"scale"
:
None
,
"zero_point"
:
None
}
return
self
.
_q_dict
def
numpy
(
self
)
->
np
.
ndarray
:
def
numpy
(
self
)
->
np
.
ndarray
:
return
super
().
numpy
()
return
super
().
numpy
()
...
@@ -135,7 +141,7 @@ class Tensor(_Tensor, ArrayMethodMixin):
...
@@ -135,7 +141,7 @@ class Tensor(_Tensor, ArrayMethodMixin):
return
state
return
state
def
__setstate__
(
self
,
state
):
def
__setstate__
(
self
,
state
):
self
.
q_dict
=
state
.
pop
(
"qdict"
)
self
.
_
q_dict
=
state
.
pop
(
"qdict"
)
tensor
=
Tensor
tensor
=
Tensor
...
...
imperative/python/test/unit/core/test_serialization.py
浏览文件 @
02df634d
...
@@ -16,11 +16,6 @@ from megengine import Parameter, Tensor
...
@@ -16,11 +16,6 @@ from megengine import Parameter, Tensor
def
test_tensor_serialization
():
def
test_tensor_serialization
():
def
tensor_eq
(
a
,
b
):
assert
a
.
dtype
==
b
.
dtype
assert
a
.
device
==
b
.
device
np
.
testing
.
assert_equal
(
a
.
numpy
(),
b
.
numpy
())
with
TemporaryFile
()
as
f
:
with
TemporaryFile
()
as
f
:
data
=
np
.
random
.
randint
(
low
=
0
,
high
=
7
,
size
=
[
233
])
data
=
np
.
random
.
randint
(
low
=
0
,
high
=
7
,
size
=
[
233
])
a
=
Tensor
(
data
,
device
=
"xpux"
,
dtype
=
np
.
int32
)
a
=
Tensor
(
data
,
device
=
"xpux"
,
dtype
=
np
.
int32
)
...
@@ -67,3 +62,12 @@ def test_tensor_serialization():
...
@@ -67,3 +62,12 @@ def test_tensor_serialization():
assert
"cpu0"
in
str
(
b
.
device
)
assert
"cpu0"
in
str
(
b
.
device
)
np
.
testing
.
assert_equal
(
a
.
numpy
(),
b
.
numpy
())
np
.
testing
.
assert_equal
(
a
.
numpy
(),
b
.
numpy
())
mge
.
set_default_device
(
device_org
)
mge
.
set_default_device
(
device_org
)
with
TemporaryFile
()
as
f
:
a
=
Tensor
(
0
)
a
.
q_dict
[
"scale"
]
=
Tensor
(
1.0
)
pickle
.
dump
(
a
,
f
)
f
.
seek
(
0
)
b
=
pickle
.
load
(
f
)
assert
isinstance
(
b
.
q_dict
[
"scale"
],
Tensor
)
np
.
testing
.
assert_equal
(
b
.
q_dict
[
"scale"
].
numpy
(),
1.0
)
imperative/python/test/unit/functional/test_tensor.py
浏览文件 @
02df634d
...
@@ -379,3 +379,19 @@ def test_copy_d2h():
...
@@ -379,3 +379,19 @@ def test_copy_d2h():
def
test_copy_d2d
():
def
test_copy_d2d
():
copy_test
(
"gpu0"
,
"gpu1"
)
copy_test
(
"gpu0"
,
"gpu1"
)
copy_test
(
"gpu0:0"
,
"gpu0:1"
)
copy_test
(
"gpu0:0"
,
"gpu0:1"
)
def
test_q_dict
():
x
=
tensor
(
1
)
assert
x
.
q_dict
[
"scale"
]
is
None
x
.
q_dict
[
"scale"
]
=
tensor
(
1.0
)
y
=
tensor
(
1
)
assert
y
.
q_dict
[
"scale"
]
is
None
y
.
q_dict
[
"scale"
]
=
tensor
(
2.0
)
assert
x
.
q_dict
[
"scale"
].
numpy
()
==
1.0
assert
y
.
q_dict
[
"scale"
].
numpy
()
==
2.0
z
=
x
+
y
assert
z
.
q_dict
[
"scale"
]
is
None
imperative/python/test/unit/module/test_module_tensor.py
浏览文件 @
02df634d
...
@@ -17,6 +17,7 @@ from megengine import Parameter, Tensor
...
@@ -17,6 +17,7 @@ from megengine import Parameter, Tensor
from
megengine.module
import
Conv2d
from
megengine.module
import
Conv2d
# TODO: delete this test after deleting set_value
def
test_set_value
():
def
test_set_value
():
v0
=
np
.
random
.
random
((
2
,
3
)).
astype
(
np
.
float32
)
v0
=
np
.
random
.
random
((
2
,
3
)).
astype
(
np
.
float32
)
param
=
Parameter
(
v0
)
param
=
Parameter
(
v0
)
...
...
imperative/python/test/unit/quantization/test_module.py
浏览文件 @
02df634d
from
functools
import
partial
import
numpy
as
np
import
numpy
as
np
import
pytest
import
pytest
...
@@ -6,17 +8,21 @@ import megengine.functional as F
...
@@ -6,17 +8,21 @@ import megengine.functional as F
import
megengine.module
as
Float
import
megengine.module
as
Float
import
megengine.module.qat
as
QAT
import
megengine.module.qat
as
QAT
import
megengine.module.quantized
as
Q
import
megengine.module.quantized
as
Q
from
megengine
import
Parameter
,
Tensor
from
megengine.core.tensor
import
dtype
from
megengine.core.tensor
import
dtype
from
megengine.quantization
import
min_max_fakequant_qc
onfig
from
megengine.quantization
import
FakeQuantize
,
MinMaxObserver
,
QC
onfig
from
megengine.quantization.quantize
import
(
from
megengine.quantization.quantize
import
(
disable_fake_quant
,
disable_fake_quant
,
disable_observer
,
disable_observer
,
propagate_qconfig
,
propagate_qconfig
,
)
)
"""
min_max_fakequant_qconfig
=
QConfig
(
Calculate testing scales based on ``min_max_fakequant_qconfig``
weight_observer
=
partial
(
MinMaxObserver
,
dtype
=
"qint8"
,
narrow_range
=
True
),
"""
act_observer
=
partial
(
MinMaxObserver
,
dtype
=
"qint8"
,
narrow_range
=
False
),
weight_fake_quant
=
partial
(
FakeQuantize
,
dtype
=
"qint8"
,
narrow_range
=
True
),
act_fake_quant
=
partial
(
FakeQuantize
,
dtype
=
"qint8"
,
narrow_range
=
False
),
)
inp_scale
=
np
.
float32
(
np
.
random
.
rand
()
+
1
)
inp_scale
=
np
.
float32
(
np
.
random
.
rand
()
+
1
)
...
@@ -31,21 +37,26 @@ def quant(x, scale):
...
@@ -31,21 +37,26 @@ def quant(x, scale):
return
x
.
astype
(
inp_dtype
)
return
x
.
astype
(
inp_dtype
)
def
fake_quant
(
x
,
scale
):
def
fake_quant
(
x
,
scale
,
qmin
,
qmax
):
x
=
x
/
scale
x
=
x
/
scale
x
=
F
.
round
(
x
)
x
=
F
.
round
(
x
)
x
=
F
.
clip
(
x
,
-
128
,
127
)
x
=
F
.
clip
(
x
,
qmin
,
qmax
)
x
=
x
*
scale
x
=
x
*
scale
return
x
return
x
fake_quant_act
=
partial
(
fake_quant
,
qmin
=-
128
,
qmax
=
127
)
fake_quant_weight
=
partial
(
fake_quant
,
qmin
=-
127
,
qmax
=
127
)
fake_quant_bias
=
partial
(
fake_quant
,
qmin
=-
(
2
**
31
),
qmax
=
2
**
31
-
1
)
def
init_qat_net
(
net
):
def
init_qat_net
(
net
):
if
net
.
with_weight
:
if
net
.
with_weight
:
net
.
weight_observer
.
min_val
.
set_value
(
min_val
[
0
])
net
.
weight_observer
.
min_val
[...]
=
Tensor
(
min_val
[
0
])
net
.
weight_observer
.
max_val
.
set_value
(
max_val
[
0
])
net
.
weight_observer
.
max_val
[...]
=
Tensor
(
max_val
[
0
])
if
net
.
with_act
:
if
net
.
with_act
:
net
.
act_observer
.
min_val
.
set_value
(
min_val
[
1
])
net
.
act_observer
.
min_val
[...]
=
Tensor
(
min_val
[
1
])
net
.
act_observer
.
max_val
.
set_value
(
max_val
[
1
])
net
.
act_observer
.
max_val
[...]
=
Tensor
(
max_val
[
1
])
def
test_quant_stub
():
def
test_quant_stub
():
...
@@ -71,7 +82,7 @@ def test_quant_stub():
...
@@ -71,7 +82,7 @@ def test_quant_stub():
normal
=
normal_net
(
x
)
normal
=
normal_net
(
x
)
qat_without_fakequant
=
qat_from_float
(
x
)
qat_without_fakequant
=
qat_from_float
(
x
)
fake_quant_normal
=
fake_quant
(
normal_net
(
x
),
act_scale
)
fake_quant_normal
=
fake_quant
_act
(
normal_net
(
x
),
act_scale
)
qat
=
qat_net
(
x
)
qat
=
qat_net
(
x
)
q
=
q_net
(
x
).
numpy
()
*
act_scale
q
=
q_net
(
x
).
numpy
()
*
act_scale
np
.
testing
.
assert_allclose
(
qat_without_fakequant
,
normal
)
np
.
testing
.
assert_allclose
(
qat_without_fakequant
,
normal
)
...
@@ -99,7 +110,7 @@ def test_dequant_stub():
...
@@ -99,7 +110,7 @@ def test_dequant_stub():
q_net
.
eval
()
q_net
.
eval
()
x
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
))
x
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
))
x
=
fake_quant
(
x
,
inp_scale
)
x
=
fake_quant
_act
(
x
,
inp_scale
)
x
.
q_dict
[
"scale"
]
=
inp_scale
x
.
q_dict
[
"scale"
]
=
inp_scale
normal
=
normal_net
(
x
)
normal
=
normal_net
(
x
)
...
@@ -134,12 +145,12 @@ def test_elemwise(kind):
...
@@ -134,12 +145,12 @@ def test_elemwise(kind):
x1_scale
=
np
.
float32
(
np
.
random
.
rand
()
+
1
)
x1_scale
=
np
.
float32
(
np
.
random
.
rand
()
+
1
)
x1
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
))
x1
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
))
x1
=
fake_quant
(
x1
,
x1_scale
)
x1
=
fake_quant
_act
(
x1
,
x1_scale
)
x1
.
q_dict
[
"scale"
]
=
x1_scale
x1
.
q_dict
[
"scale"
]
=
x1_scale
x2_scale
=
np
.
float32
(
np
.
random
.
rand
()
+
1
)
x2_scale
=
np
.
float32
(
np
.
random
.
rand
()
+
1
)
x2
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
))
x2
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
))
x2
=
fake_quant
(
x2
,
x2_scale
)
x2
=
fake_quant
_act
(
x2
,
x2_scale
)
x2
.
q_dict
[
"scale"
]
=
x2_scale
x2
.
q_dict
[
"scale"
]
=
x2_scale
x1_int8
=
quant
(
x1
,
x1_scale
)
x1_int8
=
quant
(
x1
,
x1_scale
)
...
@@ -149,13 +160,13 @@ def test_elemwise(kind):
...
@@ -149,13 +160,13 @@ def test_elemwise(kind):
if
kind
in
(
"ADD"
,
"MUL"
,
"FUSE_ADD_RELU"
):
if
kind
in
(
"ADD"
,
"MUL"
,
"FUSE_ADD_RELU"
):
normal
=
normal_net
(
x1
,
x2
)
normal
=
normal_net
(
x1
,
x2
)
qat_without_fakequant
=
qat_from_float
(
x1
,
x2
)
qat_without_fakequant
=
qat_from_float
(
x1
,
x2
)
fake_quant_normal
=
fake_quant
(
normal_net
(
x1
,
x2
),
act_scale
)
fake_quant_normal
=
fake_quant
_act
(
normal_net
(
x1
,
x2
),
act_scale
)
qat
=
qat_net
(
x1
,
x2
)
qat
=
qat_net
(
x1
,
x2
)
q
=
q_net
(
x1_int8
,
x2_int8
).
numpy
()
*
act_scale
q
=
q_net
(
x1_int8
,
x2_int8
).
numpy
()
*
act_scale
else
:
else
:
normal
=
normal_net
(
x1
)
normal
=
normal_net
(
x1
)
qat_without_fakequant
=
qat_from_float
(
x1
)
qat_without_fakequant
=
qat_from_float
(
x1
)
fake_quant_normal
=
fake_quant
(
normal_net
(
x1
),
act_scale
)
fake_quant_normal
=
fake_quant
_act
(
normal_net
(
x1
),
act_scale
)
qat
=
qat_net
(
x1
)
qat
=
qat_net
(
x1
)
q
=
q_net
(
x1_int8
).
numpy
()
*
act_scale
q
=
q_net
(
x1_int8
).
numpy
()
*
act_scale
np
.
testing
.
assert_allclose
(
qat_without_fakequant
,
normal
)
np
.
testing
.
assert_allclose
(
qat_without_fakequant
,
normal
)
...
@@ -175,17 +186,17 @@ def test_linear():
...
@@ -175,17 +186,17 @@ def test_linear():
init_qat_net
(
qat_net
)
init_qat_net
(
qat_net
)
x
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
))
x
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
))
x
=
fake_quant
(
x
,
inp_scale
)
x
=
fake_quant
_act
(
x
,
inp_scale
)
x
.
q_dict
[
"scale"
]
=
inp_scale
x
.
q_dict
[
"scale"
]
=
inp_scale
x_int8
=
quant
(
x
,
inp_scale
)
x_int8
=
quant
(
x
,
inp_scale
)
weight
=
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
)
weight
=
np
.
random
.
normal
(
size
=
(
3
,
3
)).
astype
(
"float32"
)
bias
=
np
.
random
.
normal
(
size
=
(
3
,)).
astype
(
"float32"
)
bias
=
np
.
random
.
normal
(
size
=
(
3
,)).
astype
(
"float32"
)
normal_net
.
weight
.
set_value
(
fake_quant
(
weight
,
weight_scale
)
)
normal_net
.
weight
[...]
=
fake_quant_weight
(
weight
,
weight_scale
)
normal_net
.
bias
.
set_value
(
fake_quant
(
bias
,
inp_scale
*
weight_scale
)
)
normal_net
.
bias
[...]
=
fake_quant_bias
(
bias
,
inp_scale
*
weight_scale
)
qat_net
.
weight
.
set_value
(
weight
)
qat_net
.
weight
[...]
=
Parameter
(
weight
)
qat_net
.
bias
.
set_value
(
bias
)
qat_net
.
bias
[...]
=
Parameter
(
bias
)
qat_from_float
=
QAT
.
Linear
.
from_float_module
(
normal_net
)
qat_from_float
=
QAT
.
Linear
.
from_float_module
(
normal_net
)
qat_from_float
.
eval
()
qat_from_float
.
eval
()
...
@@ -197,11 +208,11 @@ def test_linear():
...
@@ -197,11 +208,11 @@ def test_linear():
normal
=
normal_net
(
x
)
normal
=
normal_net
(
x
)
qat_without_fakequant
=
qat_from_float
(
x
)
qat_without_fakequant
=
qat_from_float
(
x
)
fake_quant_normal
=
fake_quant
(
normal_net
(
x
),
act_scale
)
fake_quant_normal
=
fake_quant
_act
(
normal_net
(
x
),
act_scale
)
qat
=
qat_net
(
x
)
qat
=
qat_net
(
x
)
q
=
q_net
(
x_int8
).
numpy
()
*
act_scale
q
=
q_net
(
x_int8
).
numpy
()
*
act_scale
np
.
testing
.
assert_allclose
(
qat_without_fakequant
,
normal
)
np
.
testing
.
assert_allclose
(
qat_without_fakequant
,
normal
)
np
.
testing
.
assert_allclose
(
qat
,
fake_quant_normal
)
np
.
testing
.
assert_allclose
(
qat
,
fake_quant_normal
.
numpy
()
)
np
.
testing
.
assert_allclose
(
q
,
fake_quant_normal
.
numpy
())
np
.
testing
.
assert_allclose
(
q
,
fake_quant_normal
.
numpy
())
...
@@ -218,7 +229,7 @@ def test_conv(module):
...
@@ -218,7 +229,7 @@ def test_conv(module):
init_qat_net
(
qat_net
)
init_qat_net
(
qat_net
)
x
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
1
,
3
,
3
,
3
)).
astype
(
"float32"
))
x
=
mge
.
tensor
(
np
.
random
.
normal
(
size
=
(
1
,
3
,
3
,
3
)).
astype
(
"float32"
))
x
=
fake_quant
(
x
,
inp_scale
)
x
=
fake_quant
_act
(
x
,
inp_scale
)
x
.
q_dict
[
"scale"
]
=
inp_scale
x
.
q_dict
[
"scale"
]
=
inp_scale
x_int8
=
quant
(
x
,
inp_scale
)
x_int8
=
quant
(
x
,
inp_scale
)
...
@@ -226,15 +237,15 @@ def test_conv(module):
...
@@ -226,15 +237,15 @@ def test_conv(module):
weight
=
np
.
random
.
normal
(
size
=
(
3
,
3
,
3
,
3
)).
astype
(
"float32"
)
weight
=
np
.
random
.
normal
(
size
=
(
3
,
3
,
3
,
3
)).
astype
(
"float32"
)
bias
=
np
.
random
.
normal
(
size
=
(
1
,
3
,
1
,
1
)).
astype
(
"float32"
)
bias
=
np
.
random
.
normal
(
size
=
(
1
,
3
,
1
,
1
)).
astype
(
"float32"
)
if
module
in
(
"ConvBn2d"
,
"ConvBnRelu2d"
):
if
module
in
(
"ConvBn2d"
,
"ConvBnRelu2d"
):
normal_net
.
conv
.
weight
.
set_value
(
fake_quant
(
weight
,
weight_scale
)
)
normal_net
.
conv
.
weight
[...]
=
fake_quant_weight
(
weight
,
weight_scale
)
normal_net
.
conv
.
bias
.
set_value
(
fake_quant
(
bias
,
inp_scale
*
weight_scale
)
)
normal_net
.
conv
.
bias
[...]
=
fake_quant_bias
(
bias
,
inp_scale
*
weight_scale
)
qat_net
.
conv
.
weight
.
set_value
(
weight
)
qat_net
.
conv
.
weight
[...]
=
Parameter
(
weight
)
qat_net
.
conv
.
bias
.
set_value
(
bias
)
qat_net
.
conv
.
bias
[...]
=
Parameter
(
bias
)
else
:
else
:
normal_net
.
weight
.
set_value
(
fake_quant
(
weight
,
weight_scale
)
)
normal_net
.
weight
[...]
=
fake_quant_weight
(
weight
,
weight_scale
)
normal_net
.
bias
.
set_value
(
fake_quant
(
bias
,
inp_scale
*
weight_scale
)
)
normal_net
.
bias
[...]
=
fake_quant_bias
(
bias
,
inp_scale
*
weight_scale
)
qat_net
.
weight
.
set_value
(
weight
)
qat_net
.
weight
[...]
=
Parameter
(
weight
)
qat_net
.
bias
.
set_value
(
bias
)
qat_net
.
bias
[...]
=
Parameter
(
bias
)
qat_from_float
=
getattr
(
QAT
,
module
).
from_float_module
(
normal_net
)
qat_from_float
=
getattr
(
QAT
,
module
).
from_float_module
(
normal_net
)
qat_from_float
.
eval
()
qat_from_float
.
eval
()
...
@@ -246,9 +257,9 @@ def test_conv(module):
...
@@ -246,9 +257,9 @@ def test_conv(module):
normal
=
normal_net
(
x
)
normal
=
normal_net
(
x
)
qat_without_fakequant
=
qat_from_float
(
x
)
qat_without_fakequant
=
qat_from_float
(
x
)
fake_quant_normal
=
fake_quant
(
normal_net
(
x
),
act_scale
)
fake_quant_normal
=
fake_quant
_act
(
normal_net
(
x
),
act_scale
)
qat
=
qat_net
(
x
)
qat
=
qat_net
(
x
)
q
=
q_net
(
x_int8
).
numpy
()
*
act_scale
q
=
q_net
(
x_int8
).
numpy
()
*
act_scale
np
.
testing
.
assert_allclose
(
qat_without_fakequant
,
normal
,
atol
=
1e-
6
)
np
.
testing
.
assert_allclose
(
qat_without_fakequant
,
normal
,
atol
=
1e-
5
)
np
.
testing
.
assert_allclose
(
qat
,
fake_quant_normal
)
np
.
testing
.
assert_allclose
(
qat
,
fake_quant_normal
,
atol
=
act_scale
)
np
.
testing
.
assert_allclose
(
q
,
fake_quant_normal
.
numpy
())
np
.
testing
.
assert_allclose
(
q
,
fake_quant_normal
.
numpy
()
,
atol
=
act_scale
)
imperative/python/test/unit/quantization/test_quantize.py
浏览文件 @
02df634d
...
@@ -8,9 +8,8 @@
...
@@ -8,9 +8,8 @@
import
numpy
as
np
import
numpy
as
np
import
pytest
import
pytest
from
megengine
import
functional
from
megengine
import
Parameter
,
Tensor
from
megengine
import
module
as
Float
from
megengine
import
module
as
Float
from
megengine
import
tensor
from
megengine.module
import
qat
as
QAT
from
megengine.module
import
qat
as
QAT
from
megengine.module
import
quantized
as
Q
from
megengine.module
import
quantized
as
Q
from
megengine.quantization
import
(
from
megengine.quantization
import
(
...
@@ -40,7 +39,7 @@ class Net(Float.Module):
...
@@ -40,7 +39,7 @@ class Net(Float.Module):
self
.
quant
=
Float
.
QuantStub
()
self
.
quant
=
Float
.
QuantStub
()
self
.
linear
=
Float
.
Linear
(
3
,
3
)
self
.
linear
=
Float
.
Linear
(
3
,
3
)
self
.
dequant
=
Float
.
DequantStub
()
self
.
dequant
=
Float
.
DequantStub
()
self
.
linear
.
bias
.
set_value
(
np
.
random
.
rand
(
3
))
self
.
linear
.
bias
[...]
=
Parameter
(
np
.
random
.
rand
(
3
))
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x
=
self
.
quant
(
x
)
x
=
self
.
quant
(
x
)
...
@@ -55,7 +54,7 @@ class QATNet(Float.Module):
...
@@ -55,7 +54,7 @@ class QATNet(Float.Module):
self
.
quant
=
QAT
.
QuantStub
()
self
.
quant
=
QAT
.
QuantStub
()
self
.
linear
=
QAT
.
Linear
(
3
,
3
)
self
.
linear
=
QAT
.
Linear
(
3
,
3
)
self
.
dequant
=
QAT
.
DequantStub
()
self
.
dequant
=
QAT
.
DequantStub
()
self
.
linear
.
bias
.
set_value
(
np
.
random
.
rand
(
3
))
self
.
linear
.
bias
[...]
=
Parameter
(
np
.
random
.
rand
(
3
))
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x
=
self
.
quant
(
x
)
x
=
self
.
quant
(
x
)
...
@@ -90,12 +89,12 @@ def init_qat_net():
...
@@ -90,12 +89,12 @@ def init_qat_net():
propagate_qconfig
(
net
,
min_max_fakequant_qconfig
)
propagate_qconfig
(
net
,
min_max_fakequant_qconfig
)
min_val
=
np
.
random
.
randint
(
-
127
,
0
,
size
=
(
3
,))
min_val
=
np
.
random
.
randint
(
-
127
,
0
,
size
=
(
3
,))
max_val
=
np
.
random
.
randint
(
1
,
127
,
size
=
(
3
,))
max_val
=
np
.
random
.
randint
(
1
,
127
,
size
=
(
3
,))
net
.
quant
.
act_observer
.
min_val
.
set_value
(
min_val
[
0
])
net
.
quant
.
act_observer
.
min_val
[...]
=
Parameter
(
min_val
[
0
])
net
.
quant
.
act_observer
.
max_val
.
set_value
(
max_val
[
0
])
net
.
quant
.
act_observer
.
max_val
[...]
=
Parameter
(
max_val
[
0
])
net
.
linear
.
weight_observer
.
min_val
.
set_value
(
min_val
[
1
])
net
.
linear
.
weight_observer
.
min_val
[...]
=
Parameter
(
min_val
[
1
])
net
.
linear
.
weight_observer
.
max_val
.
set_value
(
max_val
[
1
])
net
.
linear
.
weight_observer
.
max_val
[...]
=
Parameter
(
max_val
[
1
])
net
.
linear
.
act_observer
.
min_val
.
set_value
(
min_val
[
2
])
net
.
linear
.
act_observer
.
min_val
[...]
=
Parameter
(
min_val
[
2
])
net
.
linear
.
act_observer
.
max_val
.
set_value
(
max_val
[
2
])
net
.
linear
.
act_observer
.
max_val
[...]
=
Parameter
(
max_val
[
2
])
return
net
return
net
...
@@ -144,7 +143,7 @@ def init_observer(module, data):
...
@@ -144,7 +143,7 @@ def init_observer(module, data):
def
test_enable_and_disable_all
():
def
test_enable_and_disable_all
():
x
=
t
ensor
(
np
.
random
.
randint
(
1
,
10
,
size
=
(
3
,
3
)).
astype
(
np
.
float32
))
x
=
T
ensor
(
np
.
random
.
randint
(
1
,
10
,
size
=
(
3
,
3
)).
astype
(
np
.
float32
))
net
=
Net
()
net
=
Net
()
y1
=
net
(
x
).
numpy
()
y1
=
net
(
x
).
numpy
()
net
=
quantize_qat
(
net
,
min_max_fakequant_qconfig
)
net
=
quantize_qat
(
net
,
min_max_fakequant_qconfig
)
...
@@ -180,7 +179,7 @@ def test_quantize():
...
@@ -180,7 +179,7 @@ def test_quantize():
def
test_apply_easy_quant
():
def
test_apply_easy_quant
():
qat_net
=
init_qat_net
()
qat_net
=
init_qat_net
()
data
=
t
ensor
(
np
.
random
.
rand
(
2
,
3
,
3
,
3
),
dtype
=
np
.
float32
)
data
=
T
ensor
(
np
.
random
.
rand
(
2
,
3
,
3
,
3
),
dtype
=
np
.
float32
)
eq_net
=
reset_qconfig
(
qat_net
,
passive_qconfig
,
inplace
=
False
)
eq_net
=
reset_qconfig
(
qat_net
,
passive_qconfig
,
inplace
=
False
)
apply_easy_quant
(
eq_net
,
data
,
0.9
,
1.1
,
10
)
apply_easy_quant
(
eq_net
,
data
,
0.9
,
1.1
,
10
)
assert
isinstance
(
eq_net
.
quant
.
act_observer
,
PassiveObserver
)
assert
isinstance
(
eq_net
.
quant
.
act_observer
,
PassiveObserver
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录