algos.cpp 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/**
 * \file dnn/src/arm_common/conv_bias/f16/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/arm_common/conv_bias/f16/algos.h"
#include "src/arm_common/conv_bias/direct/multi_thread_common.h"
#include "src/arm_common/conv_bias/f16/direct.h"
#include "src/arm_common/conv_bias/f16/do_conv_stride1.h"
#include "src/arm_common/conv_bias/f16/strategy.h"
#include "src/arm_common/conv_bias/img2col_helper.h"
#include "src/arm_common/conv_bias/postprocess_helper.h"
#include "src/common/opr_delegate.h"
#include "src/fallback/conv_bias/common.h"
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#include "midout.h"
MIDOUT_DECL(megdnn_arm_common_winograd_fp16)
using namespace megdnn;
using namespace arm_common;

/* ======================= AlgoFP16WinogradF23 ======================== */

bool ConvBiasImpl::AlgoFP16WinogradF23::usable(
        fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MEGDNN_MARK_USED_VAR(opr);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 0) {
        using Strategy = winograd::winograd_2x3_4x4_f16;
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
37 38 39
        auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
                                      strategy, m_tile_size, param)
                                      .get_matmul_kern_param(param);
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        return m_matmul_algo->usable(matmul_param) &&
               (opr->param().format == param::ConvBias::Format::NCHW ||
                (opr->param().format ==
                         param::ConvBias::Format::NCHW_WINOGRAD &&
                 opr->param().output_block_size == 2 &&
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::DEFAULT)) &&
               opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 3) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float16 &&
               param.filter_meta.icpg % 4 == 0 &&
               param.filter_meta.ocpg % 4 == 0;
    }
    MIDOUT_END();
    return false;
}

64 65 66 67
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23,
                                    winograd::winograd_2x3_4x4_f16,
                                    megdnn_arm_common_winograd_fp16,
                                    param::MatrixMul::Format::DEFAULT);
68 69 70 71 72 73 74 75 76 77 78

/* ======================= AlgoFP16WinogradF45 ======================== */

bool ConvBiasImpl::AlgoFP16WinogradF45::usable(
        fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MEGDNN_MARK_USED_VAR(opr);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 0) {
        using Strategy = winograd::winograd_4x5_1x1_f16;
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
79 80 81
        auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
                                      strategy, m_tile_size, param)
                                      .get_matmul_kern_param(param);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        return m_matmul_algo->usable(matmul_param) &&
               (opr->param().format == param::ConvBias::Format::NCHW ||
                (opr->param().format ==
                         param::ConvBias::Format::NCHW_WINOGRAD &&
                 opr->param().output_block_size == 4 &&
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::DEFAULT)) &&
               opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 5) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float16;
    }
    MIDOUT_END();
    return false;
}

104 105 106 107
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF45,
                                    winograd::winograd_4x5_1x1_f16,
                                    megdnn_arm_common_winograd_fp16,
                                    param::MatrixMul::Format::DEFAULT);
108 109 110 111 112 113 114 115 116 117 118

/* ======================= AlgoFP16WinogradF63 ======================== */

bool ConvBiasImpl::AlgoFP16WinogradF63::usable(
        fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MEGDNN_MARK_USED_VAR(opr);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 0) {
        using Strategy = winograd::winograd_6x3_1x1_f16;
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
119 120 121
        auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
                                      strategy, m_tile_size, param)
                                      .get_matmul_kern_param(param);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        return m_matmul_algo->usable(matmul_param) &&
               (opr->param().format == param::ConvBias::Format::NCHW ||
                (opr->param().format ==
                         param::ConvBias::Format::NCHW_WINOGRAD &&
                 opr->param().output_block_size == 6 &&
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::DEFAULT)) &&
               opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 3) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float16;
    }
    MIDOUT_END();
    return false;
}

144 145 146 147
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF63,
                                    winograd::winograd_6x3_1x1_f16,
                                    megdnn_arm_common_winograd_fp16,
                                    param::MatrixMul::Format::DEFAULT);
148 149 150 151 152 153 154 155 156 157 158 159

/* ======================= AlgoFP16WinogradF23_8x8 ======================== */

bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable(
        fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MEGDNN_MARK_USED_VAR(opr);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 3, 0) {
        if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0)
            return false;
        using Strategy = winograd::winograd_2x3_8x8_f16;
160
        using PackMode = fallback::MatrixMulImpl::AlgoBase::PackMode;
161 162 163 164
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
        auto&& matmul_param =
                megdnn::winograd::ConvBias<Strategy,
                                           param::MatrixMul::Format::MK8>(
165
                        strategy, m_tile_size, param)
166 167
                        .get_matmul_kern_param(param);
        return m_matmul_algo->usable(matmul_param) &&
168
               m_matmul_algo->packmode() == PackMode::NO_PACK &&
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
               (opr->param().format == param::ConvBias::Format::NCHW ||
                (opr->param().format ==
                         param::ConvBias::Format::NCHW_WINOGRAD &&
                 opr->param().output_block_size == 2 &&
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::MK8)) &&
               opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 3) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float16;
    }
    MIDOUT_END();
    return false;
}

190 191 192 193
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23_8x8,
                                    winograd::winograd_2x3_8x8_f16,
                                    megdnn_arm_common_winograd_fp16,
                                    param::MatrixMul::Format::MK8);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

/*========================from Convolution=============================*/

MIDOUT_DECL(megdnn_arm_common_conv_bias_fp16_kimpl)

bool ConvBiasImpl::AlgoF16Direct::usable(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
        AlgoSelectionStrategy algo_selection_strategy) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 0) {
        auto&& fm = param.filter_meta;
        auto FH = fm.spatial[0];
        auto SH = fm.stride[0], SW = fm.stride[1];
        // the condition ``param.isz[0]*param.isz[1] >= 8'' and
        // ``param.osz[0]*param.osz[1] >= 8'' comes from the fact that the
        // kernel may have access to up to 8 fp16 after the end of the memory
        // chunk.
        bool aviliable = fm.format == param::ConvBias::Format::NCHW &&
                         param.src_type.enumv() == DTypeEnum::Float16 &&
                         param.filter_type.enumv() == DTypeEnum::Float16 &&
                         param.dst_type.enumv() == DTypeEnum::Float16 &&
                         fm.spatial_ndim == 2 && fm.dilation[0] == 1 &&
                         fm.dilation[1] == 1 &&
                         param.isz[0] * param.isz[1] >= 8 &&
                         param.osz[0] * param.osz[1] >= 8 && FH <= 7 &&
                         SH == 1 && SW == 1;
        if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
            bool large_group = param.filter_meta.group >= param.nr_threads;
            aviliable &= (large_group == m_large_group);
        }
        return aviliable;
    }
    MIDOUT_END();
    return false;
}

size_t ConvBiasImpl::AlgoF16Direct::get_workspace(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) {
        auto wbundle =
                MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle(
                        param, m_large_group);
        return wbundle.total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto fm = param.filter_meta;
    size_t N = param.n;
    size_t IC = param.filter_meta.icpg;
    size_t OC = param.filter_meta.ocpg;
    size_t group = fm.group;
248
    WorkspaceBundle bundle =
249 250 251 252 253 254 255
            MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle(
                    param, m_large_group);
    SmallVector<NCBKern> ret_kerns;
    //! When group >= nr_threads, treat it as large_group, each thread process
    //! one group for better performance
    if (m_large_group) {
        //! Channel wise conv and big groups
256 257
        auto exec_one_group = [bundle](const NCBKernParam& kern_param,
                                        const NCBKernIndex& ncb_index) mutable {
258 259 260
            auto fm = kern_param.filter_meta;
            size_t IC = fm.icpg;
            size_t OC = fm.ocpg;
261
            bundle.set(kern_param.workspace_ptr);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            if (fm.should_flip) {
                for (size_t oc = 0; oc < OC; oc++) {
                    MultithreadDirectConvCommon<dt_float16, __fp16>::
                            weight_flip_kern(bundle, kern_param, ncb_index,
                                             {ncb_index.thread_id, 0, oc});
                }
            }
            for (size_t ic = 0; ic < IC; ic++) {
                MultithreadDirectConvCommon<dt_float16, __fp16>::
                        copy_padding_kern(bundle, kern_param, ncb_index,
                                          {ncb_index.thread_id, 0, ic});
            }
            for (size_t oc = 0; oc < OC; oc++) {
                MultithreadDirectConvCommon<dt_float16, __fp16>::do_conv_kern(
                        bundle, kern_param, ncb_index,
                        fp16::conv_bias::kern_direct_f16,
                        {ncb_index.thread_id, 0, oc});
            }
        };
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
    } else {
        if (fm.should_flip) {
            auto weight_flip = [bundle](const NCBKernParam& kern_param,
285 286
                                        const NCBKernIndex& ncb_index) mutable {
                bundle.set(kern_param.workspace_ptr);
287 288 289 290 291 292 293
                MultithreadDirectConvCommon<dt_float16, __fp16>::
                        weight_flip_kern(bundle, kern_param, ncb_index,
                                         ncb_index.ndrange_id);
            };
            ret_kerns.push_back({weight_flip, {group, 1_z, OC}});
        }
        auto copy_padding = [bundle](const NCBKernParam& kern_param,
294 295
                                     const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
296 297 298 299 300
            MultithreadDirectConvCommon<dt_float16, __fp16>::copy_padding_kern(
                    bundle, kern_param, ncb_index, ncb_index.ndrange_id);
        };
        ret_kerns.push_back({copy_padding, {group, N, IC}});
        auto do_conv = [bundle](const NCBKernParam& kern_param,
301 302
                                const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
            MultithreadDirectConvCommon<dt_float16, __fp16>::do_conv_kern(
                    bundle, kern_param, ncb_index,
                    fp16::conv_bias::kern_direct_f16, ncb_index.ndrange_id);
        };
        ret_kerns.push_back({do_conv, {group, N, OC}});
    }
    return ret_kerns;
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::dispatch_kerns(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) {
        return get_kimpls(param);
    }
    MIDOUT_END();
    return {};
}

/* ===================== stride-1 algo ===================== */

bool ConvBiasImpl::AlgoF16DirectStride1::usable(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
        AlgoSelectionStrategy algo_selection_strategy) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 0) {
        auto&& fm = param.filter_meta;
        auto FH = fm.spatial[0];
        bool aviliable =
                param.filter_meta.format == param::ConvBias::Format::NCHW &&
                param.src_type.enumv() == DTypeEnum::Float16 &&
                param.filter_type.enumv() == DTypeEnum::Float16 &&
                param.dst_type.enumv() == DTypeEnum::Float16 &&
                !fm.should_flip && fm.spatial_ndim == 2 &&
                fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
                fm.stride[0] == 1 && fm.stride[1] == 1 && FH == fm.spatial[1] &&
                (FH == 2 || FH == 3 || FH == 5);
        if (algo_selection_strategy ==
            ConvBiasImpl::AlgoSelectionStrategy::HEURISTIC) {
            bool large_group = param.filter_meta.group >= param.nr_threads;
            aviliable &= (large_group == m_large_group);
        }
        return aviliable;
    }
    MIDOUT_END();
    return false;
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF16DirectStride1::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto fm = param.filter_meta;
    auto FH = fm.spatial[0];
    size_t N = param.n;
    size_t IC = param.filter_meta.icpg;
    size_t OC = param.filter_meta.ocpg;
    size_t group = fm.group;
    using Func = std::function<void(const __fp16*, const __fp16*, __fp16*,
                                    size_t, size_t, size_t, size_t, size_t)>;
    Func conv_kern_function = nullptr;

#define SWITCH_KERN()                                                     \
    switch (FH) {                                                         \
        case 2:                                                           \
            conv_kern_function = fp16::conv_stride1::do_conv_2x2_stride1; \
            break;                                                        \
        case 3:                                                           \
            conv_kern_function = fp16::conv_stride1::do_conv_3x3_stride1; \
            break;                                                        \
        case 5:                                                           \
            conv_kern_function = fp16::conv_stride1::do_conv_5x5_stride1; \
            break;                                                        \
    }
    SWITCH_KERN();

376
    WorkspaceBundle bundle =
377 378 379 380 381 382 383
            MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle_stride(
                    param, m_large_group);
    SmallVector<NCBKern> ret_kerns;
    //! When group >= nr_threads, treat it as large_group, each thread process
    //! one group for better performance
    if (m_large_group) {
        //! Channel wise conv and big groups
384
        auto exec_one_group = [bundle, conv_kern_function](
385
                                      const NCBKernParam& kern_param,
386
                                      const NCBKernIndex& ncb_index) mutable {
387 388 389
            auto fm = kern_param.filter_meta;
            size_t IC = fm.icpg;
            size_t OC = fm.ocpg;
390
            bundle.set(kern_param.workspace_ptr);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
            for (size_t ic = 0; ic < IC; ic++) {
                MultithreadDirectConvCommon<dt_float16, __fp16>::
                        copy_padding_kern_stride(bundle, kern_param, ncb_index,
                                                 {ncb_index.thread_id, 0, ic});
            }
            for (size_t oc = 0; oc < OC; oc++) {
                MultithreadDirectConvCommon<dt_float16, __fp16>::
                        do_conv_kern_stride(bundle, kern_param, ncb_index,
                                            conv_kern_function,
                                            {ncb_index.thread_id, 0, oc});
            }
        };
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
    } else {
        auto copy_padding = [bundle](const NCBKernParam& kern_param,
406 407
                                     const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
408 409 410 411 412 413 414
            MultithreadDirectConvCommon<dt_float16, __fp16>::
                    copy_padding_kern_stride(bundle, kern_param, ncb_index,
                                             ncb_index.ndrange_id);
        };
        ret_kerns.push_back({copy_padding, {group, N, IC}});
        auto do_conv = [bundle, conv_kern_function](
                               const NCBKernParam& kern_param,
415 416
                               const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            MultithreadDirectConvCommon<dt_float16, __fp16>::
                    do_conv_kern_stride(bundle, kern_param, ncb_index,
                                        conv_kern_function,
                                        ncb_index.ndrange_id);
        };
        ret_kerns.push_back({do_conv, {group, N, OC}});
    }
    return ret_kerns;
}

size_t ConvBiasImpl::AlgoF16DirectStride1::get_workspace(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 1) {
        auto bundle = MultithreadDirectConvCommon<
                dt_float16, __fp16>::get_bundle_stride(param, m_large_group);
        return bundle.total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF16DirectStride1::dispatch_kerns(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 2) {
        return get_kimpls(param);
    }
    MIDOUT_END();
    return {};
}

#endif
// vim: syntax=cpp.doxygen