test_utils.py 6.1 KB
Newer Older
1
# -*- coding: utf-8 -*-
2
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
3
#
4 5 6 7 8
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

import functools

import numpy as np

from megenginelite import *


def require_cuda(func):
    """a decorator that disables a testcase if cuda is not enabled"""

    @functools.wraps(func)
    def wrapped(*args, **kwargs):
        if LiteGlobal.get_device_count(LiteDeviceType.LITE_CUDA):
            return func(*args, **kwargs)

    return wrapped


@require_cuda
def test_tensor_collect_batch():
    batch_tensor = TensorBatchCollector(
        [4, 8, 8], dtype=LiteDataType.LITE_INT, device_type=LiteDeviceType.LITE_CUDA
    )
    arr = np.ones([8, 8], "int32")
    for i in range(4):
        batch_tensor.collect(arr)
        arr += 1
    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 8
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(64):
            assert data[i][j // 8][j % 8] == i + 1


def test_tensor_collect_batch_cpu():
    batch_tensor = TensorBatchCollector(
        [4, 8, 8], dtype=LiteDataType.LITE_INT, device_type=LiteDeviceType.LITE_CPU
    )
    arr = np.ones([8, 8], "int32")
    for i in range(4):
        batch_tensor.collect(arr)
        arr += 1
    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 8
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(64):
            assert data[i][j // 8][j % 8] == i + 1


@require_cuda
def test_tensor_collect_batch_by_index():
    batch_tensor = TensorBatchCollector(
        [4, 8, 8], dtype=LiteDataType.LITE_INT, device_type=LiteDeviceType.LITE_CUDA
    )
    arr = np.ones([8, 8], "int32")
    arr += 1  # ==2
    batch_tensor.collect_id(arr, 1)
    arr -= 1  # ==1
    batch_tensor.collect_id(arr, 0)
    arr += 2  # ==3
    batch_tensor.collect_id(arr, 2)
    arr += 1  # ==4
    batch_tensor.collect_id(arr, 3)

    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 8
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(64):
            assert data[i][j // 8][j % 8] == i + 1


@require_cuda
def test_tensor_collect_batch_tensor():
    batch_tensor = TensorBatchCollector(
        [4, 6, 8], dtype=LiteDataType.LITE_INT, device_type=LiteDeviceType.LITE_CUDA
    )
    nparr = np.ones([6, 8], "int32")
    tensor = LiteTensor(LiteLayout([6, 8], LiteDataType.LITE_INT))
    for i in range(4):
        tensor.set_data_by_share(nparr)
        batch_tensor.collect(tensor)
        nparr += 1
    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 6
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(48):
            assert data[i][j // 8][j % 8] == i + 1


def test_tensor_collect_batch_tensor_cpu():
    batch_tensor = TensorBatchCollector(
        [4, 6, 8], dtype=LiteDataType.LITE_INT, device_type=LiteDeviceType.LITE_CPU
    )
    nparr = np.ones([6, 8], "int32")
    tensor = LiteTensor(LiteLayout([6, 8], LiteDataType.LITE_INT))
    for i in range(4):
        tensor.set_data_by_share(nparr)
        batch_tensor.collect(tensor)
        nparr += 1
    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 6
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(48):
            assert data[i][j // 8][j % 8] == i + 1


@require_cuda
def test_tensor_collect_batch_ctypes():
    batch_tensor = TensorBatchCollector(
        [4, 6, 8], dtype=LiteDataType.LITE_INT, device_type=LiteDeviceType.LITE_CUDA
    )
    nparr = np.ones([6, 8], "int32")
    for i in range(4):
        in_data = nparr.ctypes.data
        batch_tensor.collect_by_ctypes(in_data, nparr.nbytes)
        nparr += 1
    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 6
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(48):
            assert data[i][j // 8][j % 8] == i + 1


def test_tensor_collect_batch_ctypes_cpu():
    batch_tensor = TensorBatchCollector(
        [4, 6, 8], dtype=LiteDataType.LITE_INT, device_type=LiteDeviceType.LITE_CPU
    )
    nparr = np.ones([6, 8], "int32")
    for i in range(4):
        in_data = nparr.ctypes.data
        batch_tensor.collect_by_ctypes(in_data, nparr.nbytes)
        nparr += 1
    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 6
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(48):
            assert data[i][j // 8][j % 8] == i + 1


@require_cuda
def test_tensor_collect_batch_device_tensor():
    all_tensor = LiteTensor(
        LiteLayout([4, 6, 8], dtype=LiteDataType.LITE_INT),
        device_type=LiteDeviceType.LITE_CUDA,
    )
    batch_tensor = TensorBatchCollector([4, 6, 8], tensor=all_tensor)
    nparr = np.ones([6, 8], "int32")
    tensor = LiteTensor(LiteLayout([6, 8], LiteDataType.LITE_INT))
    for i in range(4):
        tensor.set_data_by_share(nparr)
        batch_tensor.collect(tensor)
        nparr += 1
    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 6
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(48):
            assert data[i][j // 8][j % 8] == i + 1


@require_cuda
def test_tensor_collect_batch_device_numpy():
    all_tensor = LiteTensor(
        LiteLayout([4, 6, 8], dtype=LiteDataType.LITE_INT),
        device_type=LiteDeviceType.LITE_CUDA,
    )
    batch_tensor = TensorBatchCollector([4, 6, 8], tensor=all_tensor)
    nparr = np.ones([6, 8], "int32")
    for i in range(4):
        batch_tensor.collect(nparr)
        nparr += 1
    data = batch_tensor.to_numpy()
    assert data.shape[0] == 4
    assert data.shape[1] == 6
    assert data.shape[2] == 8
    for i in range(4):
        for j in range(48):
            assert data[i][j // 8][j % 8] == i + 1