user_cryption.cpp 4.1 KB
Newer Older
1 2
/**
 * \file example/user_cryption.cpp
3
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
 */

#include "../example.h"
#if LITE_BUILD_WITH_MGE

using namespace lite;
using namespace example;

namespace {
std::vector<uint8_t> decrypt_model(const void* model_mem, size_t size,
                                   const std::vector<uint8_t>& key) {
    if (key.size() == 1) {
        std::vector<uint8_t> ret(size, 0);
        const uint8_t* ptr = static_cast<const uint8_t*>(model_mem);
        uint8_t key_data = key[0];
        for (size_t i = 0; i < size; i++) {
            ret[i] = ptr[i] ^ key_data ^ key_data;
        }
        return ret;
    } else {
        printf("the user define decrypt method key length is wrong.\n");
        return {};
    }
}
}  // namespace

bool lite::example::register_cryption_method(const Args& args) {
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;

    //! register the decryption method
    register_decryption_and_key("just_for_test", decrypt_model, {15});

    lite::Config config;
    config.bare_model_cryption_name = "just_for_test";
    //! create and load the network
    std::shared_ptr<Network> network = std::make_shared<Network>(config);
    network->load_model(network_path);

    //! set input data to input tensor
    std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
    auto layout = input_tensor->get_layout();

    auto src_tensor = parse_npy(input_path);
    void* src = src_tensor->get_memory_ptr();
    input_tensor->reset(src, layout);

    //! forward
    network->forward();
    network->wait();

    //! get the output data or read tensor set in network_in
    std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
    void* out_data = output_tensor->get_memory_ptr();
    size_t out_length = output_tensor->get_tensor_total_size_in_byte() /
                        output_tensor->get_layout().get_elem_size();
    float max = -1.0f;
    float sum = 0.0f;
    for (size_t i = 0; i < out_length; i++) {
        float data = static_cast<float*>(out_data)[i];
        sum += data;
        if (max < data)
            max = data;
    }
    printf("max=%e, sum=%e\n", max, sum);
    return true;
}

bool lite::example::update_cryption_key(const Args& args) {
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;

    //! update the decryption method key
    std::vector<uint8_t> key(32, 0);
    for (size_t i = 0; i < 32; i++) {
        key[i] = 31 - i;
    }
    update_decryption_or_key("AES_default", nullptr, key);

    lite::Config config;
    config.bare_model_cryption_name = "AES_default";
    //! create and load the network
    std::shared_ptr<Network> network = std::make_shared<Network>(config);
    network->load_model(network_path);

    //! set input data to input tensor
    std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
    auto layout = input_tensor->get_layout();

    auto src_tensor = parse_npy(input_path);
    void* src = src_tensor->get_memory_ptr();
    input_tensor->reset(src, layout);

    //! forward
    network->forward();
    network->wait();

    //! get the output data or read tensor set in network_in
    std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
    void* out_data = output_tensor->get_memory_ptr();
    size_t out_length = output_tensor->get_tensor_total_size_in_byte() /
                        output_tensor->get_layout().get_elem_size();
    float max = -1.0f;
    float sum = 0.0f;
    for (size_t i = 0; i < out_length; i++) {
        float data = static_cast<float*>(out_data)[i];
        sum += data;
        if (max < data)
            max = data;
    }
    printf("max=%e, sum=%e\n", max, sum);
    return true;
}
#endif
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}