basic.cpp 12.5 KB
Newer Older
1 2
/**
 * \file example/basic.cpp
3
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
 */

#include <thread>
#include "../example.h"
#if LITE_BUILD_WITH_MGE
#include <cstdio>

#include "misc.h"

using namespace lite;
using namespace example;

namespace {
void output_info(std::shared_ptr<Network> network, size_t output_size) {
    for (size_t index = 0; index < output_size; index++) {
        printf("output[%zu] names %s \n", index,
               network->get_all_output_name()[index].c_str());
        std::shared_ptr<Tensor> output_tensor =
                network->get_output_tensor(index);
        size_t ndim = output_tensor->get_layout().ndim;
        for (size_t i = 0; i < ndim; i++) {
            printf("output[%zu] tensor.shape[%zu] %zu \n", index, i,
                   output_tensor->get_layout().shapes[i]);
        }
    }
}

void output_data_info(std::shared_ptr<Network> network, size_t output_size) {
    for (size_t index = 0; index < output_size; index++) {
        auto output_tensor = network->get_output_tensor(index);
        void* out_data = output_tensor->get_memory_ptr();
        size_t out_length = output_tensor->get_tensor_total_size_in_byte() /
                            output_tensor->get_layout().get_elem_size();
        LiteDataType dtype = output_tensor->get_layout().data_type;
        float max = -1000.0f;
        float min = 1000.0f;
        int max_idx = 0;
        int min_idx = 0;
        float sum = 0.0f;
#define cb(_dtype, _real_dtype)                                        \
    case LiteDataType::_dtype: {                                       \
        for (size_t i = 0; i < out_length; i++) {                      \
            _real_dtype data = static_cast<_real_dtype*>(out_data)[i]; \
            sum += data;                                               \
            if (max < data) {                                          \
                max = data;                                            \
                max_idx = i;                                           \
            }                                                          \
            if (min > data) {                                          \
                min = data;                                            \
                min_idx = i;                                           \
            }                                                          \
        }                                                              \
    } break;

        switch (dtype) {
            cb(LITE_FLOAT, float);
            cb(LITE_INT, int);
            cb(LITE_INT8, int8_t);
            cb(LITE_UINT8, uint8_t);
            default:
                printf("unknow datatype");
        }
        printf("output_length %zu index %zu  max=%e , max idx=%d, min=%e , min_idx=%d, sum=%e\n",
               out_length, index, max, max_idx, min, min_idx, sum);
    }
#undef cb
}
}  // namespace

#if LITE_WITH_CUDA
bool lite::example::load_from_path_run_cuda(const Args& args) {
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;
    set_log_level(LiteLogLevel::DEBUG);
    //! config the network running in CUDA device
    lite::Config config{false, -1, LiteDeviceType::LITE_CUDA};
    //! set NetworkIO
    NetworkIO network_io;
    std::string input_name = "img0_comp_fullface";
    bool is_host = false;
    IO device_input{input_name, is_host};
    network_io.inputs.push_back(device_input);
    //! create and load the network
    std::shared_ptr<Network> network =
            std::make_shared<Network>(config, network_io);
    network->load_model(network_path);

    std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
    Layout input_layout = input_tensor->get_layout();

    //! read data from numpy data file
    auto src_tensor = parse_npy(input_path);

    //! malloc the device memory
    auto tensor_device = Tensor(LiteDeviceType::LITE_CUDA, input_layout);

    //! copy to the device memory
    tensor_device.copy_from(*src_tensor);

    //! Now the device memory if filled with user input data, set it to the
    //! input tensor
    input_tensor->reset(tensor_device.get_memory_ptr(), input_layout);

    //! forward
    {
        lite::Timer ltimer("warmup");
        network->forward();
        network->wait();
        ltimer.print_used_time(0);
    }
    lite::Timer ltimer("forward_iter");
    for (int i = 0; i < 10; i++) {
        ltimer.reset_start();
        network->forward();
        network->wait();
        ltimer.print_used_time(i);
    }
    //! get the output data or read tensor set in network_in
    size_t output_size = network->get_all_output_name().size();
    output_info(network, output_size);
    output_data_info(network, output_size);
    return true;
}
#endif
bool lite::example::basic_load_from_path(const Args& args) {
    set_log_level(LiteLogLevel::DEBUG);
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;

    //! create and load the network
    std::shared_ptr<Network> network = std::make_shared<Network>();
    network->load_model(network_path);
    //! set input data to input tensor
    std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);

    auto layout = input_tensor->get_layout();
    for (size_t i = 0; i < layout.ndim; i++) {
        printf("model input shape[%zu]=%zu \n", i, layout.shapes[i]);
    }

    //! copy or forward data to network
    size_t length = input_tensor->get_tensor_total_size_in_byte();
    void* dst_ptr = input_tensor->get_memory_ptr();
    auto src_tensor = parse_npy(input_path);
    auto layout0 = src_tensor->get_layout();
    for (size_t i = 0; i < layout0.ndim; i++) {
        printf("src shape[%zu]=%zu \n", i, layout0.shapes[i]);
    }
    void* src = src_tensor->get_memory_ptr();
    memcpy(dst_ptr, src, length);

    //! forward
    {
        lite::Timer ltimer("warmup");
        network->forward();
        network->wait();
        ltimer.print_used_time(0);
    }
    lite::Timer ltimer("forward_iter");
    for (int i = 0; i < 10; i++) {
        network->forward();
        network->wait();
        ltimer.print_used_time(i);
    }

    //! forward
    {
        lite::Timer ltimer("warmup");
        network->forward();
        network->wait();
        ltimer.print_used_time(0);
    }
    for (int i = 0; i < 10; i++) {
        ltimer.reset_start();
        network->forward();
        network->wait();
        ltimer.print_used_time(i);
    }

    //! get the output data or read tensor set in network_in
    size_t output_size = network->get_all_output_name().size();
    output_info(network, output_size);
    output_data_info(network, output_size);
    return true;
}

bool lite::example::basic_load_from_path_with_loader(const Args& args) {
    set_log_level(LiteLogLevel::DEBUG);
    lite::set_loader_lib_path(args.loader_path);
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;

    //! create and load the network
    std::shared_ptr<Network> network = std::make_shared<Network>();
    network->load_model(network_path);

    //! set input data to input tensor
    std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);

    auto input_layout = input_tensor->get_layout();

    //! copy or forward data to network
    auto src_tensor = parse_npy(input_path);
    auto src_layout = src_tensor->get_layout();
    if (src_layout.ndim != input_layout.ndim) {
        printf("src dim is not equal model input dim\n");
    }
    //! pay attention the input shape can change
    for (size_t i = 0; i < input_layout.ndim; i++) {
        if (input_layout.shapes[i] != src_layout.shapes[i]) {
            printf("src shape not equal input shape");
        }
    }
    input_tensor->set_layout(src_tensor->get_layout());

    //! reset or forward data to network
    input_tensor->reset(src_tensor->get_memory_ptr(), src_tensor->get_layout());

    //! forward
    network->forward();
    network->wait();

    //! forward
    {
        lite::Timer ltimer("warmup");
        network->forward();
        network->wait();
        ltimer.print_used_time(0);
    }
    lite::Timer ltimer("forward_iter");
    for (int i = 0; i < 10; i++) {
        ltimer.reset_start();
        network->forward();
        network->wait();
        ltimer.print_used_time(i);
    }

    //! get the output data or read tensor set in network_in
    size_t output_size = network->get_all_output_name().size();
    output_info(network, output_size);
    output_data_info(network, output_size);
    return true;
}

bool lite::example::basic_load_from_memory(const Args& args) {
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;

    //! create and load the network
    std::shared_ptr<Network> network = std::make_shared<Network>();

    FILE* fin = fopen(network_path.c_str(), "rb");
    if (!fin) {
        printf("failed to open %s.", network_path.c_str());
    }

    fseek(fin, 0, SEEK_END);
    size_t size = ftell(fin);
    fseek(fin, 0, SEEK_SET);
    void* ptr = malloc(size);
    std::shared_ptr<void> buf{ptr, ::free};
    auto len = fread(buf.get(), 1, size, fin);
    if (len < 1) {
        printf("read file failed.\n");
    }
    fclose(fin);

    network->load_model(buf.get(), size);

    //! set input data to input tensor
    std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
    //! copy or forward data to network
    size_t length = input_tensor->get_tensor_total_size_in_byte();
    void* dst_ptr = input_tensor->get_memory_ptr();
    auto src_tensor = parse_npy(input_path);
    void* src = src_tensor->get_memory_ptr();
    memcpy(dst_ptr, src, length);

    //! forward
    network->forward();
    network->wait();

    //! get the output data or read tensor set in network_in
    std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
    void* out_data = output_tensor->get_memory_ptr();
    size_t out_length = output_tensor->get_tensor_total_size_in_byte() /
                        output_tensor->get_layout().get_elem_size();
    printf("length=%zu\n", length);
    float max = -1.0f;
    float sum = 0.0f;
    for (size_t i = 0; i < out_length; i++) {
        float data = static_cast<float*>(out_data)[i];
        sum += data;
        if (max < data)
            max = data;
    }
    printf("max=%e, sum=%e\n", max, sum);
    return true;
}

bool lite::example::async_forward(const Args& args) {
    std::string network_path = args.model_path;
    std::string input_path = args.input_path;
    Config config;
    config.options.var_sanity_check_first_run = false;

    //! create and load the network
    std::shared_ptr<Network> network = std::make_shared<Network>(config);

    network->load_model(network_path);

    //! set input data to input tensor
    std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
    //! copy or forward data to network
    size_t length = input_tensor->get_tensor_total_size_in_byte();
    void* dst_ptr = input_tensor->get_memory_ptr();
    auto src_tensor = parse_npy(input_path);
    void* src = src_tensor->get_memory_ptr();
    memcpy(dst_ptr, src, length);

    //! set async mode and callback
    volatile bool finished = false;
    network->set_async_callback([&finished]() {
#if !__DEPLOY_ON_XP_SP2__
        std::cout << "worker thread_id:" << std::this_thread::get_id()
                  << std::endl;
#endif
        finished = true;
    });

#if !__DEPLOY_ON_XP_SP2__
    std::cout << "out thread_id:" << std::this_thread::get_id() << std::endl;
#endif

    //! forward
    network->forward();
    size_t count = 0;
    while (finished == false) {
        count++;
    }
    printf("Forward finish, count is %zu\n", count);

    //! get the output data or read tensor set in network_in
    std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
    void* out_data = output_tensor->get_memory_ptr();
    size_t out_length = output_tensor->get_tensor_total_size_in_byte() /
                        output_tensor->get_layout().get_elem_size();
    printf("length=%zu\n", length);
    float max = -1.0f;
    float sum = 0.0f;
    for (size_t i = 0; i < out_length; i++) {
        float data = static_cast<float*>(out_data)[i];
        sum += data;
        if (max < data)
            max = data;
    }
    printf("max=%e, sum=%e\n", max, sum);
    return true;
}
#endif

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}