fusion_pass.cpp 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/**
 * \file src/jit/impl/fusion_pass.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/jit/fusion_pass.h"
#include "megbrain/common.h"
#include "megbrain/gopt/gtrans.h"
#include "megbrain/jit/ast_c.h"
#include "megbrain/jit/compiler.h"
#include "megbrain/jit/internal_graph.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/serialization/serializer.h"

#if MGB_JIT

23 24 25 26
#if MGB_JIT_MLIR
#include "./mlir/ir/each_mode.h"
#endif

27 28 29 30 31 32 33 34 35 36 37 38 39
using namespace mgb;
using namespace gopt;
using namespace jit;

class JITFusionPass::Impl final {
    using Mode = opr::Elemwise::Mode;
    using DepType = OperatorNodeBase::NodeProp::DepType;
    const bool m_after_grad;
    JITFeatureBits m_feature_bits;
    OptState& m_opt_state;
    CompNode::UnorderedMap<size_t> m_cn2max_nr_input;

    SubGraph::Rewriter m_rewriter;
40 41
    SmallVector<std::unique_ptr<InternalGraphGenerator>> m_igraph_gen_storage;
    ThinHashMap<VarNode*, InternalGraphGenerator*> m_var2igraph_gen;
42 43 44 45 46 47

    //! map from var to its reader oprs and the corresponding dependency types
    ThinHashMap<VarNode*, SmallVector<std::pair<OperatorNodeBase*, DepType>>>
            m_var_readers;
    ThinHashSet<VarNode*> m_endpoint_set;

48 49
    //! create a new InternalGraphGenerator rooted at given opr
    InternalGraphGenerator* create_new_igraph_gen(OperatorNodeBase* opr);
50 51 52 53 54 55 56 57

    //! process a single operator, maintaining m_var2igraph_gen
    void process_opr(OperatorNodeBase* opr);

    size_t max_nr_input(CompNode cn);

    //! check whether all oprs which depend on the var are in i_graph
    bool test_all_readers_in_the_graph(VarNode* var,
58
                                       InternalGraphGenerator* i_graph);
59 60 61

    //! check shape to determine whether the opr should be added to the internal
    //! graph
62
    bool check_shape(cg::OperatorNodeBase* opr, InternalGraphGenerator* i_graph);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    //! use m_rewriter to update graph
    void update_graph();

    //! find the subgraph which can be fused
    void detect_fusion();

    //! check whether an opr can be fused
    bool can_be_fused(cg::OperatorNodeBase* opr) const;

    static size_t nr_non_const_vars(const VarNodeArray& vars) {
        size_t num = 0;
        for (auto i : vars) {
            num += !SymbolVar{i}.as_immutable_scalar().valid();
        }
        return num;
    }

public:
    Impl(bool after_grad, JITFeatureBits feature_bits, OptState& opt_state)
            : m_after_grad{after_grad},
              m_feature_bits{feature_bits},
              m_opt_state{opt_state},
              m_rewriter{opt_state.graph().make_rewriter()} {
        detect_fusion();
        update_graph();
    }
};

void JITFusionPass::Impl::detect_fusion() {
    std::vector<OperatorNodeBase*> topo_order;
    m_opt_state.graph().iter([this, &topo_order](OperatorNodeBase* opr) {
        topo_order.push_back(opr);
        for (auto&& i : opr->node_prop().dep_map()) {
            m_var_readers[i.first].emplace_back(opr, i.second);
        }
    });

    for (auto opr : reverse_adaptor(topo_order)) {
        if (can_be_fused(opr)) {
            process_opr(opr);
        }
    }
}

void JITFusionPass::Impl::update_graph() {
    auto process = [this](OperatorNodeBase* opr) {
        if (!Compiler::is_supported_device(
                    opr->output(0)->comp_node().device_type()))
            return;

        auto fuse_varnode = [this](VarNode* var) {
            auto ig_gen_iter = m_var2igraph_gen.find(var);
            if (ig_gen_iter == m_var2igraph_gen.end()) {
                return;
            }
            auto ig_gen = ig_gen_iter->second;
            if (m_endpoint_set.count(var) != 0 &&
                ig_gen->opr_set().size() >= 2) {
                auto igraph = ig_gen->generate();
                auto&& inputs = ig_gen->orig_inps();
                if (m_after_grad || nr_non_const_vars(inputs) == 1) {
                    // in the forward pass, only fuse oprs with one non-const
                    // inp
                    VarNodeArray rewritten_inputs;
                    for (auto&& input : inputs) {
                        auto new_input = m_rewriter.get_var(input);
                        rewritten_inputs.push_back(new_input);
                    }
                    auto fusion_op =
                            JITExecutor::make(igraph, rewritten_inputs);
                    m_rewriter.replace_var(
                            var, fusion_op.node(),
                            mgb_ssprintf_log("fuse endpoint: %s",
                                             var->owner_opr()->cname())
                                    .c_str());
                }
            }
        };

        for (auto i : opr->input()) {
            if (!m_rewriter.has_manual_replace(i)) {
                // if input i is a endpoint, and number of oprs in this subgraph
                // is greater than 2
                m_opt_state.call_with_opr(i->owner_opr(),
                                          [&] { fuse_varnode(i); });
            }
        }
        m_rewriter.auto_replace_outputs(opr);
        if (m_opt_state.graph().endpoint_contain(opr->output(0))) {
            // process final endpoint
            fuse_varnode(opr->output(0));
        }
    };
    m_opt_state.graph().iter(process);
    m_rewriter.apply_inplace();
}

bool JITFusionPass::Impl::test_all_readers_in_the_graph(
162
        VarNode* var, InternalGraphGenerator* ig_gen) {
163 164 165 166 167 168 169 170 171 172 173
    for (auto&& reader : m_var_readers.at(var)) {
        if (reader.second & DepType::DEV_VALUE) {
            if (ig_gen->opr_set().count(reader.first) == 0) {
                return false;
            }
        }
    }
    return true;
}

bool JITFusionPass::Impl::check_shape(cg::OperatorNodeBase* opr,
174
                                      InternalGraphGenerator* ig_gen) {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    if (!cg::is_static_var_shape(opr->output(0))) {
        // currently we do not handle dynamic shape in JIT
        return false;
    }
    if (!(m_feature_bits & JITFeatureBits::REDUCE)) {
        // By requiring opr output shape to be the same as final output shape,
        // we permit only one broadcast. If multiple broadcasts are fused,
        // together, execution would be actually slower.
        if ((m_feature_bits & JITFeatureBits::DIMSHUFFLE) &&
            ig_gen->has_dimshuffle() &&
            ig_gen->oprs_depended_by_dimshuffe().count(opr)) {
            return opr->output(0)->shape().eq_shape(
                    ig_gen->oprs_depended_by_dimshuffe()
                            .at(opr)
                            ->input(0)
                            ->shape());
        } else {
            return opr->output(0)->shape().eq_shape(ig_gen->output()->shape());
        }
    }

    bool before_reduce = false;
    for (auto&& op_set : ig_gen->reduce_out_var_deps()) {
        if (op_set.second.count(opr)) {
            before_reduce = true;
            break;
        }
    }

    if (opr->same_type<JITExecutor>()) {
        auto jit = &opr->cast_final<JITExecutor>();
        bool jit_has_reduce = jit->has_reduce();
        auto jit_inp_shp = jit->broadcasted_input_shape();
        if (jit_has_reduce) {
            if (before_reduce)
                return jit_inp_shp.eq_shape(jit->output(0)->shape()) &&
                       jit_inp_shp.eq_shape(ig_gen->before_reduce_shape());
            else {
                bool ret = true;
                if (ig_gen->has_reduce()) {
                    ret &= jit_inp_shp.eq_shape(ig_gen->before_reduce_shape());
                }
                ret &= jit->output(0)->shape().eq_shape(
                        ig_gen->output()->shape());
                return ret;
            }
        }
    }

    if (opr->same_type<opr::Reduce>()) {
        // TODO: handle reduce target shape in sub graph (especially considering
        // placeholder has constant shape)
        //
        // The best way is to have a dedicated AST for the internal graph; but
        // we want to reuse the deduplication and gradient mechanisms from the
        // mgb cg
        auto reduce = &opr->cast_final<opr::Reduce>();
        if (before_reduce) {
            return reduce->input(0)->shape().eq_shape(
                           ig_gen->before_reduce_shape()) &&
                   reduce->output(0)->shape().eq_shape(
                           ig_gen->before_reduce_shape());
        } else {
            bool ret = true;
            if (ig_gen->has_reduce()) {
                ret &= reduce->input(0)->shape().eq_shape(
                        ig_gen->before_reduce_shape());
            }
            ret &= reduce->output(0)->shape().eq_shape(
                    ig_gen->output()->shape());
            return ret;
        }
    }

    if (before_reduce) {
        return opr->output(0)->shape().eq_shape(ig_gen->before_reduce_shape());
    } else {
        return opr->output(0)->shape().eq_shape(ig_gen->output()->shape());
    }
}

256
InternalGraphGenerator* JITFusionPass::Impl::create_new_igraph_gen(
257
        OperatorNodeBase* opr) {
258
    auto uptr = std::make_unique<InternalGraphGenerator>(opr);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    auto ptr = uptr.get();
    m_igraph_gen_storage.emplace_back(std::move(uptr));
    m_var2igraph_gen[opr->output(0)] = ptr;
    m_endpoint_set.insert(opr->output(0));
    return ptr;
}

void JITFusionPass::Impl::process_opr(OperatorNodeBase* opr) {
    auto max_nr_input = this->max_nr_input(opr->output(0)->comp_node());
    if (nr_non_const_vars(opr->input()) > max_nr_input ||
        !cg::is_static_var_shape(opr->output(0))) {
        return;
    }
    // dimshuffle should not be an endpoint, because megbrain has lazy
    // dimshuffle machanism
274
    InternalGraphGenerator* ig_gen = nullptr;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    if (m_var2igraph_gen.count(opr->output(0)) == 0) {
        // because of the reverse traversal, when an operator is being
        // processed but not in m_var2igraph_gen, means it is a endpoint of a
        // JIT subgraph.
        if (opr->same_type<opr::Dimshuffle>()) {
            return;
        }
        ig_gen = create_new_igraph_gen(opr);
    } else {
        ig_gen = m_var2igraph_gen[opr->output(0)];
        // if all oprs which depend on this elemwise opr's output were already
        // in the subgraph and the opr's comp_node is same with the subgraph's,
        // then this opr can be fused to this graph as an internal node rather
        // than a leaf.
        bool cond_readers =
                     test_all_readers_in_the_graph(opr->output(0), ig_gen),
             cond_cn = opr->output(0)->comp_node() ==
                       ig_gen->output()->comp_node(),
             cond_shp = check_shape(opr, ig_gen),
             cond_nr_inp = ig_gen->get_cnt_input_if_add(opr) <= max_nr_input;
        if (cond_readers && cond_cn && cond_shp && cond_nr_inp) {
            ig_gen->add_opr(opr);
        } else {
            if (opr->same_type<opr::Dimshuffle>()) {
                return;
            }
            // create a new sub graph starting from this opr
            mgb_log_debug(
                    "JIT graph stopped at opr %s{%s}: cond: readers=%d cn=%d "
                    "shp=%d nr_inp=%d",
                    opr->cname(), opr->dyn_typeinfo()->name, cond_readers,
                    cond_cn, cond_shp, cond_nr_inp);
            ig_gen = create_new_igraph_gen(opr);
        }
    }

    // handle const inputs
    for (auto&& i : opr->node_prop().dep_map()) {
        if (i.second & cg::OperatorNodeBase::NodeProp::DepType::DEV_VALUE) {
            if (SymbolVar{i.first}
                        .as_immutable_scalar_require_shape()
                        .valid()) {
                auto opr = i.first->owner_opr();
                mgb_assert(opr->same_type<opr::ImmutableTensor>(),
                           "got imm scalar from non ImmutableTensor: %s{%s}",
                           opr->cname(), opr->dyn_typeinfo()->name);
                ig_gen->add_opr(opr);
                continue;
            }
        }
        m_var2igraph_gen[i.first] = ig_gen;
    }
}

size_t JITFusionPass::Impl::max_nr_input(CompNode cn) {
    auto&& ret = m_cn2max_nr_input[cn];
    if (!ret) {
        ret = Compiler::get(*m_opt_state.graph().comp_graph(), cn)
                      ->property()
                      .max_nr_input;
        mgb_assert(ret);
    }
    return ret;
}

bool JITFusionPass::Impl::can_be_fused(cg::OperatorNodeBase* opr) const {
    if (!Compiler::is_supported_device(
                opr->output(0)->comp_node().device_type())) {
        return false;
    }

346 347
    //! As MLIR backend has some contraints
    auto backend = MGB_GETENV("MGB_JIT_BACKEND");
348 349
    // float elemwise
    if (auto elem = gopt::try_cast_as_op<opr::Elemwise>(opr)) {
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        bool ret = true;
#if MGB_JIT_MLIR
        if (!strcmp(backend, "MLIR")) {
            switch (elem->param().mode) {
#define cb(_, _mode)                 \
    case opr::Elemwise::Mode::_mode: \
        ret = true;                  \
        break;

                MLIR_MGB_FOREACH_ELEMWISE_MODE_UNARY(cb)
                MLIR_MGB_FOREACH_ELEMWISE_MODE_BINARY(cb)
                MLIR_MGB_FOREACH_ELEMWISE_MODE_TERNARY(cb)
                default:
                    ret = false;
#undef cb
            }
#define FOREACH_ELEMWISE_SKIP_MODE(cb) cb(SIN)

            //! FIXME mlir on cuda does't support sin currently.
            if (opr->output(0)->comp_node().device_type() ==
                CompNode::DeviceType::CUDA) {
                switch (elem->param().mode) {
#define cb(_mode)                    \
    case opr::Elemwise::Mode::_mode: \
        ret = false;                 \
        break;

                    FOREACH_ELEMWISE_SKIP_MODE(cb)
                    default:
                        break;
#undef cb
                }
            }

#undef FOREACH_ELEMWISE_SKIP_MODE
        }
#endif  // MGB_JIT_MLIR
        return ret && ast_c::check_elem_mode(elem->param().mode) &&
388 389 390
               elem->output(0)->dtype().category() == DTypeCategory::FLOAT;
    }

391 392 393 394
    if (strcmp(backend, "MLIR")) {
        if (opr->same_type<opr::PowC>()) {
            return true;
        }
395

396 397 398 399 400 401 402
        // float typecvt (e.g. used in f16 training)
        if (opr->same_type<opr::TypeCvt>()) {
            auto category = opr->input(0)->dtype().category();
            if (category != opr->output(0)->dtype().category())
                return false;
            return category == DTypeCategory::FLOAT;
        }
403

404 405 406 407 408
        // float reduce
        if ((m_feature_bits & JITFeatureBits::REDUCE) &&
            opr->same_type<opr::Reduce>()) {
            return opr->output(0)->dtype().category() == DTypeCategory::FLOAT;
        }
409

410 411 412 413 414 415
        // dimshuffle
        if ((m_feature_bits & JITFeatureBits::DIMSHUFFLE) &&
            opr->same_type<opr::Dimshuffle>()) {
            auto param = opr->cast_final_safe<opr::Dimshuffle>().param();
            return param.pattern_len <= 4;
        }
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    }

    // existing JITExecutor
    if (opr->same_type<JITExecutor>())
        return true;

    return false;
}

JITFusionPass::JITFusionPass(bool after_grad, int8_t jit_opt_level)
        : m_after_grad{after_grad}, m_feature_bits{JITFeatureBits::NONE} {
    // TODO reduce and dimshuffle can not coexsit now.
    if (jit_opt_level >= 2) {
        m_feature_bits |= JITFeatureBits::REDUCE;
    } else {
        m_feature_bits |= JITFeatureBits::DIMSHUFFLE;
    }
}

const char* JITFusionPass::name() const {
    return mgb_cstr_log("fusion_pass");
}

void JITFusionPass::apply(OptState& opt) const {
    Impl{m_after_grad, m_feature_bits, opt};
}

#endif

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}