network_impl.cpp 36.7 KB
Newer Older
1 2
/**
 * \file src/mge/network_impl.cpp
3
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12 13 14 15 16 17
 */

#include "lite_build_config.h"

#if LITE_BUILD_WITH_MGE
#include "common.h"
#include "lite/network.h"
#include "memory_allocator.h"
M
Megvii Engine Team 已提交
18
#include "network_impl.h"
19
#include "parse_info/parse_info_base.h"
M
Megvii Engine Team 已提交
20
#include "parse_model/model_parser.h"
21 22 23 24 25 26 27

#include "megbrain/common.h"
#include "megbrain/comp_node.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/graph.h"
#include "megbrain/graph/cg.h"
#include "megbrain/opr/io.h"
28
#include "megbrain/opr/tensor_manip.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "megbrain/tensor.h"

#if MGB_OPENCL
#include "megcore_opencl.h"
#endif

#include <fstream>
#include <memory>
#include <set>

using namespace lite;
using namespace mgb;

LITE_DYN_TYPE_OBJ_FINAL_IMPL(NetworkImplDft);

void NetworkImplDft::set_config(const Config& config) {
    m_user_config = std::make_unique<Config>();
    *m_user_config = config;
    m_compnode_locator = to_compnode_locator(m_user_config->device_type);
    m_compnode_locator.device = config.device_id;
}

void NetworkImplDft::shared_weight_with(const NetworkImplBase* src_network) {
    application_config();
    const auto& src_impl = src_network->cast_final_safe<NetworkImplDft>();
M
Megvii Engine Team 已提交
54
    LITE_ASSERT(src_impl.m_loader, "Clone network must after the network is loaded.");
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    m_load_result = src_impl.m_loader->load(m_load_config, true);

    //! flag weather the mode is cross compnode model
    cross_compnode_model_detect();

    //! update the IO of the network
    update_io();

    //! replace the IO when there is device input or output
    compile_graph();
}

void NetworkImplDft::application_config() {
    auto device_type = m_user_config->device_type;
    m_compnode_locator.type = to_compnode_locator(device_type).type;
    m_compnode_locator.device = m_user_config->device_id;
    if (m_nr_threads > 1 && device_type == LiteDeviceType::LITE_CPU) {
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
        m_compnode_locator.device = m_user_config->device_id;
    }
    //! model options
#define ConfigOption(mge_name, lite_name) \
    options.mge_name = m_user_config->options.lite_name;

    auto&& options = m_load_config.comp_graph->options();
    ConfigOption(graph_opt.weight_preprocess, weight_preprocess);
    ConfigOption(graph_opt.fuse_preprocess, fuse_preprocess);
    ConfigOption(fake_next_exec, fake_next_exec);
    ConfigOption(var_sanity_check_first_run, var_sanity_check_first_run);
    m_load_config.const_var_shape = m_user_config->options.const_shape;
    ConfigOption(force_dynamic_alloc, force_dynamic_alloc);
    ConfigOption(force_output_dynamic_alloc, force_output_dynamic_alloc);
87 88 89
    ConfigOption(
            force_output_use_user_specified_memory,
            force_output_use_user_specified_memory);
90
    ConfigOption(no_profiling_on_shape_change, no_profiling_on_shape_change);
M
Megvii Engine Team 已提交
91 92 93 94 95
    LITE_ASSERT(
            m_user_config->options.jit_level == 0 ||
                    (m_user_config->options.jit_level > 0 &&
                     device_type == LiteDeviceType::LITE_CUDA),
            "jit only support in cuda device.");
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    ConfigOption(graph_opt.jit, jit_level);
    ConfigOption(comp_node_seq_record_level, comp_node_seq_record_level);
    ConfigOption(graph_opt_level, graph_opt_level);
    ConfigOption(async_exec_level, async_exec_level);

#undef ConfigOption
#define ConfigOptionLayoutTransform(name) \
    if (m_user_config->options.name) {    \
        options.graph_opt.name();         \
    }
    ConfigOptionLayoutTransform(enable_nchw44);
    ConfigOptionLayoutTransform(enable_nchw44_dot);
    ConfigOptionLayoutTransform(enable_nchw88);
    ConfigOptionLayoutTransform(enable_nhwcd4);
    ConfigOptionLayoutTransform(enable_nchw4);
    ConfigOptionLayoutTransform(enable_nchw32);
    ConfigOptionLayoutTransform(enable_nchw64);
#undef ConfigOptionLayoutTransform
    if (m_user_config->has_compression) {
        m_load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }

118 119
    //! if device is LITE_NONE, the compnode information is stored in model or
    //! xpu in MegEngine
120
    if (device_type != LiteDeviceType::LITE_DEVICE_DEFAULT) {
121 122 123 124 125 126 127 128 129 130 131 132 133
        m_load_config.comp_node_mapper = [this](mgb::CompNode::Locator& loc) {
            if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
                loc.type = m_compnode_locator.type;
            }
            loc.device = m_compnode_locator.device;
            //! if user set the thread number and the compnode is multithread
            if (loc.type == mgb::CompNode::DeviceType::MULTITHREAD &&
                m_nr_threads != 1) {
                loc.stream = m_nr_threads;
            } else {
                loc.stream = m_compnode_locator.stream;
            }
        };
134 135 136
    }
}

M
Megvii Engine Team 已提交
137
void NetworkImplDft::set_memory_allocator(std::shared_ptr<Allocator> user_allocator) {
138 139 140 141 142 143
    auto allocator = std::make_shared<UserStaticMemAlloc>(user_allocator);
    LITE_ASSERT(m_load_config.comp_graph);
    m_load_config.comp_graph->set_device_memory_allocator(allocator);
}

//! share the runtime memory with other network, the weights is not shared
M
Megvii Engine Team 已提交
144
void NetworkImplDft::share_runtime_memory_with(Network::NetworkImplBase* network_impl) {
145 146
    LITE_ASSERT(network_impl);
    LITE_ASSERT(m_load_config.comp_graph);
M
Megvii Engine Team 已提交
147 148
    m_load_config.comp_graph->share_device_memory_with(*(
            network_impl->cast_final_safe<NetworkImplDft>().m_load_config.comp_graph));
149 150 151
}

void NetworkImplDft::set_cpu_inplace_mode() {
M
Megvii Engine Team 已提交
152 153 154
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "cpu inplace mode is only avaliable in CPU.");
155 156 157 158 159 160 161
    m_is_cpu_inplace_mode = true;
    if (m_compnode_locator.type == mgb::CompNode::DeviceType::CPU) {
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
    } else {
        LITE_ASSERT(
                m_compnode_locator.type == CompNode::DeviceType::MULTITHREAD,
                "cpu inplace mode is only avaliable in CPU.");
M
Megvii Engine Team 已提交
162
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
163 164 165 166
    }
}

void NetworkImplDft::set_cpu_threads_number(size_t nr_threads) {
M
Megvii Engine Team 已提交
167 168 169
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
170 171 172 173 174 175 176 177 178
    if (nr_threads > 1) {
        m_nr_threads = nr_threads;
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
        m_compnode_locator.nr_threads = nr_threads;
    }
}

void NetworkImplDft::set_runtime_thread_affinity(
        const ThreadAffinityCallback& thread_affinity_callback) {
M
Megvii Engine Team 已提交
179 180 181
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
182 183 184 185 186 187 188 189
    mgb::CompNode::Locator loc;
    m_load_config.comp_node_mapper(loc);
    auto cn = mgb::CompNode::load(loc);
    if (m_nr_threads > 1) {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().set_affinity(
                thread_affinity_callback);
    } else {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().dispatch(
M
Megvii Engine Team 已提交
190
                [thread_affinity_callback](void) { thread_affinity_callback(0); });
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    }
}

void NetworkImplDft::set_device_id(int device_id) {
    m_compnode_locator.device = device_id;
    m_user_config->device_id = device_id;
}

void NetworkImplDft::set_stream_id(int stream_id) {
    m_compnode_locator.stream = stream_id;
}

void NetworkImplDft::use_tensorrt() {
    auto&& options = m_load_config.comp_graph->options();
    options.graph_opt.tensorrt = true;
}

//! set the callback in async model
void NetworkImplDft::set_async_callback(const AsyncCallback& callback) {
M
Megvii Engine Team 已提交
210 211 212 213 214
    LITE_ASSERT(!m_is_cpu_inplace_mode, "cpu inplace mode not support async mode");
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU ||
                    m_user_config->device_type == LiteDeviceType::LITE_CUDA,
            "Now only cpu and cuda>10.0 support async mode");
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    m_async = true;
    m_async_callback = std::move(callback);
}

void NetworkImplDft::make_output_spec() {
    m_output_spec.clear();
    for (auto&& out : m_network_io->outputs) {
        if (m_load_result.output_var_map.count(out.name)) {
            auto&& load_out = m_load_result.output_var_map[out.name];
            auto cb = [&out, this](const mgb::DeviceTensorND& dv) mutable {
                mgb::CompNode comp_node = dv.comp_node();
                if (out.io_type == LiteIOType::LITE_IO_SHAPE) {
                    auto mgb_layout = dv.layout();
                    out.lite_tensor->set_layout(to_lite_layout(mgb_layout));
                } else {
                    TensorHelper::implement(out.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .copy_from_mge_tensor(dv);
                    out.lite_tensor->update_from_implement();
                }
                if (m_async) {
                    out.have_sync = true;
                    bool need_exec_cb = true;
                    for (auto&& j : m_network_io->outputs) {
                        if (!j.have_sync) {
                            need_exec_cb = false;
                        }
                    }
                    if (need_exec_cb) {
                        for (auto&& j : m_network_io->outputs) {
                            j.have_sync = false;
                        }
                        comp_node.add_callback([this]() { finish(); });
                    }
                }
            };
251 252 253 254 255 256 257
            //! if write to user-specified memory, the CallbackCaller must be nullptr.
            if (m_user_config->options.force_output_use_user_specified_memory ||
                m_user_config->options.force_output_dynamic_alloc) {
                m_output_spec.emplace_back(load_out, nullptr);
            } else {
                m_output_spec.emplace_back(load_out, std::move(cb));
            }
258
        } else {
M
Megvii Engine Team 已提交
259
            LITE_THROW(ssprintf("no output named : %s in the mode", out.name.c_str()));
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        }
    }
}

void NetworkImplDft::replace_dev_input_pass() {
    mgb::CompNode::Locator locator;
    m_load_config.comp_node_mapper(locator);
    //! CPU is not need use device input
    if (locator.type == mgb::CompNode::DeviceType::CPU) {
        return;
    }
    //! repalce the H2D with VolatileSharedDeviceTensor, and keep the dev tensor
    //! in m_network_io.input, user can directly change the dev tensor
    //! storage through m_network_io.input.lite_tensor->reset() befor forward
    using DeviceTensorMap =
M
Megvii Engine Team 已提交
275
            std::unordered_map<std::string, std::shared_ptr<mgb::DeviceTensorND>>;
276 277 278 279 280 281 282 283
    DeviceTensorMap name2dev_tensor;

    mgb::ThinHashMap<mgb::HostTensorND*, mgb::SymbolVar> host_val2var;

    //! construct host_val2var that maps from host tensor to corresponding var
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        if (opr->same_type<mgb::opr::Host2DeviceCopy>()) {
            mgb::HostTensorND* tensor =
M
Megvii Engine Team 已提交
284
                    opr->cast_final<mgb::opr::Host2DeviceCopy>().host_data().get();
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            host_val2var[tensor] = opr->output(0);
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }

    mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> inp_var_map, out_var_map;

    mgb::SmallVector<std::string> to_clear;
    for (auto&& config_in : m_network_io->inputs) {
        if (!config_in.is_host) {
            auto host_val = m_load_result.tensor_map[config_in.name];
            auto dev_val = TensorHelper::implement(config_in.lite_tensor)
                                   ->cast_final_safe<TensorImplDft>()
                                   .m_dev_tensor;
            auto dev_var = mgb::opr::VolatileSharedDeviceTensor::make(
                    *m_load_result.graph, dev_val, {config_in.name});
            inp_var_map[host_val2var.at(host_val.get())] = dev_var;
            name2dev_tensor[config_in.name] = dev_val;
        }
    }
M
Megvii Engine Team 已提交
308
    auto new_ovar = mgb::cg::replace_vars(m_load_result.output_var_list, inp_var_map);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    for (size_t i = 0; i < new_ovar.size(); ++i) {
        out_var_map[m_load_result.output_var_list[i]] = new_ovar[i];
    }
    for (auto&& i : m_load_result.output_var_map) {
        i.second = out_var_map.at(i.second);
    }
    for (auto&& i : m_load_result.output_var_map_id) {
        i.second = out_var_map.at(i.second);
    }
    for (size_t i = 0; i < m_load_result.output_var_list.size(); i++) {
        new_ovar[i].rename(m_load_result.output_var_list[i].node()->name());
    }
    m_load_result.output_var_list = std::move(new_ovar);
}

void NetworkImplDft::cross_compnode_model_detect() {
    mgb::ThinHashSet<LiteDeviceType> nr_used_device_type;
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        for (auto j : opr->output()) {
            if (j->comp_node() != mgb::CompNode::default_cpu()) {
                nr_used_device_type.insert(
                        get_device_from_locator(j->comp_node().locator()));
            }
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }
M
Megvii Engine Team 已提交
338
    m_nr_device_type = nr_used_device_type.size();
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
void NetworkImplDft::adapt_option_valid() {
    auto&& options = m_load_config.comp_graph->options();
    if (m_user_config->options.force_output_use_user_specified_memory) {
        for (auto&& out : m_load_result.output_var_list) {
            auto opr = out.node()->owner_opr();
            //! all the dest operator inherit from ReadonlyFwdHelper can't
            //! support force_output_use_user_specified_memory options
            if (opr->try_cast_final<mgb::opr::Reshape>() ||
                opr->try_cast_final<mgb::opr::Broadcast>() ||
                opr->try_cast_final<mgb::opr::Subtensor>() ||
                opr->try_cast_final<mgb::opr::AxisAddRemove>() ||
                opr->try_cast_final<mgb::opr::Dimshuffle>()) {
                m_user_config->options.force_output_use_user_specified_memory = false;
                options.force_output_use_user_specified_memory = false;
                LITE_WARN(
                        "detect the unsupported dest operator %s when config "
                        "force_output_use_user_specified_memory, set "
                        "force_output_use_user_specified_memory to false\n",
                        opr->cname());
                break;
            }
        }
    }
}

366 367 368 369 370 371 372
void NetworkImplDft::global_layout_transform() {
    if (m_set_layout_transform) {
        m_load_result.output_var_list = mgb::gopt::layout_transform(
                m_load_result.output_var_list, m_layout_transform_target);
    }
}

373 374 375 376
void NetworkImplDft::load_model(
        std::shared_ptr<void> model_mem, size_t size,
        std::unordered_map<std::string, LiteAny> separate_config_map) {
    if (!m_loader) {
M
Megvii Engine Team 已提交
377 378
        m_input_file =
                mgb::serialization::InputFile::make_mem_proxy(model_mem, size, false);
379
        m_format = mgb::serialization::GraphLoader::identify_graph_dump_format(
M
Megvii Engine Team 已提交
380
                *m_input_file);
381
        if (!m_format.valid()) {
382 383 384
            LITE_THROW("invalid model format");
        }
        m_loader = mgb::serialization::GraphLoader::make(
385
                std::move(m_input_file), m_format.val());
386 387 388 389 390 391 392
    }

    //! applay the user configration to mge model
    application_config();

    //! config some flag get from json config file
    if (separate_config_map.find("device_id") != separate_config_map.end()) {
393
        set_device_id(separate_config_map["device_id"].safe_cast<int>());
394
    }
M
Megvii Engine Team 已提交
395
    if (separate_config_map.find("number_threads") != separate_config_map.end() &&
396
        separate_config_map["number_threads"].safe_cast<uint32_t>() > 1) {
397
        set_cpu_threads_number(
398
                separate_config_map["number_threads"].safe_cast<uint32_t>());
399
    }
M
Megvii Engine Team 已提交
400
    if (separate_config_map.find("enable_inplace_model") != separate_config_map.end() &&
401
        separate_config_map["enable_inplace_model"].safe_cast<bool>()) {
402 403 404
        set_cpu_inplace_mode();
    }
    if (separate_config_map.find("use_tensorrt") != separate_config_map.end() &&
405
        separate_config_map["use_tensorrt"].safe_cast<bool>()) {
406 407 408
        use_tensorrt();
    }

409
    m_load_result = m_loader->load(m_load_config, true);
410 411

    global_layout_transform();
412

413 414
    adapt_option_valid();

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    cross_compnode_model_detect();

    //! update the IO of the network
    update_io();

    //! replace the IO when there is device input or output
    compile_graph();
}

void NetworkImplDft::compile_graph() {
    modify_exection_policy();
    replace_dev_input_pass();
    make_output_spec();
    m_execute_func = m_load_result.graph_compile(m_output_spec);
}

void NetworkImplDft::start() const {
    if (m_start_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                input_io_map;
        for (auto&& io_inner : m_network_io->inputs) {
            input_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_start_callback(input_io_map);
    }
}

void NetworkImplDft::forward() {
    start();
447 448 449 450
    if (m_load_config.comp_graph &&
        m_user_config->options.comp_node_seq_record_level == 2) {
        m_load_config.comp_graph.reset();
    }
451 452 453 454 455 456 457 458 459 460 461 462 463
    LITE_ASSERT(m_execute_func, "forward must be called after network loaded.");
    m_execute_func->execute();
}

void NetworkImplDft::wait() {
    if (!m_async) {
        m_execute_func->wait();
    }
    finish();
}

void NetworkImplDft::finish() const {
    if (m_async) {
M
Megvii Engine Team 已提交
464
        LITE_ASSERT(m_async_callback, "The callback func must set when async mode.");
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        m_async_callback();
    }
    if (m_finish_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                output_io_map;
        for (auto&& io_inner : m_network_io->outputs) {
            output_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_finish_callback(output_io_map);
    }
    output_plugin_result();
}

void NetworkImplDft::set_io(const NetworkIO& network_io) {
    m_network_io = std::make_unique<NetworkIOInner>();
    for (auto&& in : network_io.inputs) {
        m_network_io->inputs.emplace_back(in);
    }
    for (auto&& out : network_io.outputs) {
        m_network_io->outputs.emplace_back(out);
    }
}

491
void NetworkImplDft::try_infer_tensor_layout(std::shared_ptr<Tensor> tensor, Var var) {
492 493
    if (var.node()->capable_shape_infer()) {
        auto&& static_infer_mgr = m_load_config.comp_graph->static_infer_manager();
494 495 496 497 498 499
        auto shape = static_infer_mgr.infer_shape_fallible(var.node());
        if (!shape) {
            LITE_WARN(
                    "Lite infer output shape failed, maybe the model is "
                    "dynamic "
                    "shape.\n");
500 501 502 503
            LITE_ASSERT(
                    !m_user_config->options.force_output_use_user_specified_memory,
                    "force_output_use_user_specified_memory can't be used when output "
                    "shape can't be derived.");
504 505
            return;
        }
506
        Layout layout = to_lite_layout(TensorLayout{*shape, var.dtype()});
507 508 509 510
        tensor->set_layout(layout);
    }
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void NetworkImplDft::update_io() {
    update_input();
    update_output();
}

void NetworkImplDft::update_input() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    //! if cpu all input and output are host
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& in : m_network_io->inputs) {
            in.is_host = true;
        }
    }
    //! if cross compnode model, modify the device input if it is not valid
    if (m_nr_device_type > 1) {
        for (auto&& in_tensor_iter : m_load_result.tensor_map) {
            for (auto&& config_in : m_network_io->inputs) {
                //! if tensor is set to device input
M
Megvii Engine Team 已提交
531
                if (in_tensor_iter.first == config_in.name && !config_in.is_host) {
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
                    //! if the origin compnode of the tensor is not the device,
                    //! set the input to host
                    if (get_device_from_locator(
                                in_tensor_iter.second->comp_node().locator()) ==
                        LiteDeviceType::LITE_CPU) {
                        config_in.is_host = true;
                        LITE_WARN(
                                "The input tensor %s of the cross device model "
                                "should not from device.",
                                config_in.name.c_str());
                    }
                }
            }
        }
    }
    for (auto&& in_tensor_iter : m_load_result.tensor_map) {
        bool found = false;
        for (auto&& config_in : m_network_io->inputs) {
            if (in_tensor_iter.first == config_in.name) {
                found = true;
                if (config_in.is_host) {
                    config_in.lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                    TensorHelper::implement(config_in.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .m_host_tensor = in_tensor_iter.second;
                    config_in.lite_tensor->update_from_implement();
                } else {
M
Megvii Engine Team 已提交
560 561
                    config_in.lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
562 563 564
                    config_in.lite_tensor->set_layout(
                            to_lite_layout(in_tensor_iter.second->layout()));
                }
565 566 567 568
                TensorHelper::implement(config_in.lite_tensor)
                        ->cast_final_safe<TensorImplDft>()
                        .m_record_reset =
                        m_user_config->options.comp_node_seq_record_level > 0;
569
                if (config_in.config_layout.ndim &&
M
Megvii Engine Team 已提交
570
                    !(config_in.config_layout == config_in.lite_tensor->get_layout())) {
571 572 573 574 575 576 577
                    config_in.lite_tensor->set_layout(config_in.config_layout);
                }
            }
        }
        if (!found) {
            IOInner io_in;
            io_in.name = in_tensor_iter.first;
M
Megvii Engine Team 已提交
578 579
            io_in.lite_tensor =
                    std::make_shared<Tensor>(device_id, stream_id, device_type, true);
580 581 582
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_host_tensor = in_tensor_iter.second;
583 584 585 586
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
587 588 589 590 591
            io_in.lite_tensor->update_from_implement();
            m_network_io->inputs.push_back(io_in);
        }
    }
    //! delete the IO that is not the network
M
Megvii Engine Team 已提交
592
    for (auto it = m_network_io->inputs.begin(); it != m_network_io->inputs.end();) {
593
        if (it->lite_tensor == nullptr) {
M
Megvii Engine Team 已提交
594
            LITE_LOG("%s is not the network input, ignore it.", it->name.c_str());
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
            it = m_network_io->inputs.erase(it);
        } else {
            it++;
        }
    }
}

void NetworkImplDft::update_output() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& out : m_network_io->outputs) {
            out.is_host = true;
        }
    }
    //! delete the output that is not the network
    for (auto out_it = m_network_io->outputs.begin();
         out_it != m_network_io->outputs.end();) {
M
Megvii Engine Team 已提交
614 615
        if (std::find_if(
                    m_load_result.output_var_list.begin(),
616
                    m_load_result.output_var_list.end(), [out_it](const SymbolVar var) {
M
Megvii Engine Team 已提交
617 618 619
                        return var.node()->name() == out_it->name;
                    }) == m_load_result.output_var_list.end()) {
            LITE_LOG("%s is not the network output, ignore it.", out_it->name.c_str());
620 621 622 623 624 625 626
            out_it = m_network_io->outputs.erase(out_it);
        } else {
            out_it++;
        }
    }
    //! user config the output tensor, so only compute the config output
    if (m_compute_configured_output_only) {
M
Megvii Engine Team 已提交
627 628 629
        LITE_ASSERT(
                m_network_io->outputs.size() > 0,
                "compute configured output only with no configure output.");
630 631 632 633 634 635 636
        for (auto out_it = m_network_io->outputs.begin();
             out_it != m_network_io->outputs.end(); out_it++) {
            //! use pinned memory to copy form device
            if (out_it->is_host) {
                out_it->lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
            } else {
M
Megvii Engine Team 已提交
637 638
                out_it->lite_tensor =
                        std::make_shared<Tensor>(device_id, stream_id, device_type);
639
            }
640
            SymbolVar var;
641 642 643 644 645 646 647
            for (auto&& out_var : m_load_result.output_var_list) {
                if (out_var.node()->name() == out_it->name) {
                    var = out_var;
                    break;
                }
            }
            try_infer_tensor_layout(out_it->lite_tensor, var);
648
            output_tensor_copy_optimize(var, out_it->lite_tensor);
649 650 651 652
            TensorHelper::implement(out_it->lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
653 654 655 656
        }
        //! user not set, use default output
    } else {
        for (auto&& out : m_load_result.output_var_list) {
657
            std::shared_ptr<Tensor> lite_tensor = nullptr;
M
Megvii Engine Team 已提交
658 659 660
            auto it = std::find_if(
                    m_network_io->outputs.begin(), m_network_io->outputs.end(),
                    [&out](const IOInner io) { return io.name == out.node()->name(); });
661 662 663 664 665
            if (it != m_network_io->outputs.end()) {
                if (it->is_host) {
                    it->lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                } else {
M
Megvii Engine Team 已提交
666 667
                    it->lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
668
                }
669
                try_infer_tensor_layout(it->lite_tensor, out);
670
                lite_tensor = it->lite_tensor;
671 672 673 674 675 676
            } else {
                IOInner output;
                output.name = out.node()->name();
                output.lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
                m_network_io->outputs.push_back({output});
677
                try_infer_tensor_layout(output.lite_tensor, out);
678
                lite_tensor = output.lite_tensor;
679
            }
680
            output_tensor_copy_optimize(out, lite_tensor);
681 682 683 684
            TensorHelper::implement(lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
685 686 687 688
        }
    }
}

689 690 691 692 693 694 695 696
void NetworkImplDft::output_tensor_copy_optimize(
        Var var, std::shared_ptr<Tensor> tensor) {
    LITE_ASSERT(
            !(m_user_config->options.force_output_use_user_specified_memory &&
              m_user_config->options.force_output_dynamic_alloc),
            "Can't set force_output_use_user_specified_memory and "
            "force_output_dynamic_alloc at the same time.");
    if (m_user_config->options.force_output_use_user_specified_memory) {
697
        bool in_record = m_user_config->options.comp_node_seq_record_level > 0;
698 699
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
700
                .set_reset_callback([var, in_record](TensorImplDft* dft_tensor) {
701 702 703 704
                    dft_tensor->device_share_host_memory();
                    auto dv = dft_tensor->dev_tensor().get();
                    dv->comp_node(var.node()->comp_node(), true);
                    var.node()->init_mem_plan(dv);
705 706 707 708 709 710
                    if (in_record) {
                        auto&& device_tensor = var.node()->mutable_dev_tensor();
                        device_tensor.only_reset_raw_storage(dv->storage());
                    } else {
                        var.node()->reset_dev_tensor_from_tensor(*dv);
                    }
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
                });
    }
    if (m_user_config->options.force_output_dynamic_alloc) {
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
                .set_get_memory_callback([var](TensorImplDft* dft_tensor) {
                    if (dft_tensor->is_host()) {
                        auto host_tensor = dft_tensor->m_host_tensor;
                        *host_tensor =
                                HostTensorND::make_proxy(var.node()->dev_tensor());
                    } else {
                        auto dev_tensor = dft_tensor->m_dev_tensor;
                        *dev_tensor = var.node()->dev_tensor();
                    }
                });
    }
}

M
Megvii Engine Team 已提交
729 730 731
std::shared_ptr<Tensor> NetworkImplDft::get_io_tensor(
        std::string io_name, LiteTensorPhase phase) {
    if (phase == LiteTensorPhase::LITE_INPUT || phase == LiteTensorPhase::LITE_IO) {
732 733 734 735 736 737
        for (auto&& config_in : m_network_io->inputs) {
            if (io_name == config_in.name) {
                return config_in.lite_tensor;
            }
        }
    }
M
Megvii Engine Team 已提交
738
    if (phase == LiteTensorPhase::LITE_OUTPUT || phase == LiteTensorPhase::LITE_IO) {
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        for (auto&& config_out : m_network_io->outputs) {
            if (io_name == config_out.name) {
                config_out.lite_tensor->update_from_implement();
                return config_out.lite_tensor;
            }
        }
    }
    LITE_THROW(mgb::ssprintf(
            "tensor name must be %s input tensor name or the registered "
            "output tensor name if NetworkIO is set, if NetworkIO is not set, "
            "the output tensor is all the network output tensor, or the output "
            "tensor is only the registered tensor.",
            io_name.c_str()));
    return nullptr;
}

std::shared_ptr<Tensor> NetworkImplDft::get_input_tensor(size_t index) {
    return get_io_tensor(get_input_name(index));
}

std::shared_ptr<Tensor> NetworkImplDft::get_output_tensor(size_t index) {
    return get_io_tensor(get_output_name(index));
}

//! set opr algorithm selection strategy in the network
M
Megvii Engine Team 已提交
764 765 766
void NetworkImplDft::set_network_algo_policy(
        LiteAlgoSelectStrategy strategy, uint32_t shared_batch_size,
        bool binary_equal_between_batch) {
767 768
    using S = megdnn::param::ExecutionPolicy::Strategy;
    auto dst_strategy = static_cast<S>(0);
M
Megvii Engine Team 已提交
769
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_HEURISTIC) {
770 771
        dst_strategy = dst_strategy | S::HEURISTIC;
    }
M
Megvii Engine Team 已提交
772
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_PROFILE) {
773 774 775 776 777 778
        dst_strategy = dst_strategy | S::PROFILE;
    }
    if (static_cast<uint32_t>(strategy) &
        LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE) {
        dst_strategy = dst_strategy | S::REPRODUCIBLE;
    }
M
Megvii Engine Team 已提交
779
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_OPTIMIZED) {
780 781 782 783
        dst_strategy = dst_strategy | S::OPTIMIZED;
    }
    m_execution_policy = dst_strategy;

M
Megvii Engine Team 已提交
784
    auto&& fast_run_config = m_load_config.comp_graph->options().fast_run_config;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    fast_run_config.binary_equal_between_batch = binary_equal_between_batch;
    fast_run_config.shared_batch_size = shared_batch_size;

    if (m_execute_func) {
        LITE_WARN(
                "set_network_algo_policy maybe cause error after loaded "
                "network!!!!");
        modify_exection_policy();
    }
}

void NetworkImplDft::modify_exection_policy() {
    mgb::SymbolVarArray vars;
    for (auto i : m_output_spec) {
        vars.push_back(i.first);
    }
    if (static_cast<uint32_t>(m_execution_policy) != 0)
        mgb::gopt::modify_opr_algo_strategy_inplace(vars, m_execution_policy);
}

//! set opr algorithm selection strategy in the network
void NetworkImplDft::set_network_algo_workspace_limit(size_t workspace_limit) {
    mgb::SymbolVarArray vars;
    for (auto i : m_output_spec) {
        vars.push_back(i.first);
    }
    mgb::gopt::set_opr_algo_workspace_limit_inplace(vars, workspace_limit);
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_output_name() const {
    std::vector<const char*> output_names;
    for (auto& output : m_network_io->outputs) {
        output_names.push_back(output.name.c_str());
    }
    return output_names;
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_input_name() const {
    std::vector<const char*> input_names;
    for (auto& input : m_load_result.tensor_map) {
        input_names.push_back(input.first.c_str());
    }
    return input_names;
}

//! get the output tensor name in the order of graph
const char* NetworkImplDft::get_output_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.output_var_list.size(),
            "The output tensor index is large than the total outputs number.");
    return m_load_result.output_var_list[index].node()->name().c_str();
}

//! get the input tensor name in the order of graph
const char* NetworkImplDft::get_input_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.tensor_map.size(),
            "The input tensor index is large than the total inputs number.");
    size_t i = 0;
    for (auto& input : m_load_result.tensor_map) {
        if (i == index) {
            return input.first.c_str();
        }
        i++;
    }
    LITE_THROW(ssprintf("no input tensor of index %zu.", index));
}

//! Plugin part
void NetworkImplDft::enable_profile_performance(std::string profile_json_file) {
#if MGB_ENABLE_JSON
M
Megvii Engine Team 已提交
858
    m_profiler = std::make_unique<mgb::GraphProfiler>(m_load_config.comp_graph.get());
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    m_profiler_output_file = profile_json_file;
#else
    LITE_MARK_USED_VAR(profile_json_file);
    LITE_THROW("JSON is disable at compile time.");
#endif
}

void NetworkImplDft::enable_io_txt_dump(std::string io_txt_out_file) {
    auto iodump = std::make_unique<mgb::TextOprIODump>(
            m_load_config.comp_graph.get(), io_txt_out_file.c_str());
    iodump->print_addr(false);
    m_iodump = std::move(iodump);
}

void NetworkImplDft::enable_io_bin_dump(std::string io_bin_out_dir) {
    m_iodump = std::make_unique<mgb::BinaryOprIODump>(
            m_load_config.comp_graph.get(), io_bin_out_dir.c_str());
}

void inline NetworkImplDft::output_plugin_result() const {
#if MGB_ENABLE_JSON
    if (m_profiler && m_execute_func) {
        m_profiler->to_json_full(m_execute_func.get())
                ->writeto_fpath(m_profiler_output_file);
    }
#endif
}
886 887 888 889 890 891 892

void NetworkImplDft::get_static_memory_alloc_info(const std::string& log_dir) const {
#ifndef __IN_TEE_ENV__
#if MGB_ENABLE_JSON
    m_execute_func->get_static_memory_alloc_info(log_dir);
    return;
#endif
893
#endif
894 895
    LITE_MARK_USED_VAR(log_dir);
}
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
void NetworkImplDft::enable_global_layout_transform() {
    m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;

    switch (m_user_config->device_type) {
        case LiteDeviceType::LITE_CPU:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CPU;
            break;
        case LiteDeviceType::LITE_CUDA:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CUDA;
            break;
        default:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;
            LITE_WARN(
                    "lite compnode type: enum value: %d. is unspecial for layout "
                    "transform",
                    (int)(m_user_config->device_type));
    }
    m_set_layout_transform = true;
}

void NetworkImplDft::dump_layout_transform_model(std::string optimized_model_path) {
    if (m_set_layout_transform) {
        auto out_file = mgb::serialization::OutputFile::make_fs(
                optimized_model_path.c_str(), 'w');
        using DumpConfig = mgb::serialization::GraphDumper::DumpConfig;
        DumpConfig config{1, false, false};
        auto dumper = mgb::serialization::GraphDumper::make(
                std::move(out_file), m_format.val());
        dumper->dump(m_load_result.output_var_list, config);
    } else {
        LITE_THROW(
                ssprintf("dump layout transform model should call "
                         "enable_global_layout_transform before"));
    }
}
932
#endif
933
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}