test_conv.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools

import numpy as np

from megengine import Parameter, tensor
from megengine.module import ConvTranspose2d, LocalConv2d
from megengine.test import assertTensorClose


def test_conv_transpose2d():
    SH, SW = 3, 1
    PH, PW = 2, 0
    N, IC, IH, IW = 4, 5, 8, 6
    KH, KW = 3, 4
    OC = 3
    BIAS = False

    def getsize(inp, kern, stride):
        return (inp - 1) * stride + kern

    OH = getsize(IH, KH, SH)
    OW = getsize(IW, KW, SW)

    inp = np.random.normal(size=(N, IC, IH, IW)).astype(np.float32)
    out = np.zeros((N, OC, OH, OW), dtype=np.float32)
    weight = np.random.normal(size=(IC, OC, KH, KW)).astype(np.float32)
    bias = np.random.normal(size=(1, OC, 1, 1)).astype(np.float32)

    # naive calculation use numpy
    for n, ic, ih, iw in itertools.product(*map(range, [N, IC, IH, IW])):
        oh, ow = ih * SH, iw * SW
        out[n, :, oh : oh + KH, ow : ow + KW] += inp[n, ic, ih, iw] * weight[ic]
    out = out[:, :, PH : OH - PH, PW : OW - PW]
    if BIAS:
        out += bias

    # megengine conv_transpose2d calculation
    conv_transpose2d = ConvTranspose2d(IC, OC, (KH, KW), (SH, SW), (PH, PW), bias=BIAS)
    conv_transpose2d.weight = Parameter(weight, dtype=np.float32)
    if BIAS:
        conv_transpose2d.bias = Parameter(bias, dtype=np.float32)
    y = conv_transpose2d(tensor(inp))

    assertTensorClose(out, y.numpy(), max_err=2e-6)


def test_local_conv2d():
    batch_size = 10
    in_channels = 4
    out_channels = 8
    input_height = 8
    input_width = 8
    kernel_size = 3
    stride = 1
    padding = 1
    dilation = 1
    groups = 1
    local_conv2d = LocalConv2d(
        in_channels=in_channels,
        out_channels=out_channels,
        input_height=input_height,
        input_width=input_width,
        kernel_size=kernel_size,
        stride=stride,
        padding=padding,
        dilation=dilation,
        groups=groups,
    )
    inputs = np.random.normal(
        size=(batch_size, in_channels, input_height, input_width)
    ).astype(np.float32)
    output_height = (input_height + padding * 2 - kernel_size) // stride + 1
    output_width = (input_width + padding * 2 - kernel_size) // stride + 1
    weights = np.random.normal(
        size=(
            groups,
            output_height,
            output_width,
            in_channels // groups,
            kernel_size,
            kernel_size,
            out_channels // groups,
        )
    ).astype(np.float32)
    local_conv2d.weight = Parameter(weights)
    outputs = local_conv2d(tensor(inputs))
    # naive calculation use numpy
    # only test output_height == input_height, output_width == input_width, group == 1
    inputs = np.pad(inputs, ((0, 0), (0, 0), (1, 1), (1, 1)))
    expected = np.zeros(
        (batch_size, out_channels, output_height, output_width), dtype=np.float32,
    )
    for n, oc, oh, ow in itertools.product(
        *map(range, [batch_size, out_channels, output_height, output_width])
    ):
        ih, iw = oh * stride, ow * stride
        expected[n, oc, ih, iw] = np.sum(
            inputs[n, :, ih : ih + kernel_size, iw : iw + kernel_size]
            * weights[0, oh, ow, :, :, :, oc]
        )

    assertTensorClose(outputs.numpy(), expected, max_err=1e-5)