python_helper.cpp 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/**
 * \file python_module/src/cpp/python_helper.cpp
 *
 * This file is part of MegBrain, a deep learning framework developed by Megvii.
 *
 * \brief helper utilities for python integration
 *
 * \copyright Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 */

#include "./python_helper.h"
#include "megbrain/graph/exc_extra_info.h"
#include "megbrain/graph/event.h"
#include "megbrain/graph/cg.h"
#include "megbrain/utils/mempool.h"

#include "./numpy_incl.h"

/*
 * demangle typeid, see
 * http://stackoverflow.com/questions/281818/unmangling-the-result-of-stdtype-infoname
 */
#ifdef __GNUG__
#include <cstdlib>
#include <memory>
#include <cxxabi.h>

namespace {

std::string demangle_typeid(const char* name) {

    int status = -4; // some arbitrary value to eliminate the compiler warning

    // enable c++11 by passing the flag -std=c++11 to g++
    std::unique_ptr<char, void(*)(void*)> res {
        abi::__cxa_demangle(name, nullptr, nullptr, &status),
        std::free
    };

    return (status==0) ? res.get() : name ;
}
}
#else

namespace {
// does nothing if not g++
48
std::string demangle_typeid(const char* name) {
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    return name;
}
}

#endif

using namespace mgb;
using namespace cg;

PyStackExtracter* PyStackExtracter::ins = nullptr;

namespace {

    std::string repr_pyobj(PyObject *obj) {
        if (!obj)
            return "<null PyObject>";
        PYTHON_GIL;
        auto str = PyObject_Repr(obj);
        if (!str)
            return ssprintf("<PyObject at %p (repr failed)>", obj);
        std::string ret{PyUnicode_AsUTF8(str)};
        Py_DECREF(str);
        return ret;
    }

    template<typename T>
    std::string typeid_name(const T &t) {
        return demangle_typeid(typeid(t).name());
    }

} // anonymous namespace

/* ============== OprPyTracker ============== */

class OprPyTracker::TrackerStorage final : public UserDataContainer::UserData,
                                           public NonCopyableObj {
    MGB_TYPEINFO_OBJ_DECL;

    PyObject* m_cur_tracker = nullptr;
    size_t m_refcnt_to_add = 0;
    SyncEventConnecter::ReceiverHandler m_opr_insert_handler;
    ThinHashMap<OperatorNodeBase*, PyObject*> m_opr2tracker;

public:
    explicit TrackerStorage(ComputingGraph& graph) {
        auto on_new_opr = [this](const event::OprInserted& ev) {
            if (!ev.is_dedup && !ev.exc) {
                if (m_cur_tracker) {
                    ++m_refcnt_to_add;
                    m_opr2tracker[ev.opr] = m_cur_tracker;
                }
            }
        };
        m_opr_insert_handler =
                graph.event().register_receiver<event::OprInserted>(on_new_opr);
    }

    ~TrackerStorage() {
        if (m_cur_tracker) {
            // manage refcnt of cur tracker
            disable();
        }
        PYTHON_GIL;
        for (auto&& i : m_opr2tracker) {
            Py_DecRef(i.second);
        }
    }

    //! get the instance
    static TrackerStorage& inst(ComputingGraph& graph) {
        auto make = [&graph]() {
            return std::make_shared<TrackerStorage>(graph);
        };
        return *graph.options()
                        .user_data.get_user_data_or_create<TrackerStorage>(
                                make);
    }

    //! get the tracker associated with an opr, or nullptr
    PyObject* get(OperatorNodeBase* opr) const {
        auto iter = m_opr2tracker.find(opr);
        return iter == m_opr2tracker.end() ? nullptr : iter->second;
    }

    void enable(PyObject* obj) {
        mgb_assert(!m_cur_tracker,
                   "multiple calls to begin_set_tracker() on the same graph");
        m_cur_tracker = obj;
    }

    void disable() {
        mgb_assert(m_cur_tracker,
                   "call end_set_tracker() before begin_set_tracker()");
        if (m_refcnt_to_add) {
            PYTHON_GIL;
            for (size_t i = 0; i < m_refcnt_to_add; ++i) {
                Py_IncRef(m_cur_tracker);
            }
        }
        m_cur_tracker = nullptr;
    }
};
MGB_TYPEINFO_OBJ_IMPL(OprPyTracker::TrackerStorage);

void OprPyTracker::begin_set_tracker(ComputingGraph& graph, PyObject* obj) {
    TrackerStorage::inst(graph).enable(obj);
}

void OprPyTracker::end_set_tracker(ComputingGraph& graph) {
    TrackerStorage::inst(graph).disable();
}

OprPyTracker::TrackerResult OprPyTracker::get_tracker(mgb::MegBrainError& exc) {
    auto ptr = dynamic_cast<const OperatorNodeExcExtraInfo*>(exc.extra_info());
    if (!ptr)
        return {};
    return get_tracker(ptr->opr());
}

OprPyTracker::TrackerResult OprPyTracker::get_tracker(
        mgb::cg::OperatorNodeBase* opr) {
    TrackerResult ret;
    mgb_assert(opr);
    ret.exc_opr = opr;
    opr = cg::get_opr_root_source_opr(opr);
    ret.unopt_opr = opr;

    auto&& storage = TrackerStorage::inst(*opr->owner_graph());
    ret.tracker = storage.get(opr);

    {
        auto&& grad_info = opr->node_prop().attribute().grad_tracker;
        if (grad_info.valid()) {
            ret.opr_grad_src = cg::get_opr_root_source_opr(grad_info->orig_opr);
            ret.tracker_grad_src = storage.get(ret.opr_grad_src);
        }
    }

    return ret;
}

PyObject* OprPyTracker::TrackerResult::as_tuple(const char *leading_msg) const {
    std::string msg;
    if (leading_msg)
        msg = leading_msg;

    auto print_opr = [&](const char *otype, cg::OperatorNodeBase *opr) {
        if (!opr)
            return;

        msg += ssprintf("\n%s: id=%zu name=%s type=%s\n",
                otype, opr->id(), opr->cname(),
                typeid_name(*opr).c_str());
        msg += "  input variables: \n";
        size_t idx = 0;
        for (auto i: opr->input()) {
            msg += ssprintf("    %zu: ", idx ++);
            msg += cg::dump_var_info({i});
            msg += "\n";
        }

        msg += "  output variables: \n";
        idx = 0;
        for (auto i: opr->output()) {
            msg += ssprintf("    %zu: ", idx ++);
            msg += cg::dump_var_info({i});
            msg += "\n";
        }
    };

    print_opr("Associated operator", exc_opr);
    if (unopt_opr != exc_opr) {
        print_opr("Unoptimized equivalent of associated operator", unopt_opr);
    }
    print_opr("Associated operator created by taking grad of", opr_grad_src);

    PYTHON_GIL;
    PyObject *py_msg = PyUnicode_FromString(msg.c_str()),
             *py_tuple = PyTuple_Pack(3, py_msg,
                     tracker ? tracker : Py_None,
                     tracker_grad_src ? tracker_grad_src : Py_None);
    Py_DECREF(py_msg);
    return py_tuple;
}

std::string blame(mgb::cg::OperatorNodeBase* opr) {
    mgb_assert(PyMGBExceptionMaker::py_exc_class,
               "Python exception class is not set yet");
    PyObject* args = OprPyTracker::get_tracker(opr).as_tuple();

    PYTHON_GIL;

    PyObject* py_exc = PyObject_CallObject(PyMGBExceptionMaker::py_exc_class, args);
    Py_DECREF(args);
    mgb_assert(py_exc);

    PyObject* py_str = PyObject_Str(py_exc);
    Py_DECREF(py_exc);
    mgb_assert(py_str);

    int err = PyUnicode_READY(py_str);
    if (err) {
        Py_DECREF(py_str);
        mgb_assert(!err);
    }

    Py_ssize_t c_str_size;
    const char* c_str = PyUnicode_AsUTF8AndSize(py_str, &c_str_size);
    if (!c_str) {
        Py_DECREF(py_str);
        mgb_assert(c_str);
    }
    std::string ret(c_str, c_str_size);
    Py_DECREF(py_str);
    return ret;
}

/* ============== PyMGBExceptionMaker ============== */
PyObject *PyMGBExceptionMaker::py_exc_class = nullptr;

void PyMGBExceptionMaker::setup_py_exception(std::exception &exc) {
    mgb_assert(py_exc_class);
    if (auto cbexc = dynamic_cast<PyExceptionForward*>(&exc)) {
        cbexc->restore();
        return;
    }

    std::string msg;
    try {
        msg = ssprintf("MegBrain core throws exception: %s\n%s",
                typeid_name(exc).c_str(), exc.what());

        auto mgbexc = dynamic_cast<MegBrainError*>(&exc);
        OprPyTracker::TrackerResult tracker;
        if (mgbexc) {
            tracker = OprPyTracker::get_tracker(*mgbexc);
        }

        PYTHON_GIL;
        PyObject *py_exc_arg = tracker.as_tuple(msg.c_str());
        PyErr_SetObject(py_exc_class, py_exc_arg);
        Py_DECREF(py_exc_arg);
    } catch (std::exception &newexc) {
        auto newmsg = ssprintf(
                "caught exception during handling exception: %s\n%s\n"
                "original message: %s",
                typeid_name(newexc).c_str(), newexc.what(),
                msg.c_str());
        PyErr_SetString(PyExc_RuntimeError, newmsg.c_str());
    } catch (...) {
        auto newmsg = ssprintf(
                    "caught unknown exception during handling exception\n"
                    "original message: %s", msg.c_str());
        PyErr_SetString(PyExc_RuntimeError, newmsg.c_str());
    }
}

/* ============== PyExceptionForward ============== */

PyExceptionForward::~PyExceptionForward() {
    PYTHON_GIL;
    PyObjRefKeeper::deleter(m_type);
    PyObjRefKeeper::deleter(m_value);
    PyObjRefKeeper::deleter(m_traceback);
}

void PyExceptionForward::restore() {
    PyErr_Restore(m_type, m_value, m_traceback);
    m_type = m_value = m_traceback = nullptr;
}

void PyExceptionForward::throw_() {
    PyObject *etype, *obj, *trace;
    PyErr_Fetch(&etype, &obj, &trace);
    PyErr_NormalizeException(&etype, &obj, &trace);

    std::string msg{"python exception"};
    bool succ = false;
    if (etype && obj && trace) {
        auto run = [&]() {
#define DEF(name, expr)        \
    PyObjRefKeeper name{expr}; \
    if (!name.get())           \
    return
            DEF(mod, PyImport_ImportModule("traceback"));
            DEF(result, PyObject_CallMethod(mod.get(), "format_exception",
                                            "(OOO)", etype, obj, trace));
            if (!PyList_Check(result.get()))
                return;
            auto size = PyList_Size(result.get());
            msg.append(":\n");
            for (Py_ssize_t i = 0; i < size; ++i) {
                msg.append("  ");
                msg.append(PyUnicode_AsUTF8(PyList_GetItem(result.get(), i)));
            }
            msg.pop_back();  // remove last \n
            succ = true;
#undef DEF
        };
        run();
    }
    if (!succ) {
        PyObject* obj_str_py;
        if (obj && (obj_str_py = PyObject_Repr(obj))) {
            msg.append(" with message ");
            msg.append(PyUnicode_AsUTF8(obj_str_py));
            Py_DECREF(obj_str_py);
        } else {
            msg.append(" with unknown message");
        }
    }
    // throwing exception may cause abort due to unknown reasons; so we first
    // log the message
    mgb_log_error("caught exception from python callback: %s", msg.c_str());
    fflush(stdout);
    fflush(stderr);
    throw PyExceptionForward{etype, obj, trace, msg};
}

/* ============== namespace npy ============== */

namespace {

int to_mgb_supported_dtype_raw(int dtype) {
    if (dtype == NPY_INT64)
        return NPY_INT32;
    if (dtype == NPY_FLOAT64)
        return NPY_FLOAT32;
    return dtype;
}

#define FOREACH_NPY_DTYPE_PAIR(cb) \
    cb(Uint8, NPY_UINT8) \
    cb(Int8, NPY_INT8) \
    cb(Int16, NPY_INT16) \
    cb(Int32, NPY_INT32) \
    cb(Float16, NPY_FLOAT16) \
    cb(Float32, NPY_FLOAT32)

#define FOREACH_NPY_MGB_DTYPE_PAIR(cb) \
    FOREACH_NPY_DTYPE_PAIR(cb) \
    FOREACH_MGB_DTYPE_PAIR(cb)



//! convert megbrain dtype to numpy dtype
int dtype_mgb2np_raw(DType dtype) {
    mgb_assert(dtype.valid(), "attempt to convert from invalid dtype");
    switch (dtype.enumv()) {
#define cb(_m, _n) \
        case DTypeEnum::_m: \
            return _n;
        FOREACH_NPY_MGB_DTYPE_PAIR(cb)
#undef cb
        default:
            break;
    }
    throw ConversionError(ssprintf(
                "can not convert dtype %s to numpy dtype", dtype.name()));
}

struct PyArrayDescrDeleter {
    void operator()(PyArray_Descr* obj) {
        Py_XDECREF(obj);
    }
};

//! Convert MegBrain DType to NumPy DType descriptor, the caller receives a new
//! reference to the descriptor.
std::unique_ptr<PyArray_Descr, PyArrayDescrDeleter> dtype_mgb2np_descr(
        DType dtype) {
    PYTHON_GIL;
    mgb_assert(dtype.valid(), "attempt to convert from invalid dtype");
    auto build_mgb_dtype_dict =
            [](const char* name,
               const std::vector<std::pair<const char*, PyObject*>>& data) {
                PyObject* metadata = PyDict_New();
                PyObject* mgb_dtype_metadata = PyDict_New();
                PyDict_SetItemString(mgb_dtype_metadata, "name",
                                     PyUnicode_FromString(name));
                for (const auto& d : data) {
                    PyDict_SetItemString(mgb_dtype_metadata, d.first, d.second);
                }
                PyDict_SetItemString(metadata, "mgb_dtype", mgb_dtype_metadata);
                return metadata;
            };
    if (dtype.has_param()) {
        PyArray_Descr* type_descr;
        switch (dtype.enumv()) {
            case DTypeEnum::Quantized8Asymm: {
                auto& param = dtype.param<dtype::Quantized8Asymm>();
                type_descr = PyArray_DescrNewFromType(NPY_UINT8);
                type_descr->metadata = build_mgb_dtype_dict(
                        DTypeTrait<dtype::Quantized8Asymm>::name,
                        {{"scale", PyFloat_FromDouble(param.scale)},
                         {"zero_point", PyLong_FromLong(param.zero_point)}});
                break;
            }
            case DTypeEnum::QuantizedS8: {
                auto& param = dtype.param<dtype::QuantizedS8>();
                type_descr = PyArray_DescrNewFromType(NPY_INT8);
                type_descr->metadata = build_mgb_dtype_dict(
                        DTypeTrait<dtype::QuantizedS8>::name,
                        {{"scale", PyFloat_FromDouble(param.scale)}});
                break;
            }
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
            case DTypeEnum::Quantized4Asymm: {
                auto& param = dtype.param<dtype::Quantized4Asymm>();
                type_descr = PyArray_DescrNewFromType(NPY_UINT8);
                type_descr->metadata = build_mgb_dtype_dict(
                        DTypeTrait<dtype::Quantized4Asymm>::name,
                        {{"scale", PyFloat_FromDouble(param.scale)},
                         {"zero_point", PyLong_FromLong(param.zero_point)}});
                break;
            }
            case DTypeEnum::QuantizedS4: {
                auto& param = dtype.param<dtype::QuantizedS4>();
                type_descr = PyArray_DescrNewFromType(NPY_INT8);
                type_descr->metadata = build_mgb_dtype_dict(
                        DTypeTrait<dtype::QuantizedS4>::name,
                        {{"scale", PyFloat_FromDouble(param.scale)}});
                break;
            }
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            case DTypeEnum::QuantizedS32: {
                auto& param = dtype.param<dtype::QuantizedS32>();
                type_descr = PyArray_DescrNewFromType(NPY_INT32);
                type_descr->metadata = build_mgb_dtype_dict(
                        DTypeTrait<dtype::QuantizedS32>::name,
                        {{"scale", PyFloat_FromDouble(param.scale)}});
                break;
            }
            default:
                mgb_throw(ConversionError, "unhandled parameterized DType %s",
                          dtype.name());
        }
        return std::unique_ptr<PyArray_Descr, PyArrayDescrDeleter>(type_descr);
    }
    PyArray_Descr* basic_descr = PyArray_DescrFromType(dtype_mgb2np_raw(dtype));
    mgb_assert(basic_descr != nullptr,
                   "failed to convert expected dtype to numpy type descriptor");
    return std::unique_ptr<PyArray_Descr, PyArrayDescrDeleter>(basic_descr);
}

DType dtype_np2mgb_raw(int npt) {
    switch (npt) {
#define cb(_m, _n) \
        case _n: \
            return dtype::_m();
        FOREACH_NPY_DTYPE_PAIR(cb)
#undef cb
    }
#define cb(_m, _n) \
    if (_n == npt) return dtype::_m();
    FOREACH_MGB_DTYPE_PAIR(cb)
#undef cb

    PYTHON_GIL;
    std::string msg;
    auto py_obj = PyArray_TypeObjectFromType(npt);
    if (!py_obj) {
        msg = ssprintf("unknown numpy dtype enum %d", npt);
    } else {
        msg = ssprintf("unsupported numpy dtype %s",
                repr_pyobj(py_obj).c_str());
    }
    Py_DECREF(py_obj);
    throw ConversionError(msg);
}

DType dtype_np2mgb_descr(PyArray_Descr* descr) {
    PYTHON_GIL;
    auto handle_parameterized_dtype = [](PyObject* metadata) -> DType {
        mgb_assert(PyDict_Check(metadata),
                   "Invalid parameterized DType metadata: should be a dict");
        PyObject* dtype_name_py = PyDict_GetItemString(metadata, "name");
        mgb_assert(
                PyUnicode_Check(dtype_name_py),
                "Invalid parameterized DType metadata: name should be a str");
        std::string dtype_name(PyUnicode_AsUTF8(dtype_name_py));
        if (dtype_name == "Quantized8Asymm") {
            PyObject* scale_py = PyDict_GetItemString(metadata, "scale");
            PyObject* zero_point_py =
                    PyDict_GetItemString(metadata, "zero_point");
            mgb_assert(scale_py && zero_point_py,
                       "Invalid Quantized8Asymm metadata: missing scale or "
                       "zero_point.");
            mgb_assert(
                    PyFloat_Check(scale_py),
                    "Invalid Quantized8Asymm metadata: scale should be float");
            mgb_assert(PyLong_Check(zero_point_py),
                       "Invalid Quantized8Asymm metadata: zero_point should be "
                       "integer");
            auto zero_point = PyLong_AS_LONG(zero_point_py);
            mgb_assert(zero_point >= 0 && zero_point < 256,
                       "Invalid Quantized8Asymm metadata: zero_point should be "
                       "in [0, 256)");
            return dtype::Quantized8Asymm(
                    static_cast<float>(PyFloat_AS_DOUBLE(scale_py)),
                    static_cast<uint8_t>(zero_point));
        }
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        if (dtype_name == "Quantized4Asymm") {
            PyObject* scale_py = PyDict_GetItemString(metadata, "scale");
            PyObject* zero_point_py =
                    PyDict_GetItemString(metadata, "zero_point");
            mgb_assert(scale_py && zero_point_py,
                       "Invalid Quantized4Asymm metadata: missing scale or "
                       "zero_point.");
            mgb_assert(
                    PyFloat_Check(scale_py),
                    "Invalid Quantized4Asymm metadata: scale should be float");
            mgb_assert(PyLong_Check(zero_point_py),
                       "Invalid Quantized4Asymm metadata: zero_point should be "
                       "integer");
            auto zero_point = PyLong_AS_LONG(zero_point_py);
            mgb_assert(zero_point >= 0 && zero_point < 15,
                       "Invalid Quantized4Asymm metadata: zero_point should be "
                       "in [0, 15)");
            return dtype::Quantized4Asymm(
                    static_cast<float>(PyFloat_AS_DOUBLE(scale_py)),
                    static_cast<uint8_t>(zero_point));
        }
        if (dtype_name == "QuantizedS32" || dtype_name == "QuantizedS8" ||
            dtype_name == "QuantizedS4") {
572 573 574 575 576 577 578
            PyObject* scale_py = PyDict_GetItemString(metadata, "scale");
            mgb_assert(scale_py, "Invalid metadata: missing scale");
            mgb_assert(PyFloat_Check(scale_py),
                       "Invalid metadata: scale should be float");
            float scale = static_cast<float>(PyFloat_AS_DOUBLE(scale_py));
            if (dtype_name == "QuantizedS32") {
                return dtype::QuantizedS32(scale);
579
            } else if (dtype_name == "QuantizedS8"){
580
                return dtype::QuantizedS8(scale);
581 582
            } else {
                return dtype::QuantizedS4(scale);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
            }
        }
        throw ConversionError(
                ssprintf("Unknown parameterized DType: %s", dtype_name.c_str())
                        .c_str());
    };
    PyObject* dtype_metadata;
    if (descr->metadata && PyDict_Check(descr->metadata) &&
        (dtype_metadata = PyDict_GetItemString(descr->metadata, "mgb_dtype"))) {
        return handle_parameterized_dtype(dtype_metadata);
    }
    return dtype_np2mgb_raw(descr->type_num);
}

HostTensorND lowbit_ndarray_to_host_tensor(
        CompNode comp_node, TensorLayout &layout, PyArrayObject *input) {
    auto src_ptr = reinterpret_cast<dt_byte*>(PyArray_DATA(input));
    if (!layout.ndim) {
        // numpy scalar
        mgb_assert(src_ptr, "can not convert from null numpy array");
        layout.init_contiguous_stride({1});
    } else {
        mgb_assert(layout.ndim && layout.ndim <= TensorShape::MAX_NDIM,
                "unsupported ndim %zu", layout.ndim);
        for (size_t i = 0; i < layout.ndim; ++ i) {
            layout.shape[i] = PyArray_SHAPE(input)[i];
            layout.stride[i] = PyArray_STRIDE(input, i);
            mgb_assert(layout.shape[i], "zero shape not supported");
        }
        mgb_assert(layout.is_contiguous());
    }
    HostTensorND ret{comp_node, layout};
    lowbit_memcpy_byte2compact(layout.dtype, ret.raw_ptr(), src_ptr,
            layout.total_nr_elems());
    return ret;
}

/*!
 * \brief convert a python object to tensor and try to borrow memory if the
 *      original object is a contiguous numpy array
 * \param dtype see np2tensor
 * \return the megbrain tensor, and whether memory is borrowed
 */
std::pair<HostTensorND, bool> np2tensor_try_borrow(
        PyObject *obj, CompNode dest_cn, DType dtype) {
    mgb_assert(dest_cn.valid());

    PYTHON_GIL;

    PyArray_Descr* expected_descr = nullptr;
    if (dtype.valid()) {
        // The reference to expected_descr will be stealed later.
        expected_descr = dtype_mgb2np_descr(dtype).release();
    }

    // make result from PyArrayObject; its reference would be stolen
    auto make_from_arr = [&](PyArrayObject *input, bool is_borrow) {
        PyObjRefKeeper ref_obj_cvt{reinterpret_cast<PyObject*>(input)};

        TensorLayout layout;
        layout.dtype = dtype_np2mgb_descr(PyArray_DESCR(input));
        if (dtype.valid())
            mgb_assert(dtype == layout.dtype);
        layout.ndim = PyArray_NDIM(input);

        if (layout.dtype.is_low_bit()) {
            auto ret = lowbit_ndarray_to_host_tensor(dest_cn, layout, input);
            // decref(input) would be handled by ref_obj_cvt
            return std::make_pair(ret, false);
        }

        auto data = reinterpret_cast<dt_byte*>(PyArray_DATA(input));
        if (!layout.ndim) {
            // numpy scalar
            mgb_assert(data, "can not convert from null numpy array");
            layout.init_contiguous_stride({1});
        } else {
            mgb_assert(layout.ndim && layout.ndim <= TensorShape::MAX_NDIM,
                    "unsupported ndim %zu", layout.ndim);
            auto dsize = layout.dtype.size();
            bool is_empty = false;
            for (size_t i = 0; i < layout.ndim; ++ i) {
                layout.shape[i] = PyArray_SHAPE(input)[i];
                layout.stride[i] = PyArray_STRIDE(input, i);
                if (!layout.shape[i]) {
                    is_empty = true;
                }
                mgb_assert(layout.stride[i] % dsize == 0,
                        "bad stride %zd", layout.stride[i]);
                layout.stride[i] /= dsize;
            }
            mgb_assert(is_empty || layout.is_contiguous());
        }
        HostTensorStorage storage;
        auto input_ptr = ref_obj_cvt.make_shared(data);
        storage.reset(dest_cn, layout.span().high_byte, input_ptr);
        HostTensorND ret;
        ret.reset(storage, layout);
        return std::make_pair(ret, is_borrow);
    };

    PyArrayObject *obj_as_arr = nullptr;
    do {
        // check contiguous and dtype, and borrow mem if ok
        if (!PyArray_Check(obj))
            break;
        obj_as_arr = reinterpret_cast<PyArrayObject*>(obj);
        int typenum = PyArray_DTYPE(obj_as_arr)->type_num;
        // We have to check dtype.valid() and typenum first to avoid
        // accidentally trigger ConversionError on incompatible dtypes which can
        // be automatically converted into comptaible ones (e.g. float64).
        if (dtype.valid() &&
            (expected_descr->type_num != typenum ||
             dtype_np2mgb_descr(PyArray_DTYPE(obj_as_arr)) != dtype))
            break;
        if (typenum != to_mgb_supported_dtype_raw(typenum)) {
            mgb_assert(!dtype.valid() && expected_descr == nullptr);
            expected_descr =
                    PyArray_DescrFromType(to_mgb_supported_dtype_raw(typenum));
            break;
        }
        if (PyArray_ISCARRAY_RO(obj_as_arr)) {
            Py_INCREF(obj_as_arr);
            return make_from_arr(obj_as_arr, true);
        }
    } while(0);

    constexpr auto NP_FLAGS = NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_FORCECAST;
    PyObject *obj_cvt;
    if (obj_as_arr) {
        obj_cvt = PyArray_FromArray(obj_as_arr, expected_descr, NP_FLAGS);
    } else {
        obj_cvt = PyArray_FromAny(obj, expected_descr, 0, 0, NP_FLAGS, nullptr);
    }

    if (obj_cvt) {
        // convert to mgb supported dtype
        auto arr = reinterpret_cast<PyArrayObject*>(obj_cvt);
        int dt0 = PyArray_TYPE(arr), dt1 = to_mgb_supported_dtype_raw(dt0);
        if (dt0 != dt1) {
            mgb_assert(expected_descr == nullptr);
            expected_descr = PyArray_DescrFromType(dt1);
            mgb_assert(expected_descr);
            auto obj_cvt_new = PyArray_FromAny(
                    obj_cvt, expected_descr, 0, 0, NP_FLAGS, nullptr);
            Py_DECREF(obj_cvt);
            obj_cvt = obj_cvt_new;
        }
    }

    if (!obj_cvt) {
        if (PyErr_Occurred()) {
            PyExceptionForward::throw_();
        }
        throw ConversionError(ssprintf("can not convert to numpy array from %s",
                    repr_pyobj(obj).c_str()));
    }

    return make_from_arr(reinterpret_cast<PyArrayObject*>(obj_cvt), false);
}

//! hold a reference to HostTensorND
class HostTensorNDRefHolder final: public NonCopyableObj {
    HostTensorND m_val;
    static MemPool<HostTensorNDRefHolder> sm_mem_pool;

    friend class MemPool<HostTensorNDRefHolder>;

    HostTensorNDRefHolder(const HostTensorND &v):
        m_val{v}
    {
    }

    public:

        static HostTensorNDRefHolder* alloc(const HostTensorND &v) {
            return sm_mem_pool.alloc(v);
        }

        static void free(HostTensorNDRefHolder *p) {
            return sm_mem_pool.free(p);
        }
};
MemPool<HostTensorNDRefHolder> HostTensorNDRefHolder::sm_mem_pool;

void ndarray_shared_from_tensor_py_capsule_dtor(PyObject *cap) {
    auto ptr = PyCapsule_GetPointer(cap, "HostTensorND");
    mgb_assert(ptr, "not a PyCapsule: %s", repr_pyobj(cap).c_str());
    HostTensorNDRefHolder::free(static_cast<HostTensorNDRefHolder*>(ptr));
}

} // anonymous namespace

PyObject* npy::ndarray_from_tensor(
        const HostTensorND &val, ShareType share_type) {
    if (!val.layout().is_contiguous() && !val.shape().is_empty()) {
        mgb_assert(share_type != ShareType::MUST_SHARE);
        HostTensorND contig;
        contig.copy_from(val);
        return ndarray_from_tensor(contig, ShareType::TRY_SHARE);
    }
    PYTHON_GIL;
    npy_intp dims[TensorLayout::MAX_NDIM];
    for (size_t i = 0; i < val.layout().ndim; ++ i)
        dims[i] = val.shape()[i];
    PyObject* ret = nullptr;

    auto alloc_new_ret = [&]() {
        mgb_assert(!ret);
        ret = PyArray_NewFromDescr(
                &PyArray_Type, dtype_mgb2np_descr(val.dtype()).release(),
                val.layout().ndim, dims, nullptr, nullptr, 0, nullptr);
        mgb_assert(ret, "failed to allocate array");
        mgb_assert(PyArray_Check(ret));
        return PyArray_DATA(reinterpret_cast<PyArrayObject*>(ret));
    };
    if (val.dtype().is_low_bit()) {
        mgb_assert(share_type != ShareType::MUST_SHARE,
                "can not share memory for lowbit dtype");
        lowbit_memcpy_compact2byte(val.dtype(), alloc_new_ret(), val.raw_ptr(),
                val.layout().total_nr_elems());
    } else if (share_type == ShareType::MUST_UNSHARE) {
        memcpy(alloc_new_ret(), val.raw_ptr(), val.layout().span().dist_byte());
    } else {
        // share data
        ret = PyArray_NewFromDescr(
                &PyArray_Type, dtype_mgb2np_descr(val.dtype()).release(),
                val.layout().ndim, dims, nullptr,
                const_cast<dt_byte*>(val.raw_ptr()), 0, nullptr);
        mgb_assert(ret, "failed to alloc ndarray");
        auto capsule = PyCapsule_New(HostTensorNDRefHolder::alloc(val),
                "HostTensorND", ndarray_shared_from_tensor_py_capsule_dtor);
        mgb_assert(capsule, "failed to create PyCapsule");
        auto err = PyArray_SetBaseObject(
                reinterpret_cast<PyArrayObject*>(ret), capsule);
        mgb_assert(!err);
    }
    return ret;
}

HostTensorND npy::np2tensor(PyObject* obj, const Meth& meth, DType dtype) {
    auto ret_full = np2tensor_try_borrow(obj, meth.dest_cn_, dtype);
    if (meth.dest_tensor_) {
        meth.dest_tensor_->copy_from(ret_full.first);
        return *meth.dest_tensor_;
    }
    if (meth.must_borrow_) {
        mgb_assert(ret_full.second,
                   "can not borrow from numpy array as contig array with dtype "
                   "%s; src=%s",
                   dtype.name(), repr_pyobj(obj).c_str());
    }
    return ret_full.first;
}

PyObject* npy::dtype_mgb2np(mgb::DType dtype) {
    PYTHON_GIL;
    // According to
    // https://docs.scipy.org/doc/numpy/reference/c-api.array.html#c.PyArray_TypeObjectFromType
    // the following is equivalent to PyArray_TypeObjectFromType for built-in
    // types.
    auto descr = dtype_mgb2np_descr(dtype);
    if (descr == nullptr) {
        return nullptr;
    }
    if (dtype.has_param()) {
        return reinterpret_cast<PyObject*>(descr.release());
    }
    PyObject* typeobj = reinterpret_cast<PyObject*>(descr->typeobj);
    Py_XINCREF(typeobj);
    return typeobj;
}

mgb::DType npy::dtype_np2mgb(PyObject *obj) {
    mgb_assert(obj && obj != Py_None,
               "can not convert null PyObject to numpy dtype");
    // see
    // http://stackoverflow.com/questions/8477122/numpy-c-api-convert-type-object-to-type-number
    PYTHON_GIL;

    PyArray_Descr* dtype;
    if(!PyArray_DescrConverter(obj, &dtype)) {
        throw ConversionError(ssprintf("can not convert to np.dtype from %s",
                    repr_pyobj(obj).c_str()));
    }

    mgb::DType result = dtype_np2mgb_descr(dtype);
    Py_DECREF(dtype);
    return result;
}

PyObject* npy::to_mgb_supported_dtype(PyObject* dtype) {
    PYTHON_GIL;

    PyArray_Descr* descr;
    if (!PyArray_DescrConverter(dtype, &descr)) {
        throw ConversionError(ssprintf("can not convert to np.dtype from %s",
                                       repr_pyobj(dtype).c_str()));
    }
    mgb_assert(!descr->metadata,
               "unexpected metadata in dtype: "
               "dtype_obj=%s metadata=%s",
               repr_pyobj(dtype).c_str(), repr_pyobj(descr->metadata).c_str());
    int type_num = to_mgb_supported_dtype_raw(descr->type_num);
    return PyArray_TypeObjectFromType(type_num);
}

TensorShape npy::vec2shape(const std::vector<size_t> &vec) {
    TensorShape shape;
    mgb_assert(vec.size() <= TensorShape::MAX_NDIM,
            "dim too large: %zd (max %zd)",
            vec.size(), TensorShape::MAX_NDIM);
    shape.ndim = vec.size();
    for (size_t i = 0; i < vec.size(); i ++) {
        if (!vec[i]) {
            shape.ndim = 0;
            break;
        }
        shape[i] = vec[i];
    }
    mgb_assert(shape.ndim, "shape should not be empty");
    return shape;
}

void mgb_init_numpy() {
    import_array1( );
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}