megbrain_wrap.cpp 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/**
 * \file python_module/src/cpp/megbrain_wrap.cpp
 *
 * This file is part of MegBrain, a deep learning framework developed by Megvii.
 *
 * \copyright Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 */

#include "./megbrain_wrap.h"
#include "./python_helper.h"
#include "./megbrain_pubapi_internal.h"

#include "megbrain/version.h"
#include "megbrain/tensor.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/utility.h"
#include "megbrain/gopt/inference.h"
#include "megbrain/utils/thread.h"
#include "megbrain/utils/timer.h"

#include <cstring>
using namespace mgb;

namespace {
    bool g_global_finalize_called = false;

    /*!
     * \brief record the vars produced from user-created Host2DeviceCopy
     *
     * Note that the vars are mapped by address of underlying HostTensorND, so
     * in the case of partial execution, vars in the parent graph can be
     * retrieved from oprs in the sub graphs.
     */
    class UserInputVars final : public UserDataContainer::UserData {
        MGB_TYPEINFO_OBJ_DECL;

        //! we keep this mapping to handle multi-part compiling, where new
        //! graphs would be created and the var in the original graph is needed
        ThinHashMap<HostTensorND*, VarNode*> m_tensor2var;

    public:
        void register_var(SymbolVar x) {
            m_tensor2var[x.node()->owner_opr()
                                  ->cast_final_safe<opr::Host2DeviceCopy>()
                                  .host_data()
                                  .get()] = x.node();
        }

        //! get the corresponding var from an opr if it has been registered;
        //! return nullptr otherwise
        VarNode* check(cg::OperatorNodeBase* opr) const {
            if (opr->same_type<opr::Host2DeviceCopy>()) {
                auto ptr = opr->cast_final<opr::Host2DeviceCopy>()
                                   .host_data()
                                   .get();
                auto iter = m_tensor2var.find(ptr);
                return iter == m_tensor2var.end() ? nullptr : iter->second;
            }
            return nullptr;
        }

        static UserInputVars& get(ComputingGraph* graph) {
            return *graph->options()
                            .user_data.get_user_data_or_create<UserInputVars>();
        }
    };

    __attribute__((constructor))
    void global_init() {
        CompNode::enable_affinity_for_cpu(true);
    }
} // anonymous namespace

MGB_TYPEINFO_OBJ_IMPL(UserInputVars);

/* ================= SharedND =================  */

bool SharedND::sync(mgb::DeviceTensorND &dv) {
    if (m_copy_sync) {
        dv.sync();
        return true;
    }
    return false;
}

void SharedND::_set_init_shape(const std::vector<size_t> &shape) {
    mgb_assert(m_dev_tensor && m_dev_tensor->empty());
    m_dev_tensor->resize(npy::vec2shape(shape));
}

void SharedND::_resize(const std::vector<size_t> &shape) {
    auto tshp = npy::vec2shape(shape);
    if (m_dev_tensor) {
        m_dev_tensor->resize(tshp);
    } else {
        mgb_assert(m_var);
        m_var->shape_alloc(tshp);
    }
}

void SharedND::_reset_zero() {
    fill_zero_dev_tensor(*m_dev_tensor);
}

void SharedND::_copy_from_npyarr(PyObject *npyarr) {
    auto do_copy = [&](DeviceTensorND *dest, VarNode *var) {
        DType dtype = dest ? dest->dtype() : var->dtype();
        mgb_assert(dtype.valid());
        auto hv = npy::np2tensor(npyarr, npy::Meth::borrow(), dtype);
        if (var) {
            // only setup by assign(), by craniotome
            var->shape_alloc(hv.shape());
            dest = &var->mutable_dev_tensor();
        }
        if (!sync(dest->copy_from(hv))) {
            m_async_copy_refkeeper = hv;
        } else {
            m_async_copy_refkeeper = {};
        }
    };
    if (m_var) {
        mgb_assert(!m_dev_tensor);
        do_copy(nullptr, m_var);
    } else {
        mgb_assert(m_dev_tensor);
        do_copy(m_dev_tensor.get(), nullptr);
    }
}

PyObject* SharedND::_get_npyarr() {
    mgb_assert(m_dev_tensor);
    if (m_dev_tensor->empty())
        Py_RETURN_NONE;
    HostTensorND hv;
    hv.comp_node(CompNode::default_cpu())
        .copy_from(*m_dev_tensor)
        .sync();
    return npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE);
}

PyObject* SharedND::_get_dtype() {
    mgb_assert(m_dev_tensor);
    return npy::dtype_mgb2np(m_dev_tensor->dtype());
}

void SharedND::_copy_from_value_proxy(CompGraphCallbackValueProxy &value) {
    if (value.eager_copy()) {
        mgb_log_warn("copy from eager-copied CompGraphCallbackValueProxy into"
                " SharedND; consider using callback_lazycopy; traceback:\n%s",
                PyStackExtracter::run().c_str());
    }

    if (m_var) {
        mgb_assert(!m_dev_tensor);
        auto &&src = value.dev_tensor();
        m_var->shape_alloc(src.shape()).
            mutable_dev_tensor().copy_from(src);
    } else {
        mgb_assert(m_dev_tensor);
        sync(m_dev_tensor->copy_from(value.dev_tensor()));
    }
}

void SharedND::_share_from_value_proxy(CompGraphCallbackValueProxy& value) {
    if (value.eager_copy()) {
        mgb_log_warn(
                "share value from eager-copied CompGraphCallbackValueProxy into"
                " SharedND; consider using callback_lazycopy; traceback:\n%s",
                PyStackExtracter::run().c_str());
    }

    if (m_var) {
        mgb_assert(!m_dev_tensor);
        m_var->reset_dev_tensor_from_tensor(value.dev_tensor());
    } else {
        mgb_assert(m_dev_tensor);
        *m_dev_tensor = value.dev_tensor();
    }
}

SharedND SharedND::_from_symvar(SymbolVar symvar) {
    auto opr = symvar.node()->owner_opr();
    if (auto vsnd = opr->try_cast_final<opr::VolatileSharedDeviceTensor>()) {
        return SharedND(vsnd->dev_data());
    }
    if (auto snd = opr->try_cast_final<opr::SharedDeviceTensor>()) {
        return SharedND(snd->dev_data());
    }
    mgb_throw(MegBrainError, "cannot convert from %s", opr->dyn_typeinfo()->name);
}

uintptr_t SharedND::_pubapi_dev_tensor_ptr(int version) {
    DeviceTensorND *dv;
    if (m_dev_tensor) {
        mgb_assert(!m_var);
        dv = m_dev_tensor.get();
    } else {
        mgb_assert(m_var);
        dv = nullptr;
    }
    void *ret;
    if (version == 0) {
        if (dv) {
            ret = dv->raw_ptr();
        } else {
            ret = m_var->dev_tensor().raw_ptr();
        }
    } else {
        init_pubapi_dev_tensor(m_pubapi_dev_tensor, dv, m_var, false);
        ret = &m_pubapi_dev_tensor;
    }
    return reinterpret_cast<uintptr_t>(ret);
}

SymbolVar SharedND::_as_sym_var(CompGraph &cg, const std::string &name,
        bool volatile_) {
    mgb_assert(m_dev_tensor);
    OperatorNodeConfig config;
    if (!name.empty())
        config.name(name);
    if (volatile_) {
        return opr::VolatileSharedDeviceTensor::make(cg.get(), m_dev_tensor,
                config);
    } else {
        return opr::SharedDeviceTensor::make(cg.get(), m_dev_tensor, config);
    }
}

std::vector<size_t> SharedND::_get_shape(){
    if (m_var) {
        mgb_assert(!m_dev_tensor);
        return npy::shape2vec(m_var->shape());
    }
    mgb_assert(m_dev_tensor);
    return npy::shape2vec(m_dev_tensor->shape());
}

void SharedND::copy_to_sub_from_shared(
        int axis, ptrdiff_t begin, ptrdiff_t end, ptrdiff_t step,
        const SharedND &rhs) {
    mgb_assert(m_dev_tensor && rhs.m_dev_tensor);
    auto sub = m_dev_tensor->sub(
            Slice(begin, end, step).apply(m_dev_tensor->layout(), axis));
    sub.copy_from_fixlayout(*rhs.m_dev_tensor).sync();

}

void SharedND::copy_from_shared_sub(const SharedND &rhs,
        int axis, ptrdiff_t begin, ptrdiff_t end, ptrdiff_t step) {
    mgb_assert(m_dev_tensor && rhs.m_dev_tensor);
    if (axis == -3) {
        sync(m_dev_tensor->copy_from_fixlayout(*rhs.m_dev_tensor));
    } else if (axis == -2) {
        sync(m_dev_tensor->copy_from(*rhs.m_dev_tensor));
    } else {
        auto sub = rhs.m_dev_tensor->sub(
                Slice(begin, end, step).apply(
                    rhs.m_dev_tensor->layout(), axis));
        sync(m_dev_tensor->copy_from(sub));
    }
}

void SharedND::_check_before_share_memory(const SharedND& rhs) {
    mgb_assert(rhs.m_dev_tensor);
    mgb_assert(m_dev_tensor);
    mgb_assert(rhs.m_dev_tensor->dtype() == m_dev_tensor->dtype());
    mgb_assert(rhs.m_dev_tensor->comp_node() == m_dev_tensor->comp_node());
}

void SharedND::_share_memory_from(const SharedND& rhs, size_t begin) {
    _check_before_share_memory(rhs);
    m_dev_tensor->reset(
        rhs.m_dev_tensor->storage().sub(m_dev_tensor->dtype().size() * begin),
        m_dev_tensor->layout());
}

void SharedND::_reset_dev_tensor(const SharedND &rhs) {
    _check_before_share_memory(rhs);
    *m_dev_tensor = *(rhs.m_dev_tensor);
}

/* ================= _HostSharedND =================  */

void _HostSharedND::ensure_own_storage() {
    if (!m_own_storage) {
        mgb_assert(m_tensor);
        HostTensorND val{m_tensor->comp_node(), m_tensor->dtype()};
        if (!m_tensor->empty()) {
            val.resize(m_tensor->shape());
        }
        *m_tensor = std::move(val);
        m_own_storage = true;
    }
}

void _HostSharedND::_resize(const std::vector<size_t> &shape) {
    ensure_own_storage();
    m_tensor->resize(npy::vec2shape(shape));
}

void _HostSharedND::_copy_from_npyarr(PyObject *npyarr, bool borrow) {
    mgb_assert(m_tensor);
    mgb_assert(m_tensor->dtype().valid());
    if (!m_borrow_on_cpu &&
            m_tensor->comp_node().device_type() == CompNode::DeviceType::CPU) {
        borrow = false;
    }
    if (borrow) {
        auto val = npy::np2tensor(
                npyarr, npy::Meth::borrow(m_tensor->comp_node()),
                m_tensor->dtype());
        m_own_storage = false;
        *m_tensor = std::move(val);
    } else {
        ensure_own_storage();
        npy::np2tensor(npyarr,
                npy::Meth::copy_into(m_tensor.get()), m_tensor->dtype());
    }
}

SymbolVar _HostSharedND::_as_sym_var(CompGraph &cg, bool enable_static_infer,
        const std::string &name) {
    if (m_tensor->empty())
        cg.get().options().allocate_static_mem_after_graph_compile = false;

    OperatorNodeConfig config;
    if (!name.empty())
        config.name(name);

    SymbolVar ret;
    if (enable_static_infer) {
        ret = opr::Host2DeviceCopy::make(cg.get(), m_tensor, config);
    } else {
        ret = opr::Host2DeviceCopy::make_no_value_infer(cg.get(), m_tensor,
                config);
    }
    UserInputVars::get(&cg.get()).register_var(ret);
    return ret;
}

_HostSharedND _HostSharedND::make_proxy(SymbolVar var) {
    auto &&opr = var.node()->owner_opr()->
       cast_final_safe<opr::Host2DeviceCopy>();
    _HostSharedND rst{var.node()->comp_node(), var.dtype()};
    rst.m_tensor = opr.host_data();
    rst.m_proxied_opr = &opr;
    return rst;
}

std::string _HostSharedND::__repr__() const {
    if (m_proxied_opr) {
        return ssprintf("<HostSharedND proxy at %p for %s>",
                this, m_proxied_opr->cname());
    }
    return ssprintf("<HostSharedND at %p>", this);
}

PyObject* _HostSharedND::_get_dtype() {
    mgb_assert(m_tensor);
    return npy::dtype_mgb2np(m_tensor->dtype());
}

/* ================= CompGraphCallbackValueProxy =================  */

CompGraphCallbackValueProxy
CompGraphCallbackValueProxy::make_raw_host_value_proxy(
        const mgb::HostTensorND &hv) {
    CompGraphCallbackValueProxy ret;
    ret.m_use_raw_hv = true;
    ret.m_hv = hv;
    ret.m_is_active = true;
    return ret;
}

void CompGraphCallbackValueProxy::setup(
        const mgb::DeviceTensorND &val, bool eager_copy) {

    while (__atomic_load_n(&m_is_active, __ATOMIC_SEQ_CST)) {
        // wait for previous callback to finish
        std::this_thread::yield();
    }

    mgb_assert(!m_use_raw_hv && val.shape_valid());
    m_eager_copy = eager_copy;
    m_dev_value = val;
    if (eager_copy) {
        m_value_used = false;
        do_copy();
    } else {
        m_value_used = true;
    }

    __atomic_store_n(&m_is_active, true, __ATOMIC_SEQ_CST);
}

void CompGraphCallbackValueProxy::do_copy() {
    mgb_assert(!m_use_raw_hv && m_dev_value.shape_valid());
    m_hv.copy_from(m_dev_value);
    auto cn = m_hv.comp_node();
    if (!m_copy_event)
        m_copy_event = cn.create_event();
    m_copy_event->record();
}

407 408 409 410 411 412
#if defined(WIN32)
#include <windows.h>
#include <stdio.h>
#undef CONST
#define usleep Sleep
#endif
413
void CompGraphCallbackValueProxy::sync() const {
414 415 416 417
    mgb_assert(!m_use_raw_hv);
    RealTimer t0;
    double next_warn_time = 2, warn_time_delta = 1;
    while (!m_copy_event->finished()) {
418
        //! sleep 1ms or sleep 1us no difference for performance on win32
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        usleep(1);
        if (t0.get_secs() >= next_warn_time) {
            mgb_log_warn("wait d2h copy for more than %.3f secs",
                    t0.get_secs());
            next_warn_time += warn_time_delta;
            warn_time_delta += 1;
        }
    }
}

void CompGraphCallbackValueProxy::on_finished() {
    mgb_assert(m_is_active && !m_use_raw_hv);
    m_dev_value = {};
    if (m_hv.shape_valid()) {
        m_hv.resize({});    // resize to reuse buffer
    }
    __atomic_store_n(&m_is_active, false, __ATOMIC_SEQ_CST);
    if (!m_value_used) {
        mgb_log_warn("computing graph callback did not read the value");
    }
}

PyObject* CompGraphCallbackValueProxy::_get_npyarr() {
    mgb_assert(m_is_active);

    if (!m_use_raw_hv) {
        mgb_assert(m_dev_value.shape_valid());
        if (!m_hv.shape_valid()) {
            do_copy();
            sync();
        }
    }
    m_value_used = true;
    return npy::ndarray_from_tensor(m_hv, npy::ShareType::TRY_SHARE);
}

PyObject* CompGraphCallbackValueProxy::_get_dtype() {
    mgb_assert(m_is_active);

    if (m_use_raw_hv)
        return npy::dtype_mgb2np(m_hv.dtype());

    mgb_assert(m_dev_value.shape_valid());
    return npy::dtype_mgb2np(m_dev_value.dtype());
}

std::vector<size_t> CompGraphCallbackValueProxy::_get_shape() {
    mgb_assert(m_is_active);

    if (m_use_raw_hv)
        return npy::shape2vec(m_hv.shape());

    mgb_assert(m_dev_value.shape_valid());
    return npy::shape2vec(m_dev_value.shape());
}

uintptr_t CompGraphCallbackValueProxy::_pubapi_dev_tensor_ptr(int version) {
    mgb_assert(m_is_active && !m_use_raw_hv);
    mgb_assert(m_dev_value.shape_valid());
    void *ret;
    if (version == 0) {
        ret = m_dev_value.raw_ptr();
    } else {
        init_pubapi_dev_tensor(
                m_pubapi_dev_tensor, &m_dev_value, nullptr, true);
        ret = &m_pubapi_dev_tensor;
    }
    return reinterpret_cast<uintptr_t>(ret);
}

mgb::CompNode CompGraphCallbackValueProxy::_get_comp_node() {
    mgb_assert(m_is_active && !m_use_raw_hv);
    mgb_assert(m_dev_value.shape_valid());
    return m_dev_value.comp_node();
}

/* ================= AsyncExec =================  */

class AsyncExec::Core {
    public:
        Core(std::unique_ptr<mgb::cg::AsyncExecutable> f):
            m_func(std::move(f))
        {
        }

        mgb::cg::AsyncExecutable* func() const {
            return m_func.get();
        }

        struct CallbackParam {
            std::vector<CompGraphCallbackValueProxy> value;
            _CompGraphCallback *cb;
        };

        void dispatch_callback(const CallbackParam &param) {
            m_worker.add_task(param);
        }

        void wait_callback_finish() {
            m_worker.wait_all_task_finish();
        }

    private:
        std::unique_ptr<mgb::cg::AsyncExecutable> m_func;

        class Worker final: public AsyncQueueSC<CallbackParam, Worker> {
            public:
526
                void process_one_task(const CallbackParam &task) {
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
                    for (auto &tmp_value: task.value) {
                        tmp_value.sync();
                    }
                    task.cb->call_pycb();
                }
        };
        Worker m_worker;
};

AsyncExec::AsyncExec(std::unique_ptr<mgb::cg::AsyncExecutable> f):
    m_core(std::make_shared<Core>(std::move(f)))
{
}

AsyncExec::~AsyncExec() {
    if (m_core)
        _wait();
}

AsyncExec::Core* AsyncExec::core() const {
    return m_core.get();
}

void AsyncExec::_execute() {
    m_core->func()->execute();
}

std::string AsyncExec::_to_json_str() {
    auto jv = m_core->func()->to_json();
    return jv->to_string();
}

void AsyncExec::_wait() {
    m_core->wait_callback_finish();
    m_core->func()->wait();
}

double AsyncExec::_get_prev_exec_time() {
    return m_core->func()->get_prev_exec_time();
}

SymbolVarArray AsyncExec::_find_mutable_input() {
    ThinHashSet<VarNode*> used_set;
    UserInputVars* user_vars = nullptr;
    auto cb = [&](cg::OperatorNodeBase* opr) {
        if (!user_vars) {
            ComputingGraph* g;
            if (m_multi_part_par_graph)
                g = m_multi_part_par_graph.get();
            else
                g = opr->owner_graph();
            user_vars = &UserInputVars::get(g);
        }
        if (auto var = user_vars->check(opr)) {
            used_set.insert(var);
        }
        return true;
    };
    m_core->func()->iter_opr_seq(cb);
    for (auto i : m_core->func()->get_rt_static_source_deps()) {
        cb(i.dest->owner_opr());
    }
    SymbolVarArray ret;
    ret.reserve(used_set.size());
    ret.insert(ret.begin(), used_set.begin(), used_set.end());
    return ret;
}

void AsyncExec::clear_device_memory() {
    _wait();
    m_core->func()->clear_device_memory();
}

std::vector<std::pair<CompNode, size_t>>
AsyncExec::_update_static_alloc_plan_and_get_size() {
    std::vector<std::pair<CompNode, size_t>> ret;
    for (auto&& i : m_core->func()->update_static_alloc_plan_and_get_size()) {
        ret.emplace_back(i.first, i.second);
    }
    return ret;
}

/* ================= _CompGraphCallback =================  */

void _CompGraphCallback::set_async_exec(const AsyncExec &ae)  {
    mgb_assert(!m_ae_core);
    m_ae_core = ae.core();
}

void _CompGraphCallback::set_eager_copy(bool flag) {
    mgb_assert(!m_cb_created);
    m_eager_copy = flag;
}

std::function<void(mgb::SmallVector<mgb::DeviceTensorND> &)> _CompGraphCallback::make_multi_input_callback() {
    mgb_assert(!m_cb_created);
    m_cb_created = true;

    // shared_ptr would delete this afterwards
    std::shared_ptr <_CompGraphCallback> self(this);

    auto cb = [self](SmallVector <mgb::DeviceTensorND> &data) {
        for (size_t i = self->m_value_proxies.size(); i < data.size(); ++i) {
            self->m_value_proxies.emplace_back();
        }
        if (self->m_eager_copy) {
            mgb_assert(self->m_ae_core);
            for (size_t i = 0; i < self->m_value_proxies.size(); ++i) {
                self->m_value_proxies[i].setup(data[i], true);
            }
            self->m_ae_core->dispatch_callback(
                    AsyncExec::Core::CallbackParam{self->m_value_proxies, self.get()}
            );
        } else {
            for (size_t i = 0; i < self->m_value_proxies.size(); ++i)
                self->m_value_proxies[i].setup(data[i], false);
            self->call_pycb();
        }
    };

    return cb;
}

std::function<void(mgb::DeviceTensorND &)> _CompGraphCallback::make_callback() {
    this->m_value_proxies.emplace_back();
    mgb_assert(!m_cb_created);
    m_cb_created = true;

    // shared_ptr would delete this afterwards
    std::shared_ptr <_CompGraphCallback> self(this);

    auto cb = [self](mgb::DeviceTensorND &data) {
        if (self->m_eager_copy) {
            mgb_assert(self->m_ae_core);
            self->m_value_proxies[0].setup(data, true);
            self->m_ae_core->dispatch_callback(
                    AsyncExec::Core::CallbackParam{self->m_value_proxies, self.get()}
            );
        } else {
            self->m_value_proxies[0].setup(data, false);
            self->call_pycb();
        }
    };

    return cb;
}

void _CompGraphCallback::call_pycb() {
    try {
        call(m_value_proxies);
    } catch (...) {
        for(auto &m_value_proxy: m_value_proxies) {
            m_value_proxy.on_finished();
        }
        throw;
    }
    for(auto &m_value_proxy: m_value_proxies) {
        m_value_proxy.on_finished();
    }
}

/* ================= CompGraph =================  */

class CompGraph::PyUserData final: public UserDataContainer::UserData,
                                   public NonCopyableObj {
    MGB_TYPEINFO_OBJ_DECL;

    PyObject *m_obj;

    public:

        PyUserData() {
            PYTHON_GIL;
            m_obj = PyDict_New();
            mgb_assert(m_obj, "failed to create python object");
        }

        ~PyUserData() {
            PYTHON_GIL;
            Py_DECREF(m_obj);
        }

        PyObject* get() const {
            return m_obj;
        }
};
MGB_TYPEINFO_OBJ_IMPL(CompGraph::PyUserData);

mgb::ComputingGraph& CompGraph::get() const {
    if (m_comp_graph_own)
        return *m_comp_graph_own;
    auto &&val = m_comp_graph_borrow.lock();
    mgb_assert(val, "CompGraph has been destructed");
    return *val;
}

void CompGraph::clear_device_memory() {
    if (!m_comp_graph_own)
        return;
    m_comp_graph_own->clear_device_memory();
}

PyObject* CompGraph::_user_data() {
    auto ct = get().options().user_data.get_user_data_or_create<PyUserData>();
    auto ret = ct->get();
    PYTHON_GIL;
    Py_INCREF(ret);
    return ret;
}

void CompGraph::_add_output_spec(
        mgb::cg::SymbolVar &var, _CompGraphCallback *callback) {

    cg::ComputingGraph::Callback cb;
    if (callback) {
        cb = callback->make_callback();
        m_raw_callbacks.push_back({callback, m_out_specs.size() - 1});
    }
    if (m_out_specs.empty()) {
        m_out_specs.emplace_back();
    }
    m_out_specs.back().push_back({var, cb});
}

AsyncExec CompGraph::_do_compile(bool copy, bool optimize_for_inference) {
    mgb_assert(m_out_specs.size() == 1, "got %zu output specs for compile",
               m_out_specs.size());
    auto&& spec = m_out_specs[0];
    if (optimize_for_inference) {
        SymbolVarArray vars;
        vars.reserve(spec.size());
        for (auto&& i : spec) {
            vars.push_back(i.first);
        }
        vars = gopt::optimize_for_inference(vars, {});
        mgb_assert(vars.size() == spec.size());
        for (size_t i = 0; i < vars.size(); ++i) {
            spec[i].first = vars[i];
        }
    }

    std::unique_ptr<mgb::cg::AsyncExecutable> async_executable;
    if (get().options().eager_evaluation ||
        (copy && get().current_comp_seq())) {
        // need to copy a new comp graph
        SymbolVarArray vars;
        vars.reserve(spec.size());
        for (auto&& i : spec) {
            vars.emplace_back(i.first);
        }

        // copy graph
        auto new_graph = mgb::ComputingGraph::make();
        SymbolVarArray new_vars =
                replace_vars_comp_graph(std::move(vars), new_graph.get());
        mgb_assert(new_vars.size() == spec.size());

        // register input
        auto h2d = find_h2d(new_vars);
        for (auto&& i : h2d) {
            UserInputVars::get(new_graph.get()).register_var(i);
        }

        mgb::ComputingGraph::OutputSpec new_spec;
        new_spec.reserve(spec.size());
        for (size_t i = 0; i < spec.size(); ++i) {
            new_spec.emplace_back(mgb::ComputingGraph::OutputSpecItem{
                    new_vars[i], spec[i].second});
        }
        async_executable = new_graph->compile(new_spec);
    } else {
        async_executable = get().compile(spec);
    }

    AsyncExec ret{std::move(async_executable)};

    for (auto&& i : m_raw_callbacks) {
        mgb_assert(!i.second);
        i.first->set_async_exec(ret);
    }
    _clear_output_spec();
    return ret;
}

std::vector<AsyncExec> CompGraph::_do_compile_multi_part() {
    // last spec is empty due to an extra call to _add_multi_part_endpoint()
    mgb_assert(m_out_specs.size() > 1 && m_out_specs.back().empty(),
               "got %zu output specs for multi-part compile",
               m_out_specs.size());
    m_out_specs.pop_back();
    std::vector<AsyncExec> ret;
    ret.reserve(m_out_specs.size());
    auto graph = get().shared_from_this();
    for (auto&& i : graph->compile_multi_part(m_out_specs)) {
        ret.emplace_back(std::move(i));
    }
    for (auto&& i : ret) {
        i.set_multi_part_par_graph(graph);
    }
    for (auto&& i : m_raw_callbacks) {
        i.first->set_async_exec(ret.at(i.second));
    }
    _clear_output_spec();
    return ret;
}

/* ================= SharedScalar =================  */

SharedScalar::SharedScalar(PyObject *val):
    m_val{std::make_shared<DTypeScalar>()}
{
    _set(val);
}

HostTensorND& SharedScalar::val_as_host_nd() {
    if (m_val_as_host_nd.empty()) {
        HostTensorStorage storage;
        storage.reset(CompNode::default_cpu(), m_val->dtype().size(),
                      {m_val, static_cast<dt_byte*>(
                                      const_cast<void*>(m_val->storage()))});
        m_val_as_host_nd.reset(storage, {TensorShape{1}, m_val->dtype()});
    }
    return m_val_as_host_nd;
}

void SharedScalar::_set(PyObject *val) {
    auto tensor = npy::np2tensor(val, npy::Meth::borrow(), {});
    mgb_assert(tensor.layout().is_scalar(),
            "value given to SharedScalar must be scalar; got shape %s",
            tensor.shape().to_string().c_str());
    if (m_dtype_locked) {
        mgb_assert(tensor.dtype() == m_val->dtype(),
                "dtype for SharedScalar has been locked as %s, "
                "but attempt to set it to %s", m_val->dtype().name(),
                tensor.dtype().name());
    }
    m_val->set_raw(tensor.dtype(), tensor.raw_ptr());

    if (!m_dev_val.empty()) {
        auto &&hv = val_as_host_nd();
        for (auto &&i: m_dev_val)
            i.second->copy_from_fixlayout(hv);
    }
}

PyObject* SharedScalar::_get() {
    HostTensorND hv{CompNode::default_cpu(), TensorShape{1}, m_val->dtype()};
    memcpy(hv.raw_ptr(), m_val->storage(), m_val->dtype().size(1));
    return npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE);
}

SymbolVar SharedScalar::_as_sym_var(CompGraph &cg, mgb::CompNode &cn) {
    m_dtype_locked = true;
    auto &&dv = m_dev_val[cn];
    auto &&hv = val_as_host_nd();
    if (!dv) {
        dv = std::make_shared<DeviceTensorND>(cn);
        dv->copy_from(hv);
    }
    return opr::SharedDeviceTensor::make(cg.get(), dv,
            ssprintf("SharedScalar@%p", m_val.get()));
}

890 891 892 893 894
/* =============== Operator ===============  */

const std::unique_ptr<mgb::OprFootprint> Operator::sm_opr_footprint_ptr{
                                std::make_unique<mgb::OprFootprint>()};

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/* ================= misc =================  */

SymbolVar fill_retain_dtype(SymbolVar var, PyObject *value) {
    auto tensor = npy::np2tensor(value, npy::Meth::borrow(), {});
    mgb_assert(tensor.shape().is_scalar(),
            "value for fill_retain_dtype must be scalar; got shape %s",
            tensor.shape().to_string().c_str());
    switch (tensor.dtype().enumv()) {
#define cb(_dt) case DTypeTrait<_dt>::enumv: \
        static_assert(sizeof(DTypeTrait<_dt>::ctype) <= sizeof(int), \
                "bad dtype size"); \
        return var.fill_retain_dtype(static_cast<int>( \
                    *tensor.ptr<DTypeTrait<_dt>::ctype>()));
        MEGDNN_FOREACH_COMPUTING_DTYPE_INT(cb)
#undef cb
        case DTypeEnum::Float32:
            return var.fill_retain_dtype(*tensor.ptr<dt_float32>());
        case DTypeEnum::Float16:
            return var.fill_retain_dtype(
                    static_cast<float>(*tensor.ptr<dt_float16>()));
915 916 917
        case DTypeEnum::BFloat16:
            return var.fill_retain_dtype(
                    static_cast<float>(*tensor.ptr<dt_bfloat16>()));
918 919 920 921 922 923 924 925
        // TODO: What does this mean?
        case DTypeEnum::Quantized8Asymm:
        case DTypeEnum::QuantizedS32:
        case DTypeEnum::QuantizedS8:
        case DTypeEnum::Quantized4Asymm:
        case DTypeEnum::QuantizedS4:
        case DTypeEnum::Byte:
        case DTypeEnum::QuantizedS16:
M
Megvii Engine Team 已提交
926
        case DTypeEnum::Bool:
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
            break;
#define cb(low_bit, size) \
        case DTypeEnum::low_bit##size: \
            break;
MEGDNN_FOREACH_LOWBIT_DTYPE(cb)
#undef cb

    }
    throw ConversionError(ssprintf(
                "unsupported value dtype: %s", tensor.dtype().name()));
}

PyObject* get_symvar_inferred_value(mgb::SymbolVar symvar) {
    auto var = symvar.node();
    auto&& mgr = var->owner_graph()->static_infer_manager();
    using IT = cg::static_infer::InferType;
    auto it = mgr.get_infer_type(var);
    if (!(it.value & (IT::CONST | IT::RT_STATIC)))
        Py_RETURN_NONE;

    auto val = mgr.infer_value_fallible(var);
    if (!val)
        Py_RETURN_NONE;

    auto hv = HostTensorND::make_proxy(*val);
    return npy::ndarray_from_tensor(hv, npy::ShareType::MUST_UNSHARE);
}

void _mgb_global_finalize() {
    CompNode::finalize();
    g_global_finalize_called = true;
}

bool global_finalized() {
    return g_global_finalize_called;
}

std::vector<size_t> _get_mgb_version() {
    return {MGB_MAJOR, MGB_MINOR, MGB_PATCH, MGB_IS_DEV};
}

SymbolVarArray _grad(SymbolVar target, SymbolVarArray wrts,
        bool warn_mid_wrt, int use_virtual_grad,
        bool return_zero_for_nodep) {
    if (use_virtual_grad == -1) {
        use_virtual_grad = std::abs(
                target.node()->owner_graph()->options().graph_opt_level) >= 2;
    }

    if (use_virtual_grad) {
        mgb_assert(return_zero_for_nodep,
            "can't return a null var when using virtual grad opr");
        SymbolVarArray ret;
        ret.reserve(wrts.size());
        for (auto&& wrt : wrts) {
            ret.push_back(opr::VirtualGrad::make(target, wrt));
        }
        return ret;
    }
    return cg::grad(target, wrts, warn_mid_wrt, return_zero_for_nodep);
}

SymbolVar _inter_graph_trans_var(
        CompGraph &dest_graph, SymbolVar src) {
    auto &&graph = dest_graph.get();
    auto trans = mgb::cg::InterGraphVarTransformer::get(graph);
    mgb_assert(trans, "trans func on graph %p has not been setup", &graph);
    return trans->trans(src.node());
}

SymbolVar _get_graph_optimizer_replaced_var(SymbolVar src) {
    return gopt::GraphOptimizer::var_replace_lookup(src.node());
}

void mark_as_input(ComputingGraph* cg, SymbolVar var) {
    VarNode* node = var.node();
    mgb_assert(node->owner_graph() == cg);
    mgb_assert(node->owner_opr()->same_type<opr::Host2DeviceCopy>());
    UserInputVars::get(cg).register_var(var);
}

namespace {

void add_update_impl(const DeviceTensorND& dest,
        const DeviceTensorND& delta_nobrd,
        float alpha, float beta, float bias) {
    auto&& cn = dest.comp_node();
    using DT = CompNode::DeviceType;
    mgb_assert(cn == delta_nobrd.comp_node() &&
        (cn.device_type() == DT::CUDA || cn.device_type() == DT::CPU));
    mgb_assert(dest.dtype() == delta_nobrd.dtype());
    auto&& delta = delta_nobrd.sub(SubTensorSpec::make_from_offset_elem(
        delta_nobrd.layout().broadcast(dest.shape()), 0));
    cn.activate();
    if (!static_cast<bool>(alpha) && beta == 1 &&
            !static_cast<bool>(bias)) {
        dest.copy_from_fixlayout(delta);
    } else {
        auto&& handle = MegDNNHandle::get(
                CompNodeEnv::from_comp_node(cn)).handle();
        auto&& op = handle->create_operator<megdnn::AddUpdate>();
        op->param() = {alpha, beta, bias};
        op->exec(dest.as_megdnn(), delta.as_megdnn());
        if (cn.device_type() == DT::CPU && cn != CompNode::default_cpu()) {
            CompNodeEnv::from_comp_node(cn).cpu_env().dispatch(
                [p = op.release()] { delete p; }
            );
        }
    }
}

} // anonymous namespace

void _add_update_fastpath(SharedND& dest_, SharedND& delta_,
        float alpha, float beta, float bias) {
    auto&& dest = dest_.dev_tensor();
    auto&& delta = delta_.dev_tensor();
    add_update_impl(*dest, *delta, alpha, beta, bias);
}

void _add_update_fastpath(SharedND& dest_, CompGraphCallbackValueProxy& delta_,
        float alpha, float beta, float bias) {
    auto&& dest = dest_.dev_tensor();
    auto&& delta = delta_.dev_tensor();
    add_update_impl(*dest, delta, alpha, beta, bias);
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}