tensor.py 25.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools
import math
from itertools import accumulate
from typing import Iterable, List, Optional, Sequence, Tuple, Union

import numpy as np

from ..core._imperative_rt import CompNode
from ..core.ops import builtin
from ..core.ops._internal import param_defs as P
from ..core.ops.special import Const
from ..core.tensor.core import TensorBase, TensorWrapperBase, apply
from ..core.tensor.utils import (
    astensor1d,
    convert_inputs,
    convert_single_value,
    dtype_promotion,
    get_device,
)
from ..device import get_default_device
from ..tensor import Tensor
from .elemwise import ceil

__all__ = [
    "add_axis",  # expand_dims
    "arange",
    "broadcast",
    "concat",
    "cond_take",
    "dimshuffle",  # transpose, permute
    "expand_dims",
    "full",
    "full_like",
    "gather",
    "eye",
    "linspace",
    "ones",
    "ones_like",
    "remove_axis",  # squeeze
    "split",
    "squeeze",
    "stack",
    "reshape",
    "scatter",
    "where",
    "zeros",
    "zeros_like",
    "param_pack_split",
    "param_pack_concat",
]


def eye(n: int, *, dtype=None, device: Optional[CompNode] = None) -> Tensor:
    """
    Returns a 2D tensor with ones on the diagonal and zeros elsewhere.

    :param n: The number of rows
    :param m: The number of columns. Default: None
    :param dtype: The data type. Default: None
    :param device: Compute node of the matrix. Default: None
    :param comp_graph: Compute graph of the matrix. Default: None
    :return: The eye matrix

    Examples:

    .. testcode::

        import numpy as np
        import megengine.functional as F

        data_shape = (4, 6)
        n, m = data_shape
        out = F.eye(n, m, dtype=np.float32)
        print(out.numpy())

    Outputs:

    .. testoutput::

        [[1. 0. 0. 0. 0. 0.]
         [0. 1. 0. 0. 0. 0.]
         [0. 0. 1. 0. 0. 0.]
         [0. 0. 0. 1. 0. 0.]]

    """
    op = builtin.Eye(k=0, dtype=dtype, comp_node=device)
    (result,) = apply(op, Tensor(n, dtype="int32", device=device))
    return result


def full(shape, value, dtype="float32", device=None):
    if device is None:
        device = get_default_device()
    (x,) = Const(value, dtype=dtype, device=device)(
        Tensor(value, dtype=dtype, device=device)
    )
    return broadcast(x, shape)


def ones(shape, dtype="float32", device=None):
    return full(shape, 1.0, dtype=dtype, device=device)


def zeros(shape, dtype="float32", device=None):
    return full(shape, 0.0, dtype=dtype, device=device)


def zeros_like(inp: Tensor) -> Tensor:
    r"""
    Returns a zero tensor with the same shape as input tensor

    :param inp: input tensor

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F

        inp = tensor(np.arange(1, 7, dtype=np.int32).reshape(2,3))
        out = F.zeros_like(inp)
        print(out.numpy())

    .. testoutput::

        [[0 0 0]
         [0 0 0]]

    """
    return zeros(inp.shape, dtype=inp.dtype, device=inp.device)


def ones_like(inp: Tensor) -> Tensor:
    r"""
    Returns a identity tensor with the same shape as input tensor
    """
    return ones(inp.shape, dtype=inp.dtype, device=inp.device)


def full_like(inp: Tensor, value: Union[int, float]) -> Tensor:
    r"""
    Returns a tensor filled with value val with the same shape as input tensor
    """
    return full(inp.shape, value, dtype=inp.dtype, device=inp.device)


def broadcast(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
    """
    Broadcast a tensor to ``shape``

    :param inp: The input tensor
    :param shape: The target shape
    :return: The output tensor

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F

        data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
        out = F.broadcast(data, (4, 2, 3))
        print(out.numpy())

    Outputs:

    .. testoutput::

        [[[0. 1. 2.]
          [3. 4. 5.]]

         [[0. 1. 2.]
          [3. 4. 5.]]

         [[0. 1. 2.]
          [3. 4. 5.]]

         [[0. 1. 2.]
          [3. 4. 5.]]]

    """
    shape = astensor1d(shape, inp, dtype="int32", device=inp.device)
    (result,) = apply(builtin.Broadcast(), inp, shape)
    return result


def concat(
    inps: Iterable[Tensor], axis: int = 0, device: Optional[CompNode] = None,
) -> Tensor:
    r"""
    Concat some tensors

    :param inps: Input tensors to concat
    :param axis: the dimension over which the tensors are concatenated. Default: 0
    :param device: The comp node output on. Default: None
    :param comp_graph: The graph in which output is. Default: None
    :return: The output tensor

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F

        data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
        data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
        out = F.concat([data1, data2])
        print(out.numpy())

    Outputs:

    .. testoutput::

        [[ 0.  1.  2.]
         [ 3.  4.  5.]
         [ 6.  7.  8.]
         [ 9. 10. 11.]]

    """
    dtype = dtype_promotion(inps)
    device = get_device(inps)

    def convert(x):
        return convert_single_value(x, inps, dtype=dtype)

    inps = tuple(map(convert, inps))
    (result,) = apply(builtin.Concat(axis=axis, comp_node=device.to_c()), *inps)
    return result


def stack(inps, axis=0):
    """Concats a sequence of tensors along a new axis.
    The input tensors must have the same shape.

    :param inps: The input tensors.
    :param axis: Which axis will be concatenated.
    :return: The output concatenated tensor.

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F

        x1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
        x2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
        out = F.stack([x1, x2], axis=0)
        print(out.numpy())

    Outputs:

    .. testoutput::

        [[[ 0.  1.  2.]
          [ 3.  4.  5.]]

         [[ 6.  7.  8.]
          [ 9. 10. 11.]]]

    """
    shapes = {arr.shape for arr in inps}
    if len(shapes) != 1:
        raise ValueError("All input tensors must have the same shape")

    inps = [add_axis(inp, axis=axis) for inp in inps]
    return concat(inps, axis=axis)


def split(inp, nsplits_or_sections, axis=0):
    """Splits the input tensor into several smaller tensors.
    When nsplits_or_sections is int, the last tensor may be smaller than others.

    :param inp: The input tensor.
    :param nsplits_or_sections: Number of sub tensors or section information list.
    :param axis: Which axis will be splited.
    :return: The output tensor list.

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F

        x = tensor(np.random.random((2,3,4,5)), dtype=np.float32)
        out = F.split(x, 2, axis=3)
        print(out[0].shape, out[1].shape)

    Outputs:

    .. testoutput::

        (2, 3, 4, 3) (2, 3, 4, 2)

    """
    sub_tensors = []
    sections = []

    def swapaxis(inp, src, dst):
        if src == dst:
            return inp
        shape = [i for i in range(len(inp.shape))]
        shape[src] = dst
        shape[dst] = src
        return inp.transpose(shape)

    inp = swapaxis(inp, 0, axis)

    if isinstance(nsplits_or_sections, int):
        incr_step = math.ceil(inp.shape[0] / nsplits_or_sections)
        while incr_step < inp.shape[0]:
            sections.append(incr_step)
            incr_step += nsplits_or_sections
    else:
        sections = nsplits_or_sections

    st = 0
    for se in sections:
        sub_tensors.append(swapaxis(inp[st:se], axis, 0))
        st = se

    if st < inp.shape[0]:
        sub_tensors.append(swapaxis(inp[st:], axis, 0))

    return sub_tensors


def _get_idx(index, axis):
    index_dims = len(index.shape)
    idx = []
    for i in range(index_dims):
        if i != axis:
            shape = [1] * index_dims
            shape[i] = index.shape[i]
            arange = linspace(
                0, index.shape[i] - 1, index.shape[i], device=index.device,
            )
            arange = (
                arange.reshape(*shape)
                .broadcast(index.shape)
                .reshape(-1)
                .astype(np.int32)
            )
            idx.append(arange)
        else:
            idx.append(index.reshape(-1))
    return tuple(idx)


def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor:
    r"""
    Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`.

    For a 3-D tensor, the output is specified by::

        out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0
        out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1
        out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2

    if :attr:`inp` is an n-dimensional tensor with size
    :math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i,
    then :attr:`index` must be an n-dimensional tensor with size
    :math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and
    output will have the same size as :attr:`index`.


    :param inp: the source tensor
    :param axis: the axis along which to index
    :param index: the indices of elements to gather

    Examples:

    .. testcode::

        import megengine.functional as F
        from megengine import tensor

        inp = tensor([
            [1,2], [3,4], [5,6],
        ])
        index = tensor([[0,2], [1,0]])
        oup = F.gather(inp, 0, index)
        print(oup.numpy())

    Outputs:

    .. testoutput::

        [[1 6]
         [3 2]]

    """
    input_shape = inp.shape
    index_shape = index.shape
    input_dims = len(input_shape)
    index_dims = len(index_shape)
    if input_dims != index_dims:
        raise ValueError(
            "The index tensor must have same dimensions as input tensor, "
            "But the input dims:{}, the index dims:{}".format(input_dims, index_dims)
        )

    if axis < 0 or axis >= input_dims:
        raise ValueError(
            "Index axis {} is output of bounds, should in range [0 {})".format(
                axis, input_dims
            )
        )

    for i in range(input_dims):
        if i != axis and input_shape[i] != index_shape[i]:
            raise ValueError(
                "The input {} and index {} must have the same size apart from axis {}".format(
                    input_shape, index_shape, axis
                )
            )

    idx = _get_idx(index, axis)
    return inp[idx].reshape(index.shape)  # pylint: disable=no-member


def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
    r"""
    Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor.

    For each value in :attr:`source`, its output index is specified by its index
    in :attr:`source` for ``axis != dimension`` and by the corresponding value in
    :attr:`index` for ``axis = dimension``.

    For a 3-D tensor, :attr:`inp` is updated as::

        inp[index[i][j][k]][j][k] = source[i][j][k]  # if axis == 0
        inp[i][index[i][j][k]][k] = source[i][j][k]  # if axis == 1
        inp[i][j][index[i][j][k]] = source[i][j][k]  # if axis == 2

    :attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions.

    It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)``
    for all dimensions ``d``.

    Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive.

    .. note::
        Please notice that, due to performance issues, the result is uncertain on the GPU device
        if scatter difference positions from source to the same destination position
        regard to index tensor.

        Show the case using the following examples, the oup[0][2] is maybe
        from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339
        if set the index[1][2] from 1 to 0.

    :param inp: the inp tensor which to be scattered
    :param axis: the axis along which to index
    :param index: the indices of elements to scatter
    :param source: the source element(s) to scatter

    Examples:

    .. testcode::

        import numpy as np
        import megengine.functional as F
        from megengine import tensor

        inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
        source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
        index = tensor([[0,2,0,2,1],[2,0,1,1,2]])
        oup = F.scatter(inp, 0, index,source)
        print(oup.numpy())

    Outputs:

    .. testoutput::

        [[0.9935 0.0718 0.2256 0.     0.    ]
         [0.     0.     0.5939 0.357  0.4396]
         [0.7723 0.9465 0.     0.8926 0.4576]]

    """
    input_shape = inp.shape
    index_shape = index.shape
    source_shape = source.shape
    input_dims = len(input_shape)
    index_dims = len(index_shape)
    source_dims = len(source_shape)

    if input_dims != index_dims or input_dims != source_dims:
        raise ValueError("The input, source and index tensor must have same dimensions")

    if axis < 0 or axis >= input_dims:
        raise ValueError(
            "Index axis {} is output of bounds, should in range [0 {})".format(
                axis, input_dims
            )
        )

    for i in range(source_dims):
        if source_shape[i] > input_shape[i]:
            raise ValueError(
                "The each shape size for source {} must be less than or equal to input {} ".format(
                    source_shape, input_shape
                )
            )

    for i in range(index_dims):
        if index_shape[i] != source_shape[i]:
            raise ValueError(
                "The each shape size for index {} must be equal to source {} ".format(
                    index_shape, source_shape
                )
            )

    for i in range(index_dims):
        if i != axis and index_shape[i] > input_shape[i]:
            raise ValueError(
                "The index {} must be less than or equal to input {} size apart from axis {}".format(
                    index_shape, input_shape, axis
                )
            )

    idx = _get_idx(index, axis)
    inp[idx] = source.flatten()
    return inp


def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
    r"""
    Select elements either from Tensor x or Tensor y, according to mask.

    .. math::

        \textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i

    :param mask: a mask used for choosing x or y
    :param x: the first choice
    :param y: the second choice

    Examples:

    .. testcode::

        from megengine import tensor
        import megengine.functional as F
561
        mask = tensor(np.array([[True, False], [False, True]], dtype=np.bool))
562 563 564 565 566 567 568 569 570 571 572 573 574
        x = tensor(np.array([[1, np.inf], [np.nan, 4]],
            dtype=np.float32))
        y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32))
        out = F.where(mask, x, y)
        print(out.numpy())

    Outputs:

    .. testoutput::

        [[1. 6.]
         [7. 4.]]
    """
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

    x, y = convert_inputs(x, y)
    if not isinstance(x, (TensorWrapperBase, TensorBase)):
        raise TypeError("input x must be a tensor")
    if not isinstance(y, (TensorWrapperBase, TensorBase)):
        raise TypeError("input y must be a tensor")
    if not isinstance(mask, (TensorWrapperBase, TensorBase)):
        raise TypeError("mask must be a tensor")
    if mask.dtype != np.bool_:
        raise ValueError("mask must be bool")
    if x.device != mask.device:
        raise ValueError("ambiguous device: {} vs {}".format(x.device, mask.device))

    v0, index0 = cond_take(mask, x)
    v1, index1 = cond_take(~mask, y)

    if v0.shape == (0,):
        out = v1
    elif v1.shape == (0,):
        out = v0
    else:
        out = concat([v0, v1])

    out[index0] = v0
    out[index1] = v1
    out = out.reshape(x.shape)
    return out
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948


def cond_take(mask: Tensor, x: Tensor) -> Tensor:
    r"""
    Take elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened.

    :param mask: condition param; must be the same shape with data
    :param x: input tensor from which to take elements

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F
        mask = tensor(np.array([[True, False], [False, True]], dtype=np.bool_))
        x = tensor(np.array([[1, np.inf], [np.nan, 4]],
            dtype=np.float32))
        v, index = F.cond_take(mask, x)
        print(v.numpy(), index.numpy())

    Outputs:

    .. testoutput::

        Tensor([1. 4.]) Tensor([0 3], dtype=int32)

    """
    if not isinstance(x, (TensorWrapperBase, TensorBase)):
        raise TypeError("input must be a tensor")
    if not isinstance(mask, (TensorWrapperBase, TensorBase)):
        raise TypeError("mask must be a tensor")
    if mask.dtype != np.bool_:
        raise ValueError("mask must be bool")
    if x.device != mask.device:
        raise ValueError("ambiguous device: {} vs {}".format(x.device, mask.device))

    op = builtin.CondTake()
    v, index = apply(op, x, mask)
    return v, index


def dimshuffle(inp: Tensor, pattern: Iterable[int]) -> Tensor:
    r"""
    Swap shapes and strides according to given pattern

    :param inp: Input tensor
    :param pattern: a list of integers including 0, 1, ... , ``ndim``-1, and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples:

        * (``'x'``) -> make a 0d (scalar) into a 1d vector
        * (0, 1) -> identity for 2d vectors
        * (1, 0) -> inverts the first and second dimensions
        * (``'x'``, 0) -> make a row out of a 1d vector (N to 1xN)
        * (0, ``'x'``) -> make a column out of a 1d vector (N to Nx1)
        * (2, 0, 1) -> AxBxC to CxAxB
        * (0, ``'x'``, 1) -> AxB to Ax1xB
        * (1, ``'x'``, 0) -> AxB to Bx1xA
        * (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A)

    :return: The output tensor

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F
        x = tensor(np.array([[1, 1], [0, 0]], dtype=np.int32))
        out = F.dimshuffle(x, (1, 0))
        print(out.numpy())

    Outputs:

    .. testoutput::

        [[1 0]
         [1 0]]

    """
    op = builtin.Dimshuffle(pattern)
    (inp,) = convert_inputs(inp)
    (result,) = apply(op, inp)
    return result


def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor:
    r"""
    Reshape a tensor to given target shape; total number of logical elements must
    remain unchanged

    :param inp: Input tensor
    :param target_shape: target shape, the components would be concatenated to form the
        target shape, and it can contain an element of -1 representing unspec_axis.

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F
        x = tensor(np.arange(12, dtype=np.int32))
        out = F.reshape(x, (3, 2, 2))
        print(out.numpy())

    Outputs:

    .. testoutput::

        [[[ 0  1]
          [ 2  3]]

         [[ 4  5]
          [ 6  7]]

         [[ 8  9]
          [10 11]]]

    """
    if isinstance(target_shape, (TensorBase, TensorWrapperBase)):
        target_shape = target_shape.numpy()
    target_shape = tuple(map(int, target_shape))
    unspec_axis = None
    for i, s in enumerate(target_shape):
        if s < 0:
            if s != -1:
                raise ValueError("expect shape[{}] >= -1, got {}".format(i, s))
            if unspec_axis is not None:
                raise ValueError("multiple -1 in shape: {} & {}".format(unspec_axis, i))
            unspec_axis = i

    # TODO: device should be None (cpu)
    (target_shape,) = Const(target_shape, dtype="int32", device=inp.device)(inp)
    if unspec_axis is None:
        op = builtin.Reshape()
    else:
        op = builtin.Reshape(unspec_axis=unspec_axis)
    (x,) = apply(op, inp, target_shape)
    return x


transpose = dimshuffle


AxisAddRemove = builtin.AxisAddRemove
AxisDesc = AxisAddRemove.AxisDesc


def add_axis(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor:
    r"""
    Add dimension before given axis.

    :param inp: Input tensor
    :param axis: Place of new axes
    :return: The output tensor

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F
        x = tensor([1, 2])
        out = F.add_axis(x, 0)
        print(out.shape)

    Outputs:

    .. testoutput::

        (1, 2)

    """
    Param = AxisAddRemove.Param

    def get_axes():
        try:
            return [int(axis)]
        except (TypeError, ValueError):
            pass
        return list(map(int, axis))

    axis = get_axes()
    ndim = inp.ndim + len(axis)
    axis = sorted(i + ndim if i < 0 else i for i in axis)

    param = Param(*map(AxisDesc.make_add, axis))
    op = AxisAddRemove(param=param)
    (result,) = apply(op, inp)
    return result


expand_dims = add_axis


def remove_axis(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor:
    r"""
    Remove dimension of shape 1.

    :param inp: Input tensor
    :param axis: Place of axis to be removed
    :return: The output tensor

    Examples:

    .. testcode::

        import numpy as np
        from megengine import tensor
        import megengine.functional as F
        x = tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1))
        out = F.remove_axis(x, 3)
        print(out.shape)

    Outputs:

    .. testoutput::

        (1, 1, 2)

    """
    Param = AxisAddRemove.Param

    def get_axes():
        if axis is None:
            return [i for i, s in enumerate(inp.shape) if s == 1]
        try:
            return [int(axis)]
        except (TypeError, ValueError):
            pass
        return list(map(int, axis))

    axis = get_axes()
    axis = sorted(i + inp.ndim if i < 0 else i for i in axis)
    axis = [a - i for i, a in enumerate(axis)]

    param = Param(*map(AxisDesc.make_remove, axis))
    op = AxisAddRemove(param=param)
    (result,) = apply(op, inp)
    return result


squeeze = remove_axis


def linspace(
    start: Union[int, float, Tensor],
    stop: Union[int, float, Tensor],
    num: Union[int, Tensor],
    dtype="float32",
    device: Optional[CompNode] = None,
) -> Tensor:
    r"""
    Return equally spaced numbers over a specified interval

    :param start: Starting value of the squence, shoule be scalar
    :param stop: The last value of the squence, shoule be scalar
    :param num: number of values to generate
    :param dtype: result data type
    :return: The generated tensor

    Examples:

    .. testcode::

        import numpy as np
        import megengine.functional as F

        a = F.linspace(3,10,5)
        print(a.numpy())

    .. testoutput::

        [ 3.    4.75  6.5   8.25 10.  ]

    """
    start = Tensor(start, device=device)
    stop = Tensor(stop, device=device)
    num = Tensor(num, device=device)

    device = device if device is None else device.to_c()
    op = builtin.Linspace(comp_node=device)
    (result,) = apply(op, start, stop, num)
    if np.dtype(dtype) == np.int32:
        return result.astype(dtype)
    return result


def arange(
    start: Union[int, float, Tensor],
    end: Union[int, float, Tensor],
    step: Union[int, float, Tensor] = 1,
    dtype="float32",
    device: Optional[CompNode] = None,
) -> Tensor:
    r"""
    Returns a Tensor with values from `start` to `end` with adjacent interval `step`

    :param start: starting value of the squence, shoule be scalar
    :param end: ending value of the squence, shoule be scalar
    :param step: the gap between each pair of adjacent values. Default 1
    :param dtype: result data type
    :return: The generated tensor

    Examples:

    .. testcode::

        import numpy as np
        import megengine.functional as F

        a = F.arange(1, 5, 1)
        print(a.numpy())

    .. testoutput::

        [1. 2. 3. 4.]

    """
    if isinstance(start, Tensor):
        start = start.astype("float32")
    if isinstance(end, Tensor):
        end = end.astype("float32")
    if isinstance(step, Tensor):
        step = step.astype("float32")
    num = ceil(Tensor((end - start) / step, device=device))
    stop = start + step * (num - 1)
    result = linspace(start, stop, num, device=device)
    if np.dtype(dtype) == np.int32:
        return result.astype(dtype)
    return result


def param_pack_split(inp: Tensor, offsets: List, shapes: List) -> Tensor:
    op = builtin.ParamPackSplit()
    op.offsets = offsets
    op.shapes = shapes
    return apply(op, inp)


def param_pack_concat(inps: List, offsets: Tensor, offsets_val: List) -> Tensor:
    op = builtin.ParamPackConcat()
    op.offsets = offsets_val
    return apply(op, *inps, offsets)[0]