test_trace_dump.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

import contextlib
import os
import tempfile

import numpy as np

import megengine as mge
import megengine.functional as F
import megengine.module as M
import megengine.optimizer as optim
from megengine import tensor
from megengine.jit import trace


@contextlib.contextmanager
def mkstemp():
    fd, path = tempfile.mkstemp()
    try:
        os.close(fd)
        yield path
    finally:
        os.remove(path)


def minibatch_generator(batch_size):
    while True:
        inp_data = np.zeros((batch_size, 2))
        label = np.zeros(batch_size, dtype=np.int32)
        for i in range(batch_size):
            inp_data[i, :] = np.random.rand(2) * 2 - 1
            label[i] = 1 if np.prod(inp_data[i]) < 0 else 0
        yield {"data": inp_data.astype(np.float32), "label": label.astype(np.int32)}


class XORNet(M.Module):
    def __init__(self):
        self.mid_dim = 14
        self.num_class = 2
        super().__init__()
        self.fc0 = M.Linear(self.num_class, self.mid_dim, bias=True)
        self.fc1 = M.Linear(self.mid_dim, self.mid_dim, bias=True)
        self.fc2 = M.Linear(self.mid_dim, self.num_class, bias=True)

    def forward(self, x):
        x = self.fc0(x)
        x = F.tanh(x)
        x = self.fc1(x)
        x = F.tanh(x)
        x = self.fc2(x)
        return x


def test_xornet_trace_dump():
    net = XORNet()
    opt = optim.SGD(net.parameters(requires_grad=True), lr=0.01, momentum=0.9)
    batch_size = 64
    train_dataset = minibatch_generator(batch_size)
    val_dataset = minibatch_generator(batch_size)

    @trace
    def train_fun(data, label):
        with opt.record():
            net.train()
            pred = net(data)
            loss = F.cross_entropy_with_softmax(pred, label)
            opt.backward(loss)
        return pred, loss

    @trace
    def val_fun(data, label):
        net.eval()
        pred = net(data)
        loss = F.cross_entropy_with_softmax(pred, label)
        return pred, loss

    @trace(symbolic=True, capture_as_const=True)
    def pred_fun(data):
        net.eval()
        pred = net(data)
        pred_normalized = F.softmax(pred)
        return pred_normalized

    train_loss = []
    val_loss = []
    for step, minibatch in enumerate(train_dataset):
        if step > 100:
            break
        data = tensor(minibatch["data"])
        label = tensor(minibatch["label"])
        opt.zero_grad()
        _, loss = train_fun(data, label)
        train_loss.append((step, loss.numpy()))
        if step % 50 == 0:
            minibatch = next(val_dataset)
            _, loss = val_fun(data, label)
            loss = loss.numpy()[0]
            val_loss.append((step, loss))
            print("Step: {} loss={}".format(step, loss))
        opt.step()

    test_data = np.array(
        [
            (0.5, 0.5),
            (0.3, 0.7),
            (0.1, 0.9),
            (-0.5, -0.5),
            (-0.3, -0.7),
            (-0.9, -0.1),
            (0.5, -0.5),
            (0.3, -0.7),
            (0.9, -0.1),
            (-0.5, 0.5),
            (-0.3, 0.7),
            (-0.1, 0.9),
        ]
    )

    data = tensor(test_data.astype(np.float32))
    out = pred_fun(data)
    pred_output = out.numpy()
    pred_label = np.argmax(pred_output, 1)

    with np.printoptions(precision=4, suppress=True):
        print("Predicated probability:")
        print(pred_output)

    with mkstemp() as out:
        pred_fun.dump(out, arg_names=["data"], output_names=["label"])