strategy.cpp 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/**
 * \file dnn/src/aarch64/matrix_mul/fp32/strategy.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/aarch64/matrix_mul/fp32/strategy.h"
#include "src/aarch64/matrix_mul/fp32/kernel_general_4x16.h"
#include "src/aarch64/matrix_mul/fp32/kernel_general_8x12.h"
15
#include "src/aarch64/matrix_mul/fp32/kernel_mk4_8x12.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#include "src/common/utils.h"

using namespace megdnn;
using namespace aarch64;
using namespace aarch64::matmul;

MEGDNN_REG_GEMM_STRATEGY_IMPL(sgemm_4x16);

void sgemm_4x16::pack_A(float* out, const float* in, int ldin, int y0,
                        int ymax, int k0, int kmax, bool transpose_A) const {
    if (transpose_A) {
        matmul_general_4x16::sgemm_4x16_pack_A_t(out, in, ldin, y0, ymax, k0, kmax);
    } else {
        matmul_general_4x16::sgemm_4x16_pack_A_n(out, in, ldin, y0, ymax, k0, kmax);
    }
}

void sgemm_4x16::pack_B(float* out, const float* in, int ldin, int x0, int xmax,
                        int k0, int kmax, bool transpose_B) const {
    if (transpose_B) {
        matmul_general_4x16::sgemm_4x16_pack_B_t(out, in, ldin, x0, xmax, k0, kmax);
    } else {
        matmul_general_4x16::sgemm_4x16_pack_B_n(out, in, ldin, x0, xmax, k0, kmax);
    }
}

void sgemm_4x16::kern(const float* packA, const float* packB,
                      size_t M, size_t N, size_t K, float* C, size_t LDC,
                      bool is_first_k, const float*, float*) const {
    megdnn_assert(A_dtype.enumv() == B_dtype.enumv() &&
                  A_dtype.enumv() == C_dtype.enumv() &&
                  A_dtype.enumv() == DTypeEnum::Float32);
    MEGDNN_MARK_USED_VAR(A_dtype);
    MEGDNN_MARK_USED_VAR(B_dtype);
    MEGDNN_MARK_USED_VAR(C_dtype);

    constexpr size_t A_INTERLEAVE = 4;
    constexpr size_t B_INTERLEAVE = 16;
    const int K16 = K * 16;
    const int K4 = K * 4;

    size_t m = 0;
    for (; m < M; m += A_INTERLEAVE) {
        float* output = C + (m * LDC);

        size_t n = 0;
        const float* cur_packB = packB;
        for (; n + B_INTERLEAVE - 1 < N; n += B_INTERLEAVE) {
            matmul_general_4x16::kern_4x16(packA, cur_packB, K, output, LDC, is_first_k,
                      std::min<size_t>(M - m, 4));
            output += B_INTERLEAVE;
            cur_packB += K16;
        }

        for (; n < N; n += 4) {
            matmul_general_4x16::kern_4x4(packA, cur_packB, K, output, LDC, is_first_k,
                     std::min<size_t>(M - m, 4), std::min<size_t>(N - n, 4));
            output += 4;
            cur_packB += K4;
        }

        packA += K4;
    }
}

MEGDNN_REG_GEMM_STRATEGY_IMPL(sgemm_8x12);

void sgemm_8x12::pack_A(float* out, const float* in, int ldin, int y0,
                        int ymax, int k0, int kmax, bool transpose_A) const {
    if (transpose_A) {
        matmul_general_8x12::sgemm_8x12_pack_A_t(out, in, ldin, y0, ymax, k0,
                                                 kmax);
    } else {
        matmul_general_8x12::sgemm_8x12_pack_A_n(out, in, ldin, y0, ymax, k0,
                                                 kmax);
    }
}

void sgemm_8x12::pack_B(float* out, const float* in, int ldin, int x0, int xmax,
                        int k0, int kmax, bool transpose_B) const {
    if (transpose_B) {
        matmul_general_8x12::sgemm_8x12_pack_B_t(out, in, ldin, x0, xmax, k0,
                                                 kmax);
    } else {
        matmul_general_8x12::sgemm_8x12_pack_B_n(out, in, ldin, x0, xmax, k0,
                                                 kmax);
    }
}

void sgemm_8x12::kern(const float* packA, const float* packB,
                      size_t M, size_t N, size_t K, float* C, size_t LDC,
                      bool is_first_k, const float*, float*) const {
    megdnn_assert(A_dtype.enumv() == B_dtype.enumv() &&
                  A_dtype.enumv() == C_dtype.enumv() &&
                  A_dtype.enumv() == DTypeEnum::Float32);
    MEGDNN_MARK_USED_VAR(A_dtype);
    MEGDNN_MARK_USED_VAR(B_dtype);
    MEGDNN_MARK_USED_VAR(C_dtype);

    constexpr size_t A_INTERLEAVE = 8;
    constexpr size_t A_INTERLEAVE4 = 4;
    constexpr size_t B_INTERLEAVE = 12;
    const int K12 = K * 12;
    const int K8 = K * 8;
    const int K4 = K * 4;

    size_t m = 0;
    for (; m + A_INTERLEAVE <= M; m += A_INTERLEAVE) {
        float* output = C + (m * LDC);

        size_t n = 0;
        const float* cur_packB = packB;
        for (; n + B_INTERLEAVE <= N; n += B_INTERLEAVE) {
            matmul_general_8x12::kern_8x12(packA, cur_packB, K, output, LDC,
                                           is_first_k);
            output += B_INTERLEAVE;
            cur_packB += K12;
        }

        for (; n < N; n += 4) {
            matmul_general_8x12::kern_8x4(packA, cur_packB, K, output, LDC,
                                          is_first_k,
                                          std::min<size_t>(N - n, 4));
            output += 4;
            cur_packB += K4;
        }
        packA += K8;
    }
    for (; m < M; m += A_INTERLEAVE4) {
        float* output = C + (m * LDC);
        size_t n = 0;
        const float* cur_packB = packB;
        for (; n + B_INTERLEAVE - 1 < N; n += B_INTERLEAVE) {
            matmul_general_8x12::kern_4x12(packA, cur_packB, K, output, LDC,
                                           is_first_k,
                                           std::min<size_t>(M - m, 4));
            output += B_INTERLEAVE;
            cur_packB += K12;
        }

        for (; n < N; n += 4) {
            matmul_general_8x12::kern_4x4(
                    packA, cur_packB, K, output, LDC, is_first_k,
                    std::min<size_t>(M - m, 4), std::min<size_t>(N - n, 4));
            output += 4;
            cur_packB += K4;
        }
        packA += K4;
    }
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
MEGDNN_REG_GEMM_STRATEGY_IMPL(sgemm_mk4_8x12);

void sgemm_mk4_8x12::pack_A(float* out, const float* in, int ldin, int y0,
                            int ymax, int k0, int kmax,
                            bool transpose_A) const {
    megdnn_assert(!transpose_A, "mk4 float matmul not support transpose A");
    matmul_mk4_8x12::sgemm_8x12_pack_A(out, in, ldin, y0, ymax, k0, kmax);
}

void sgemm_mk4_8x12::pack_B(float* out, const float* in, int ldin, int x0,
                            int xmax, int k0, int kmax,
                            bool transpose_B) const {
    megdnn_assert(!transpose_B, "mk4 float matmul not support transpose B");
    matmul_mk4_8x12::sgemm_8x12_pack_B(out, in, ldin, x0, xmax, k0, kmax);
}

void sgemm_mk4_8x12::kern(const float* packA, const float* packB,
                      size_t M, size_t N, size_t K, float* C, size_t LDC,
                      bool is_first_k, const float*, float*) const {
    megdnn_assert(A_dtype.enumv() == B_dtype.enumv() &&
                  A_dtype.enumv() == C_dtype.enumv() &&
                  A_dtype.enumv() == DTypeEnum::Float32);
    MEGDNN_MARK_USED_VAR(A_dtype);
    MEGDNN_MARK_USED_VAR(B_dtype);
    MEGDNN_MARK_USED_VAR(C_dtype);
    megdnn_assert(M % 4 == 0 && K % 4 == 0, "M and K must be time of 4");

    constexpr size_t PACK_C_SIZE = 4;
    constexpr size_t A_INTERLEAVE = 8;
    constexpr size_t A_INTERLEAVE4 = 4;
    constexpr size_t B_INTERLEAVE = 12;
    const int K12 = K * 12;
    const int K8 = K * 8;
    const int K4 = K * 4;

    size_t m = 0;
    for (; m + A_INTERLEAVE <= M; m += A_INTERLEAVE) {
        float* output = C + (m / PACK_C_SIZE * LDC);

        size_t n = 0;
        const float* cur_packB = packB;
        for (; n + B_INTERLEAVE <= N; n += B_INTERLEAVE) {
            matmul_mk4_8x12::kern_8x12(packA, cur_packB, K, output, LDC,
                                       is_first_k);
            output += B_INTERLEAVE * PACK_C_SIZE;
            cur_packB += K12;
        }

        for (; n  < N; n += 4) {
            matmul_mk4_8x12::kern_8x4(packA, cur_packB, K, output, LDC,
                                      is_first_k, std::min<size_t>(N - n, 4));
            output += 4 * PACK_C_SIZE;
            cur_packB += K4;
        }
        packA += K8;
    }
    for (; m < M; m += A_INTERLEAVE4) {
        float* output = C + (m / PACK_C_SIZE * LDC);
        size_t n = 0;
        const float* cur_packB = packB;
        for (; n + B_INTERLEAVE - 1 < N; n += B_INTERLEAVE) {
            matmul_mk4_8x12::kern_4x12(packA, cur_packB, K, output, LDC,
                                           is_first_k);
            output += B_INTERLEAVE * PACK_C_SIZE;
            cur_packB += K12;
        }
        for (; n < N; n += 4) {
            matmul_mk4_8x12::kern_4x4(packA, cur_packB, K, output, LDC,
                                      is_first_k, std::min<size_t>(N - n, 4));
            output += 4 * PACK_C_SIZE;
            cur_packB += K4;
        }
        packA += K4;
    }
}

243
// vim: syntax=cpp.doxygen