basic_arith.cpp 63.3 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/basic_arith.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/basic_arith.h"
M
Megvii Engine Team 已提交
13 14 15
#include "megbrain/gopt/basic_arith.h"
#include "megbrain/gopt/gtrans.h"
#include "megbrain/graph/grad_impl.h"
16 17
#include "megbrain/opr/basic_arith_wrapper.h"
#include "megbrain/opr/cond.h"
M
Megvii Engine Team 已提交
18
#include "megbrain/opr/io.h"
19
#include "megbrain/opr/tensor_manip.h"
M
Megvii Engine Team 已提交
20
#include "megbrain/opr/utility.h"
21 22 23 24 25 26 27 28 29 30 31
#include "megbrain/utils/arith_helper.h"

#include "./internal/megdnn_opr_wrapper.inl"

#include <cmath>

using namespace mgb;
using namespace opr;

namespace {

M
Megvii Engine Team 已提交
32 33 34 35 36
//! global operator instance for static inference
template <class Opr>
class StaticInferOpr {
    intl::UniqPtrWithCN<Opr> m_opr;
    MGB_MUTEX m_mtx;
37

M
Megvii Engine Team 已提交
38 39 40 41
public:
    class Lock {
        friend class StaticInferOpr;
        StaticInferOpr* m_owner;
42

M
Megvii Engine Team 已提交
43
        explicit Lock(StaticInferOpr* owner) : m_owner{owner} {
44
#if !__DEPLOY_ON_XP_SP2__
M
Megvii Engine Team 已提交
45
            m_owner->m_mtx.lock();
46
#endif
M
Megvii Engine Team 已提交
47
        }
48

M
Megvii Engine Team 已提交
49 50
    public:
        Lock(Lock&& rhs) : m_owner{rhs.m_owner} { rhs.m_owner = nullptr; }
51

M
Megvii Engine Team 已提交
52
        ~Lock() {
53
#if !__DEPLOY_ON_XP_SP2__
M
Megvii Engine Team 已提交
54 55
            if (m_owner)
                m_owner->m_mtx.unlock();
56
#endif
M
Megvii Engine Team 已提交
57 58 59 60 61 62
        }

        Lock& operator=(const Lock&) = delete;
        Lock& operator=(Lock&&) = delete;

        intl::UniqPtrWithCN<Opr>& operator()() { return m_owner->m_opr; }
63
    };
M
Megvii Engine Team 已提交
64 65 66 67 68 69 70 71 72 73 74

    //! lock and acquire the operator
    Lock lock() {
        Lock ret{this};
        if (!m_opr) {
            m_opr = intl::create_megdnn_opr<Opr>(CompNode::default_cpu());
        }
        return ret;
    }
};
}  // anonymous namespace
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

/* ========================= BatchedDTypePromotion ========================= */
intl::BatchedDTypePromotion::BatchedDTypePromotion(const VarNodeArrayView& vars)
        : m_orig_vars{vars} {
    mgb_assert(!vars.empty());
    DType final_dtype;
    bool changed = false;
    for (size_t i = 0; i < vars.size(); ++i) {
        auto cur = vars[i]->dtype();
        if (!i) {
            final_dtype = cur;
        } else {
            auto promoted = dtype_promotion(final_dtype, cur);
            changed |= promoted != final_dtype || promoted != cur;
            final_dtype = promoted;
        }
    }
    m_changed = changed;
    m_final_dtype = final_dtype;
}

void intl::BatchedDTypePromotion::set_dtype(DType dtype) {
    mgb_assert(!m_finalized);
    if (m_final_dtype != dtype) {
        m_final_dtype = dtype;
        m_changed = true;
    }
}

const VarNodeArrayView& intl::BatchedDTypePromotion::get_vars() {
    m_finalized = true;
    if (!m_changed) {
        return m_orig_vars;
    }
    if (!m_cvt_vars_view.valid()) {
        m_cvt_vars.resize(m_orig_vars.size());
        auto dtype = m_final_dtype;
        for (size_t i = 0; i < m_cvt_vars.size(); ++i) {
            m_cvt_vars[i] = TypeCvt::make(m_orig_vars[i], dtype).node();
        }
        m_cvt_vars_view.emplace(m_cvt_vars);
    }
    return m_cvt_vars_view.val();
}

/* =========================== Elemwise =========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(Elemwise);
Elemwise::Elemwise(
M
Megvii Engine Team 已提交
124 125 126
        const ModeTrait& mode_trait, const VarNodeArrayView& inputs, Param param,
        const OperatorNodeConfig& config)
        : Super{inputs.at(0)->owner_graph(), config, mode_trait.name, inputs} {
127
    init_megdnn_opr(*this, param);
128
    output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if (mode_trait.commutable) {
        mgb_assert(inputs.size() == 2);
        add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
    } else {
        if (param.mode == Mode::FUSE_MUL_ADD3) {
            add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
            add_input({inputs[2]});
        } else if (param.mode == Mode::FUSE_MUL_ADD4) {
            auto i0 = inputs[0], i1 = inputs[1], i2 = inputs[2], i3 = inputs[3];
            if (i0->id() > i1->id())
                std::swap(i0, i1);
            if (i2->id() > i3->id())
                std::swap(i2, i3);
            if (i0->id() > i2->id()) {
                std::swap(i0, i2);
                std::swap(i1, i3);
            }
            add_input({i0, i1, i2, i3});
        } else {
M
Megvii Engine Team 已提交
148
            for (auto i : inputs)
149 150 151 152 153
                add_input({i});
        }
    }

    mgb_assert(m_input_broadcastable.size() >= inputs.size());
M
Megvii Engine Team 已提交
154 155
    for (size_t i = 0; i < inputs.size(); ++i) {
        if (input()[i]->owner_opr()->same_type<opr::MarkNoBroadcastElemwise>()) {
156 157 158 159 160 161 162 163 164 165
            m_input_broadcastable[i] = false;
        } else {
            m_input_broadcastable[i] = true;
        }
    }
    if (inputs.size() == 1) {
        m_input_broadcastable[0] = false;
    } else {
        Maybe<size_t> non_scalar;
        using namespace cg::static_infer;
M
Megvii Engine Team 已提交
166 167
        auto&& mgr = owner_graph()->static_infer_manager();
        for (size_t i = 0; i < input().size(); ++i) {
168 169
            auto it = mgr.get_infer_type(input(i));
            if (!((it.shape & InferType::CONST) &&
M
Megvii Engine Team 已提交
170
                  mgr.infer_shape(input(i)).is_scalar())) {
171 172 173 174 175 176 177 178 179 180 181 182 183
                if (non_scalar.valid()) {
                    non_scalar.invalidate();
                    break;
                }
                non_scalar = i;
            }
        }
        if (non_scalar.valid()) {
            // exactly one input is non-scalar
            m_input_broadcastable[non_scalar.val()] = false;
        }
    }

M
Megvii Engine Team 已提交
184 185 186 187 188 189 190 191 192 193
    if (inputs.size() && inputs[0]->dtype().category() == DTypeCategory::QUANTIZED) {
        mgb_assert(
                param.mode == Param::Mode::ADD || param.mode == Param::Mode::SUB ||
                        param.mode == Param::Mode::NEGATE ||
                        param.mode == Param::Mode::RELU ||
                        param.mode == Param::Mode::MAX ||
                        param.mode == Param::Mode::MIN,
                "Only ADD, SUB, NEGATE, RELU, MAX and MIN is guaranteed "
                "to be supported on Elemwise for quantized DType, no support %d",
                (int)param.mode);
194 195 196
    }
}

M
Megvii Engine Team 已提交
197 198
SymbolVar Elemwise::make(
        const VarNodeArrayView& inputs, Param param, const OperatorNodeConfig& config) {
199
    auto trait = ModeTrait::from_mode(param.mode);
M
Megvii Engine Team 已提交
200 201 202
    mgb_assert(
            inputs.size() == trait.arity, "%s expects %u inputs; got %zu actually",
            trait.name, trait.arity, inputs.size());
203 204 205 206 207
    intl::BatchedDTypePromotion dtp{inputs};
    if (dtp.get_dtype().category() == DTypeCategory::INT && !trait.allow_int) {
        dtp.set_dtype(dtype::Float32());
    }

M
Megvii Engine Team 已提交
208 209 210 211 212 213
    mgb_throw_if(
            dtp.get_dtype().category() == DTypeCategory::FLOAT && !trait.allow_float,
            ConversionError,
            "elemwise mode %s does not allow float input; "
            "got inputs: %s",
            trait.name, cg::dump_var_info(inputs).c_str());
214 215

#if !MGB_BUILD_SLIM_SERVING
216 217
    auto&& options = inputs[0]->owner_graph()->options();
    if (options.graph_opt_level && !(options.disable_inplace_arith_opt)) {
M
Megvii Engine Team 已提交
218
        auto repl = gopt::optimize_elemwise_expr_inplace(dtp.get_vars(), param, config);
219 220 221 222 223 224 225 226 227 228
        if (repl)
            return repl;
    }
#endif

    return SymbolVar{inputs[0]}.insert_single_output_opr<Elemwise>(
            trait, dtp.get_vars(), param, config);
}

TensorShape Elemwise::get_output_var_shape(
M
Megvii Engine Team 已提交
229
        Mode mode, const TensorShapeArray& input_shapes) {
230 231 232 233 234 235 236
    mgb_assert(input_shapes.size() == ModeTrait::from_mode(mode).arity);
    TensorShape ret;
    megdnn::Elemwise::deduce_shape(input_shapes, ret);
    return ret;
}

void Elemwise::perform(
M
Megvii Engine Team 已提交
237 238
        Mode mode, DeviceTensorND& dest, const SmallVector<DeviceTensorND>& inputs,
        intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
239 240 241 242
    megdnn::TensorNDArray dnn_inputs(inputs.size());
    TensorShapeArray inp_shapes(inputs.size());
    DType out_dt;
    CompNode out_cn;
M
Megvii Engine Team 已提交
243 244
    for (size_t i = 0; i < inputs.size(); ++i) {
        auto&& t = inputs[i];
245 246 247 248 249 250 251
        if (!i) {
            out_cn = t.comp_node();
            out_dt = t.dtype();
        } else {
            mgb_assert(t.comp_node() == out_cn);
            mgb_assert(t.dtype() == out_dt);
        }
252 253 254 255
        if (t.shape().is_empty()) {
            mgb_assert(dest.empty());
            return;
        }
256 257 258 259 260 261 262 263
        inp_shapes[i] = t.shape();
    }
    if (!opr) {
        opr = intl::create_megdnn_opr<megdnn::Elemwise>(out_cn);
    } else {
        mgb_assert(out_cn == opr.comp_node());
    }
    out_cn.activate();
M
Megvii Engine Team 已提交
264
    for (size_t i = 0; i < inputs.size(); ++i)
265
        dnn_inputs[i] = inputs[i].as_megdnn();
M
Megvii Engine Team 已提交
266
    dest.comp_node(out_cn).dtype(out_dt).resize(get_output_var_shape(mode, inp_shapes));
267
    opr->param() = {mode};
M
Megvii Engine Team 已提交
268
    call_megdnn_opr_exec(out_cn, dnn_inputs, dest.as_megdnn(), opr.get(), nullptr);
269 270
}

M
Megvii Engine Team 已提交
271
TensorLayoutArray Elemwise::collective_collapse(const TensorLayoutArray& layouts) {
272 273
    TensorLayoutPtrArray inp(layouts.size());
    TensorLayoutArray result(inp.size());
M
Megvii Engine Team 已提交
274
    for (size_t i = 0; i < layouts.size(); ++i) {
275 276 277 278 279 280 281
        result[i] = layouts[i];
        inp[i] = &result[i];
    }
    collective_collapse_inplace(inp);
    return result;
}

M
Megvii Engine Team 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
void Elemwise::collective_collapse_inplace(const TensorLayoutPtrArray& layouts) {
    mgb_assert(layouts.size());
    size_t ndim = layouts[0]->ndim;
    for (auto i : layouts) {
        if (i->ndim != ndim)
            mgb_throw(MegBrainError, "ndims must be same");
    }

    auto update_all = [&layouts](size_t axis) {
        for (auto i : layouts) {
            i->shape[axis] *= i->shape[axis + 1];
            i->stride[axis] = i->stride[axis + 1];
            i->remove_axis_inplace(axis + 1);
        }
    };

    auto check = [&layouts](size_t axis) -> bool {
        auto std_p =
                std::make_pair(layouts[0]->shape[axis], layouts[0]->shape[axis + 1]);
        for (auto i : layouts) {
            auto cur_p = std::make_pair(i->shape[axis], i->shape[axis + 1]);
            if (std_p != cur_p)
                return false;
            if (i->stride[axis] !=
                i->stride[axis + 1] * static_cast<ptrdiff_t>(i->shape[axis + 1]))
                return false;
        }
        return true;
    };

    for (int i = static_cast<int>(ndim) - 2; i >= 0; i--) {
        if (check(i)) {
            update_all(i);
        }
    }
317 318 319
}

void Elemwise::broadcast_collective_collapse(
M
Megvii Engine Team 已提交
320 321
        const TensorLayoutPtrArray& inp_layouts, TensorLayout* target_layout) {
    for (auto&& p : inp_layouts) {
322 323 324 325 326
        *p = p->broadcast(*target_layout);
    }
    TensorLayoutPtrArray buf(inp_layouts.size() + 1);
    buf[0] = target_layout;
    for (size_t i = 0; i < inp_layouts.size(); i++) {
M
Megvii Engine Team 已提交
327
        buf[i + 1] = inp_layouts[i];
328 329 330 331 332
    }
    collective_collapse_inplace(buf);
}

void Elemwise::mem_plan_fwd_in2out_writable() {
333
    mixin_mem_plan_fwd_in2out_writable(*this);
334 335 336
}

void Elemwise::scn_do_execute() {
337 338
    auto&& inp = input();
    megdnn::TensorNDArray dnn_inp;
M
Megvii Engine Team 已提交
339
    mgb_assert(dnn_inp.capacity() >= inp.size(), "heap allocation in elemwise exec");
340 341
    dnn_inp.resize(inp.size());
    for (size_t i = 0; i < inp.size(); ++i) {
342 343 344 345
        if (inp[i]->dev_tensor().empty()) {
            mgb_assert(output(0)->dev_tensor().empty());
            return;
        }
346
        dnn_inp[i] = (inp[i]->dev_tensor().as_megdnn());
347 348
    }
    mgb_assert(!output(0)->dev_tensor().empty());
349 350

    megdnn_opr()->param() = param();
M
Megvii Engine Team 已提交
351 352 353
    call_megdnn_opr_exec(
            comp_node(), dnn_inp, output(0)->dev_tensor().as_megdnn(), megdnn_opr(),
            this);
354 355 356 357 358 359 360 361
}

void Elemwise::init_output_static_infer_desc() {
    Super::init_output_static_infer_desc();
    static StaticInferOpr<megdnn::Elemwise> static_infer_opr;

    using namespace cg::static_infer;

M
Megvii Engine Team 已提交
362
    auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
363
        SmallVector<DeviceTensorND> inp_vals(inp.val.size());
M
Megvii Engine Team 已提交
364
        for (size_t i = 0; i < inp_vals.size(); ++i)
365 366 367 368 369 370 371
            inp_vals[i] = inp.val[i].value();
        auto sopr = static_infer_opr.lock();
        perform(param().mode, dest, inp_vals, sopr());
        return true;
    };

    DepVal deps(input().size());
M
Megvii Engine Team 已提交
372
    for (size_t i = 0; i < input().size(); ++i)
373 374 375 376 377 378
        deps[i] = {input(i), DepType::VALUE};
    owner_graph()->static_infer_manager().register_value_infer(
            output(0), {SourceType::DEP, deps, infer_value});
}

void Elemwise::get_output_var_shape(
M
Megvii Engine Team 已提交
379
        const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
380
    out_shape.at(0) = get_output_var_shape(param().mode, inp_shape);
M
Megvii Engine Team 已提交
381 382 383 384
    for (size_t i = 0; i < input().size(); ++i) {
        mgb_throw_if(
                !m_input_broadcastable[i] && !out_shape[0].eq_shape(inp_shape[i]),
                GraphError,
385
                "input %zu declared to be non-broadcastable but broacast "
M
Megvii Engine Team 已提交
386 387
                "actually happened",
                i);
388 389 390 391
    }
}

void Elemwise::add_input_layout_constraint() {
M
Megvii Engine Team 已提交
392
    for (auto i : input()) {
393 394 395 396 397
        i->add_layout_constraint_monotone();
    }
}

void Elemwise::call_megdnn_opr_exec(
M
Megvii Engine Team 已提交
398 399
        CompNode comp_node, megdnn::TensorNDArray& inp, const megdnn::TensorND& out,
        megdnn::Elemwise* opr, Elemwise* caller) {
400
    if (opr->param().mode == Mode::FUSE_MUL_ADD3 &&
M
Megvii Engine Team 已提交
401 402
        !(inp[2].layout.eq_layout(inp[0].layout) ||
          inp[2].layout.eq_layout(inp[1].layout) || inp[2].layout.is_scalar())) {
403
        if (caller && !caller->fuse_badlayout_warn_printed()) {
M
Megvii Engine Team 已提交
404 405
            mgb_log_debug(
                    "%s: FUSE_MUL_ADD3 input layouts mismatch: %s %s %s; "
406
                    "fallback to normal computing",
M
Megvii Engine Team 已提交
407
                    caller->cname(), inp[0].layout.to_string().c_str(),
408
                    inp[1].layout.to_string().c_str(),
M
Megvii Engine Team 已提交
409
                    inp[2].layout.to_string().c_str());
410 411 412
            caller->m_fuse_badlayout_warn_printed = true;
        }

M
Megvii Engine Team 已提交
413
        for (auto&& i : inp) {
414 415 416 417
            i.layout = i.layout.broadcast(out.layout);
        }

        megdnn::TensorNDArray run_inp(2);
M
Megvii Engine Team 已提交
418 419
        auto run = [&](Mode mode, const megdnn::TensorND& i0,
                       const megdnn::TensorND& i1, const megdnn::TensorND& out) {
420 421 422 423 424 425
            run_inp[0] = i0;
            run_inp[1] = i1;
            opr->param() = {mode};
            opr->exec(run_inp, out);
        };

M
Megvii Engine Team 已提交
426 427
        auto tmp = intl::get_temp_tensor(
                caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
428 429 430 431 432
        auto tmpv = tmp.as_megdnn();

        MGB_TRY {
            run(Mode::MUL, inp[0], inp[1], tmpv);
            run(Mode::ADD, inp[2], tmpv, out);
M
Megvii Engine Team 已提交
433 434
        }
        MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD3});
435 436 437 438
        return;
    }

    if (opr->param().mode == Mode::FUSE_MUL_ADD4 &&
M
Megvii Engine Team 已提交
439 440 441 442
        !(inp[0].layout.eq_layout(inp[2].layout) &&
          inp[1].layout.eq_layout(inp[3].layout)) &&
        !(inp[0].layout.eq_layout(inp[3].layout) &&
          inp[1].layout.eq_layout(inp[2].layout))) {
443 444 445 446
        if (caller && !caller->fuse_badlayout_warn_printed()) {
            mgb_log_debug(
                    "%s: FUSE_MUL_ADD4 input layouts mismatch: %s %s %s %s; "
                    "fallback to normal computing",
M
Megvii Engine Team 已提交
447
                    caller->cname(), inp[0].layout.to_string().c_str(),
448 449
                    inp[1].layout.to_string().c_str(),
                    inp[2].layout.to_string().c_str(),
M
Megvii Engine Team 已提交
450
                    inp[3].layout.to_string().c_str());
451 452 453
            caller->m_fuse_badlayout_warn_printed = true;
        }

M
Megvii Engine Team 已提交
454
        for (auto&& i : inp) {
455 456 457 458
            i.layout = i.layout.broadcast(out.layout);
        }

        megdnn::TensorNDArray run_inp(2);
M
Megvii Engine Team 已提交
459 460
        auto run = [&](Mode mode, const megdnn::TensorND& i0,
                       const megdnn::TensorND& i1, const megdnn::TensorND& out) {
461 462 463 464 465 466
            run_inp[0] = i0;
            run_inp[1] = i1;
            opr->param() = {mode};
            opr->exec(run_inp, out);
        };

M
Megvii Engine Team 已提交
467 468
        auto tmp = intl::get_temp_tensor(
                caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
469 470 471 472 473 474
        auto tmpv = tmp.as_megdnn();

        MGB_TRY {
            run(Mode::MUL, inp[0], inp[1], tmpv);
            run(Mode::MUL, inp[2], inp[3], out);
            run(Mode::ADD, out, tmpv, out);
M
Megvii Engine Team 已提交
475 476
        }
        MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD4});
477 478 479 480 481 482 483
        return;
    }

    // All Elemwise operations on QuantizedS32/QuantizedS8 are not related to
    // scale. MegDNN does not support computing Elemwise for
    // QuantizedS32/QuantizedS8, we translate the data type to Int32/Int8 before
    // passing to MegDNN.
M
Megvii Engine Team 已提交
484
    if (inp.size() && inp[0].layout.dtype.category() == DTypeCategory::QUANTIZED) {
485 486 487 488 489 490 491
        auto inp_dtype = inp[0].layout.dtype;
        DType compute_dtype;
        if (inp_dtype.enumv() == DTypeEnum::QuantizedS32) {
            compute_dtype = dtype::Int32();
        } else if (inp_dtype.enumv() == DTypeEnum::QuantizedS8) {
            compute_dtype = dtype::Int8();
        } else {
M
Megvii Engine Team 已提交
492 493 494 495
            mgb_throw(
                    MegBrainError, "Unsupported Quantized Elemwise Mode %s: %d on %s",
                    inp[0].layout.dtype.name(), int(opr->param().mode),
                    comp_node.to_string().c_str());
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        }

        megdnn::TensorNDArray run_inp(inp);
        for (size_t i = 0; i < inp.size(); i++) {
            run_inp[i].layout.dtype = compute_dtype;
        }
        megdnn::TensorND run_out = out;
        run_out.layout.dtype = compute_dtype;
        opr->exec(run_inp, run_out);
        return;
    }

    opr->exec(inp, out);
}

511
#if MGB_ENABLE_GRAD
512 513
MGB_IMPL_OPR_GRAD(Elemwise) {
    SymbolVar i[5];
M
Megvii Engine Team 已提交
514 515
    SymbolVar i0(opr.input(0)), i1, i2, out(opr.output(0)), og{out_grad.at(0)}, result;
    for (size_t t = 0; t < opr.input().size(); ++t)
516 517 518 519 520 521 522 523
        i[t] = opr.input()[t];
    if (opr.input().size() >= 2)
        i1 = opr.input(1);
    if (opr.input().size() >= 3)
        i2 = opr.input(2);

    // negate after reduce, for better performance
    bool negate_result = false;
M
Megvii Engine Team 已提交
524 525 526 527 528
#define RET(_v)    \
    result = (_v); \
    break
#define EL1(_mode, _a)         Elemwise::make({_a}, Mode::_mode)
#define EL2(_mode, _a, _b)     Elemwise::make({_a, _b}, Mode::_mode)
529
#define EL3(_mode, _a, _b, _c) Elemwise::make({_a, _b, _c}, Mode::_mode)
M
Megvii Engine Team 已提交
530
#define RET_INVALID()          return InvalidGrad::make(opr, wrt_idx)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

    using Mode = Elemwise::Mode;

    switch (opr.param().mode) {
        // unary
        case Mode::RELU:
        case Mode::FUSE_ADD_RELU:
            RET(EL2(SWITCH_GT0, out, og));
        case Mode::ABS:
            RET(EL2(ABS_GRAD, i0, og));
        case Mode::ACOS:
            negate_result = true;
            RET(og / EL1(SIN, out));
        case Mode::ASIN:
            RET(og / EL1(COS, out));
        case Mode::ATAN2:
            if (wrt_idx) {
                negate_result = true;
            }
            RET(og * i[!wrt_idx] / (i0 * i0 + i1 * i1));
        case Mode::CEIL:
            return nullptr;
        case Mode::COS:
            negate_result = true;
            RET(EL1(SIN, i0) * og);
        case Mode::EXP:
            RET(og * out);
        case Mode::EXPM1:
            RET(og * EL1(EXP, i0));
        case Mode::FLOOR:
            return nullptr;
        case Mode::LOG:
            RET(og / i0);
        case Mode::LOG1P:
            RET(og / (i0 + 1));
        case Mode::NEGATE:
            negate_result = true;
            RET(og);
        case Mode::SIGMOID:
        case Mode::FUSE_ADD_SIGMOID:
            RET(EL2(SIGMOID_GRAD, out, og));
        case Mode::SIN:
            RET(EL1(COS, i0) * og);
        case Mode::TANH:
        case Mode::FUSE_ADD_TANH:
            RET(EL2(TANH_GRAD, out, og));
        case Mode::FAST_TANH:
            RET(EL2(FAST_TANH_GRAD, i0, og));
        case Mode::ROUND:
            return nullptr;
        case Mode::ERF:
M
Megvii Engine Team 已提交
582
            RET(EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
583 584 585 586 587 588 589 590
        case Mode::ERFINV:
            RET(EL1(EXP, out * out) * static_cast<float>(sqrt(M_PI)) / 2 * og);
        case Mode::ERFC:
            RET(-EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
        case Mode::H_SWISH:
            RET(EL2(H_SWISH_GRAD, i0, og));
        case Mode::FUSE_ADD_H_SWISH:
            RET(EL2(H_SWISH_GRAD, (i0 + i1), og));
M
Megvii Engine Team 已提交
591 592
        case Mode::NOT:
            return nullptr;
593 594 595 596
        case Mode::SILU:
            RET(EL2(SILU_GRAD, i0, og));
        case Mode::GELU:
            RET(EL2(GELU_GRAD, i0, og));
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

        // binary
        case Mode::ABS_GRAD:
            if (wrt_idx == 0) {
                return nullptr;
            }
            RET(EL2(ABS_GRAD, i0, og));
        case Mode::ADD:
            RET(og);
        case Mode::FLOOR_DIV:
            return nullptr;
        case Mode::MAX:
            RET(EL3(COND_LEQ_MOV, i[!wrt_idx], i[wrt_idx], og));
        case Mode::MIN:
            RET(EL3(COND_LEQ_MOV, i[wrt_idx], i[!wrt_idx], og));
        case Mode::MOD:
            if (wrt_idx == 0) {
                RET(og);
            }
            RET_INVALID();
        case Mode::MUL:
            RET(og * i[!wrt_idx]);
        case Mode::POW:
            if (wrt_idx) {
                RET(out * EL1(LOG, i0) * og);
            }
            RET(og * i1 * EL2(POW, i0, i1 - 1));
        case Mode::SIGMOID_GRAD:
            if (wrt_idx == 0) {
                auto one = i0.make_scalar_dt(1), two = i0.make_scalar_dt(2);
                RET((one - i0 * two) * i1 * og);
            }
            RET(EL2(SIGMOID_GRAD, i0, og));
        case Mode::SUB:
            negate_result = wrt_idx;
            RET(og);
        case Mode::SWITCH_GT0:
            if (!wrt_idx)
                return nullptr;
            RET(EL2(SWITCH_GT0, i0, og));
        case Mode::TANH_GRAD:
            if (wrt_idx == 0) {
                auto mtwo = i0.make_scalar_dt(-2);
                RET(mtwo * i0 * i1 * og);
            }
            RET(EL2(TANH_GRAD, i0, og));
        case Mode::TRUE_DIV:
            if (wrt_idx == 0) {
                RET(og / i1);
            }
            negate_result = true;
            RET((og * i0) * EL2(POW, i1, i1.make_scalar(-2)));
        case Mode::LOG_SUM_EXP:
            if (wrt_idx == 0) {
                RET(og * EL1(SIGMOID, i0 - i1));
            }
            RET(og * EL1(SIGMOID, i1 - i0));
        case Mode::LT:
        case Mode::LEQ:
            return nullptr;
        case Mode::EQ:
            RET_INVALID();
M
Megvii Engine Team 已提交
659 660 661 662
        case Mode::OR:
        case Mode::XOR:
        case Mode::AND:
            return nullptr;
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

        // ternary
        case Mode::COND_LEQ_MOV:
            if (wrt_idx <= 1)
                return nullptr;
            RET(EL3(COND_LEQ_MOV, i0, i1, og));

        // fuse oprs
        case Mode::FUSE_MUL_ADD3:
            if (wrt_idx < 2) {
                RET(og * i[wrt_idx ^ 1]);
            } else {
                RET(og);
            }
        case Mode::FUSE_MUL_ADD4:
            RET(og * i[wrt_idx ^ 1]);
        default:
M
Megvii Engine Team 已提交
680 681 682
            mgb_throw(
                    GraphError, "grad for elemwise mode %s unimplemented",
                    megdnn::Elemwise::ModeTrait::from_mode(opr.param().mode).name);
683 684 685 686 687 688 689
    }
#undef EL3
#undef EL2
#undef EL1
#undef RET

    if (opr.input_broadcastable()[wrt_idx]) {
M
Megvii Engine Team 已提交
690
        result = reduce_sum(result, opr::GetVarShape::make(opr.input(wrt_idx)));
691 692
    } else if (result.node()->owner_opr()->same_type<Broadcast>()) {
        // forward broadcast for optimizer to work
M
Megvii Engine Team 已提交
693 694
        result = opr::Broadcast::make(
                result.node()->owner_opr()->input(0),
695 696 697 698 699 700
                opr::GetVarShape::make(i[wrt_idx]));
    }
    if (negate_result)
        result = -result;
    return result.node();
}
701
#endif
702

M
Megvii Engine Team 已提交
703
VarNode* Elemwise::sum_grad_list(VarNode* wrt, VarNodeArray& grads) {
704 705 706 707 708 709 710
    mgb_assert(!grads.empty());
    if (grads.size() == 1)
        return grads[0];
#if MGB_ENABLE_COND_EXEC
    CondExecMerge::modify_grad_sum_list(wrt, grads);
#endif
    VarNodeArray mid_results;
M
Megvii Engine Team 已提交
711
    VarNode* ret;
712 713 714
    if (wrt->owner_graph()->options().graph_opt_level) {
        ret = gopt::GradSumListOptimizer{wrt, grads, mid_results}.get_sum();
    } else {
M
Megvii Engine Team 已提交
715
        ret = gopt::elemwise_reduce_var_list(grads, Elemwise::Mode::ADD, &mid_results);
716 717 718 719 720 721 722 723 724
    }
    mid_results.swap(grads);
    return ret;
}

void Elemwise::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
}

725 726 727
Elemwise::NodeProp* Elemwise::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
    for (auto& inp : input()) {
M
Megvii Engine Team 已提交
728
        ret->add_dep_type_existing_var(inp, NodeProp::DepType::VALUE_ALLOW_EMPTY);
729 730 731 732
    }
    return ret;
}

733 734 735 736
/* =========================== TypeCvt =========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(TypeCvt);

M
Megvii Engine Team 已提交
737 738 739 740 741
TypeCvt::TypeCvt(VarNode* inp, DType dest_type, const OperatorNodeConfig& config)
        : Super{inp->owner_graph(),
                config,
                std::string("as") + dest_type.name(),
                {inp}} {
742 743 744 745 746 747 748 749
    init_megdnn_opr(*this, {});
    mgb_assert(dest_type.valid());
    add_input({inp});
    add_equivalence_component<ScalarHash<const void*>>(dest_type.handle());
    output(0)->dtype(dest_type).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
}

SymbolVar TypeCvt::make(
M
Megvii Engine Team 已提交
750
        SymbolVar input, DType dest_type, const OperatorNodeConfig& config) {
751 752
    if (input.dtype() == dest_type)
        return input;
M
Megvii Engine Team 已提交
753
    return input.insert_single_output_opr<TypeCvt>(input.node(), dest_type, config);
754 755
}

M
Megvii Engine Team 已提交
756 757 758
void TypeCvt::perform(
        DeviceTensorND& dest, DType dest_type, const DeviceTensorND& src,
        intl::UniqPtrWithCN<megdnn::TypeCvt>& opr) {
759 760
    mgb_assert(src.comp_node() == opr.comp_node());
    mgb_assert(dest_type.valid());
761 762 763 764
    if (src.empty()) {
        mgb_assert(dest.empty());
        return;
    }
765 766 767 768 769 770 771 772 773 774
    if (src.dtype() == dest_type) {
        dest.copy_from(src);
        return;
    }
    src.comp_node().activate();
    dest.comp_node(src.comp_node()).dtype(dest_type).resize(src.shape());
    opr->exec(src.as_megdnn(), dest.as_megdnn());
}

void TypeCvt::add_input_layout_constraint() {
775 776
    //! Because the implementation of typecvt on arm/x86/cuda/opencl support
    //! non-contiguous memory. So we change constraint of typecvt to monotone
M
Megvii Engine Team 已提交
777
    for (auto i : input()) {
778
        i->add_layout_constraint_monotone();
779 780 781 782 783
    }
}

TypeCvt::NodeProp* TypeCvt::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
M
Megvii Engine Team 已提交
784
    ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
785 786 787
    return ret;
}

788
#if MGB_ENABLE_GRAD
789 790 791 792 793 794 795 796 797 798 799 800
MGB_IMPL_OPR_GRAD(TypeCvt) {
    MGB_MARK_USED_VAR(wrt_idx);
    auto itype = opr.input(0)->dtype(), otype = opr.output(0)->dtype();
    if (itype.category() == DTypeCategory::FLOAT &&
        otype.category() == DTypeCategory::INT) {
        return nullptr;
    }
    if (itype.category() != DTypeCategory::FLOAT) {
        return InvalidGrad::make(opr, 0);
    }
    return TypeCvt::make(out_grad[0], opr.input(0)->dtype()).node();
}
801
#endif
802 803

void TypeCvt::mem_plan_fwd_in2out_writable() {
M
Megvii Engine Team 已提交
804 805 806
    bool cond_low_bit = input(0)->dtype().is_low_bit() &&
                        output(0)->dtype().is_low_bit() &&
                        input(0)->dtype().low_bit() == output(0)->dtype().low_bit();
807 808 809 810
    bool cond_normal = !input(0)->dtype().is_low_bit() &&
                       !output(0)->dtype().is_low_bit() &&
                       input(0)->dtype().size() == output(0)->dtype().size();
    if ((cond_low_bit || cond_normal) && input(0)->layout().is_contiguous()) {
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
        output(0)->set_fwd_in2out_writable(input(0));
    }
}

void TypeCvt::scn_do_execute() {
    auto ovar = output(0)->dev_tensor().as_megdnn();
    for (size_t i = 0; i < ovar.layout.ndim; ++i) {
        if (!ovar.layout[i]) {
            // skip execution for empty var
            return;
        }
    }
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), ovar);
}

void TypeCvt::init_output_static_infer_desc() {
    static StaticInferOpr<megdnn::TypeCvt> static_infer_opr;
    Super::init_output_static_infer_desc();

    using namespace cg::static_infer;

M
Megvii Engine Team 已提交
832
    auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
833 834 835 836 837
        auto sopr = static_infer_opr.lock();
        perform(dest, output(0)->dtype(), inp.val.at(0).value(), sopr());
        return true;
    };
    owner_graph()->static_infer_manager().register_value_infer(
M
Megvii Engine Team 已提交
838
            output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
839 840 841 842 843 844 845 846 847 848
}

void TypeCvt::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
}

/* =========================== AddUpdate =========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(AddUpdate);

M
Megvii Engine Team 已提交
849 850 851 852 853
AddUpdate::AddUpdate(
        VarNode* dest, VarNode* delta, const Param& param,
        const OperatorNodeConfig& config)
        : Super{dest->owner_graph(), config, "inplace_add", {dest, delta}},
          m_param{param} {
854
    auto dest_opr = dest->owner_opr();
M
Megvii Engine Team 已提交
855 856
    mgb_throw_if(
            dest_opr->same_type<ImmutableTensor>(), GraphError,
857
            "AddUpdate cannot be applied on ImmutableTensor; ");
858 859 860 861 862 863 864
    add_input({dest, delta});

    /*
     * here we tell the system that output(0) would force-update input(0); the
     * topo-sorting system would ensure that all the readers finish before
     * executing this AddUpdate operation
     */
M
Megvii Engine Team 已提交
865 866
    add_output(None)->set_fwd_in2out_writable_force(input(0)).add_flag(
            VarNode::Flag::NO_MEM_RECLAIM);
867

M
Megvii Engine Team 已提交
868 869
    mgb_assert(
            m_param.disable->dtype() == dtype::Int32{},
870 871 872 873 874 875 876 877 878
            "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
            m_param.disable->dtype().name());

    add_equivalence_component<ScalarHash<void*>>(m_param.alpha.get());
    add_equivalence_component<ScalarHash<void*>>(m_param.beta.get());
    add_equivalence_component<ScalarHash<void*>>(m_param.bias.get());
    add_equivalence_component<ScalarHash<void*>>(m_param.disable.get());
}

M
Megvii Engine Team 已提交
879 880 881
SymbolVar AddUpdate::make(
        SymbolVar dest, SymbolVar delta, const Param& param,
        const OperatorNodeConfig& config) {
882 883 884 885 886 887 888 889 890 891 892 893
    delta = opr::TypeCvt::make(delta, dest.dtype());
    return dest.insert_single_output_opr<AddUpdate>(
            dest.node(), delta.node(), param, config);
}

cg::OperatorNodeBase::NodeProp* AddUpdate::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
    ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
    return ret;
}

void AddUpdate::create_megdnn_opr() {
M
Megvii Engine Team 已提交
894 895
    set_megdnn_opr(
            intl::get_megdnn_handle(comp_node())->create_operator<megdnn::AddUpdate>());
896 897 898
}

void AddUpdate::scn_do_execute() {
M
Megvii Engine Team 已提交
899 900
    mgb_assert(
            m_param.disable->dtype() == dtype::Int32{},
901 902 903
            "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
            m_param.disable->dtype().name());
    auto disable = m_param.disable->get_cast<int>();
M
Megvii Engine Team 已提交
904 905 906 907 908 909 910 911 912 913
    if (disable == 1)
        return;
    mgb_assert(
            disable == 0,
            "disable flag on AddUpdate can only be 0 or 1,"
            " got %d actually.",
            disable);

    auto&& dest = output(0)->dev_tensor();
    auto&& delta_nobrd = input(1)->dev_tensor();
914 915 916 917 918
    auto delta = delta_nobrd.sub(SubTensorSpec::make_from_offset_elem(
            delta_nobrd.layout().broadcast(dest.shape()), 0));
    mgb_assert(input(0)->dev_tensor().raw_ptr() == dest.raw_ptr());
    auto beta = m_param.beta->get_cast<float>();
    if (!m_param.alpha->get_cast<bool>() && beta == 1 &&
M
Megvii Engine Team 已提交
919
        !m_param.bias->get_cast<bool>()) {
920 921 922 923
        dest.copy_from_fixlayout(delta);
    } else {
        auto opr = static_cast<megdnn::AddUpdate*>(megdnn_opr());
        opr->param() = {
M
Megvii Engine Team 已提交
924 925
                m_param.alpha->get_cast<float>(), beta,
                m_param.bias->get_cast<float>()};
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
        opr->exec(dest.as_megdnn(), delta.as_megdnn());
    }
}

void AddUpdate::init_output_static_infer_desc() {
    using namespace cg::static_infer;

    owner_graph()->static_infer_manager().register_shape_infer(
            output(0), ShapeInferDesc::make_identity(input(0)));
}

void AddUpdate::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
}

941
#if MGB_ENABLE_GRAD
942 943 944 945
MGB_IMPL_OPR_GRAD(AddUpdate) {
    // actually valid, just not implemented
    return InvalidGrad::make(opr, wrt_idx);
}
946
#endif
947

948 949 950 951 952
/* =========================== Reduce =========================== */

class Reduce::KernScheduler {
    class ValueDep final : public ExecDependency {
        DeviceTensorStorage m_val;
M
Megvii Engine Team 已提交
953

954 955 956 957
    public:
        explicit ValueDep(DeviceTensorStorage val) : m_val(std::move(val)) {}
    };

M
Megvii Engine Team 已提交
958 959 960 961 962
public:
    bool has_actual_computing() const {
        mgb_assert(m_shape_computed);
        return !m_kern_param.empty() || m_apply_side_effect;
    }
963

M
Megvii Engine Team 已提交
964
    size_t workspace_size() const { return m_workspace_spec[2].end(); }
965

M
Megvii Engine Team 已提交
966
    bool shape_computed() const { return m_shape_computed; }
967

M
Megvii Engine Team 已提交
968 969 970 971
    //! init shapes in kern param
    void init_shapes(
            megdnn::Reduce* opr, CompNode comp_node, DType dtype, Mode mode,
            TensorShape ishp, TensorShape oshp, const Param::DataType data_type);
972

M
Megvii Engine Team 已提交
973 974
    void setup_kern_params_layout_and_mode(
            Mode mode, DType inp_dtype, TensorShape& inp_shp, const Param::DataType);
975

M
Megvii Engine Team 已提交
976 977 978
    void check_shapes(const TensorShape& ishp, const TensorShape& oshp) {
        mgb_assert(m_prev_ishp.eq_shape(ishp) && m_prev_oshp.eq_shape(oshp));
    }
979

M
Megvii Engine Team 已提交
980 981 982 983
    //! update pointers in kern param; the tensors must have been allocated
    void update_ptr(
            const DeviceTensorND& input, const DeviceTensorND& dest,
            const DeviceTensorND& workspace);
984

M
Megvii Engine Team 已提交
985 986 987
    void execute(
            megdnn::Reduce* opr, const DeviceTensorND& input,
            const DeviceTensorND& dest);
988

M
Megvii Engine Team 已提交
989 990 991 992 993 994
    void record_execute_deps(ExecDependencyArray& deps) {
        if (m_elemwise_trans_opr) {
            deps.emplace_back(std::make_unique<intl::MegDNNGraphDep>(
                    std::move(m_elemwise_trans_opr)));
        }
        if (m_typecvt_opr) {
995
            deps.emplace_back(
M
Megvii Engine Team 已提交
996
                    std::make_unique<intl::MegDNNGraphDep>(std::move(m_typecvt_opr)));
997
        }
M
Megvii Engine Team 已提交
998 999
        deps.emplace_back(std::make_unique<ValueDep>(m_side_affect_wkspc.storage()));
    }
1000

M
Megvii Engine Team 已提交
1001 1002 1003
private:
    struct KernParam {
        megdnn::TensorND input, output;
1004

M
Megvii Engine Team 已提交
1005 1006
        //! param passed to megdnn
        megdnn::param::Reduce kparam;
1007

M
Megvii Engine Team 已提交
1008
        megdnn::Workspace workspace;
1009

M
Megvii Engine Team 已提交
1010 1011
        KernParam(Mode mode, int32_t ra) : kparam{mode, ra} {}
    };
1012

M
Megvii Engine Team 已提交
1013 1014 1015 1016
    struct SubWorkspace {
        size_t size, offset;
        size_t end() const { return size + offset; }
    };
1017

M
Megvii Engine Team 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    void update_kparam_for_elemwise_side_effect(
            CompNode comp_node, Mode mode, const Param::DataType data_type);

    bool m_shape_computed = false;
    std::vector<KernParam> m_kern_param;
    TensorShape m_prev_ishp, m_prev_oshp;
    SubWorkspace m_workspace_spec[3];  //! tmp output[2], kern workspce

    /*!
     * some reduce mode (like SUM_SQR) has side effect of element-wise
     * trans. If this is the case and there is no kernel param,
     * m_apply_side_effect would be non-null
     */
    thin_function<void(const DeviceTensorND& in, const DeviceTensorND& out)>
1032
            m_apply_side_effect;
M
Megvii Engine Team 已提交
1033 1034 1035 1036
    std::unique_ptr<megdnn::Elemwise> m_elemwise_trans_opr;
    std::unique_ptr<megdnn::TypeCvt> m_typecvt_opr;
    std::unique_ptr<megdnn::Fill> m_fill_opr;
    DeviceTensorND m_side_affect_wkspc;
1037 1038
};

M
Megvii Engine Team 已提交
1039 1040
void Reduce::KernScheduler::setup_kern_params_layout_and_mode(
        Mode mode, DType inp_dtype, TensorShape& ishp,
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        const Param::DataType data_type) {
    auto prev_dtype = inp_dtype;
    for (size_t idx = 0; idx < m_kern_param.size(); ++idx) {
        auto&& i = m_kern_param[idx];

#if !MEGDNN_DISABLE_FLOAT16
        if (idx == 0 && data_type == Param::DataType::FLOAT_O32xC32) {
            i.input.layout.dtype = inp_dtype;
            i.output.layout.dtype = dtype::Float32();
            i.kparam.data_type = data_type;
        } else if (data_type == Param::DataType::FLOAT_O16xC32) {
            i.input.layout.dtype = prev_dtype;
            if (idx + 1 == m_kern_param.size()) {
                i.output.layout.dtype = dtype::Float16();
                i.kparam.data_type = data_type;
M
Megvii Engine Team 已提交
1056
            } else {
1057 1058 1059 1060 1061 1062
                i.output.layout.dtype = dtype::Float32();
                i.kparam.data_type = Param::DataType::FLOAT_O32xC32;
            }
        } else
#endif
        {
M
Megvii Engine Team 已提交
1063 1064 1065
            mgb_assert(
                    data_type == Param::DataType::DEFAULT ||
                    (data_type == Param::DataType::FLOAT_O32xC32 && idx));
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
            i.input.layout.dtype = prev_dtype;
            i.output.layout.dtype = prev_dtype;
            i.kparam.data_type = Param::DataType::DEFAULT;
        }
        prev_dtype = i.output.layout.dtype;

        i.input.layout.init_contiguous_stride(ishp);
        ishp.shape[i.kparam.axis] = 1;
        i.output.layout.init_contiguous_stride(ishp);
    }
    if (mode == Mode::SUM_SQR) {
M
Megvii Engine Team 已提交
1077
        for (size_t i = 1; i < m_kern_param.size(); ++i)
1078 1079 1080 1081 1082
            m_kern_param[i].kparam.mode = Mode::SUM;
    }
}

void Reduce::KernScheduler::init_shapes(
M
Megvii Engine Team 已提交
1083
        megdnn::Reduce* opr, CompNode comp_node, DType inp_dtype, Mode mode,
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        TensorShape ishp, TensorShape oshp, const Param::DataType data_type) {
    mgb_assert(ishp.ndim && oshp.ndim);

    if (ishp.eq_shape(m_prev_ishp) && oshp.eq_shape(m_prev_oshp))
        return;

    m_prev_ishp = ishp;
    m_prev_oshp = oshp;

    m_kern_param.clear();

    if (oshp.is_scalar()) {
        // if ishp is non-contiguous, add_layout_constraint_contiguous would be
        // added; so we do not have to worry about this
        ishp.shape[0] = ishp.total_nr_elems();
        ishp.ndim = 1;
    }

M
Megvii Engine Team 已提交
1102 1103
    mgb_assert(
            oshp.ndim == ishp.ndim,
1104 1105 1106
            "input and output ndim mismatch for reduction: ishp=%s oshp=%s",
            ishp.to_string().c_str(), oshp.to_string().c_str());

M
Megvii Engine Team 已提交
1107
    for (size_t i = 0; i < ishp.ndim; ++i) {
1108
        if (ishp.shape[i] != oshp.shape[i]) {
M
Megvii Engine Team 已提交
1109 1110
            mgb_assert(
                    oshp.shape[i] == 1,
1111 1112 1113 1114 1115 1116
                    "input and output shape mismatch for reduction: "
                    "ishp=%s oshp=%s",
                    ishp.to_string().c_str(), oshp.to_string().c_str());
        }
    }

M
Megvii Engine Team 已提交
1117
    auto remove_axis = [](TensorShape& shp, size_t ax) {
1118
        mgb_assert(shp.ndim > 1);
M
Megvii Engine Team 已提交
1119
        for (auto i = ax + 1; i < shp.ndim; ++i)
1120
            shp.shape[i - 1] = shp.shape[i];
M
Megvii Engine Team 已提交
1121
        --shp.ndim;
1122 1123 1124
    };

    // collapse consecutive shape-1 axes in oshp
M
Megvii Engine Team 已提交
1125
    for (size_t i = 0; i < oshp.ndim; ++i) {
1126 1127
        auto start = i;
        while (i < oshp.ndim && oshp.shape[i] == 1)
M
Megvii Engine Team 已提交
1128
            ++i;
1129 1130

        if (start + 1 < i) {
M
Megvii Engine Team 已提交
1131
            for (auto j = start + 1; j < i; ++j)
1132 1133
                ishp.shape[start] *= ishp.shape[j];

M
Megvii Engine Team 已提交
1134
            for (auto j = start + 1; j < i; ++j) {
1135 1136 1137 1138 1139 1140 1141 1142
                remove_axis(ishp, start + 1);
                remove_axis(oshp, start + 1);
            }

            i = start;
        }
    }

M
Megvii Engine Team 已提交
1143
    for (uint32_t i = 0; i < ishp.ndim; ++i) {
1144 1145 1146 1147 1148 1149
        if (ishp.shape[i] != oshp.shape[i]) {
            mgb_assert(oshp.shape[i] == 1);
            m_kern_param.push_back({mode, static_cast<int32_t>(i)});
        }
    }
    // sort according to reduction size, so workspace can be smaller
M
Megvii Engine Team 已提交
1150 1151 1152
    small_sort(
            m_kern_param.begin(), m_kern_param.end(),
            [&](const KernParam& a, const KernParam& b) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
                return ishp.shape[a.kparam.axis] > ishp.shape[b.kparam.axis];
            });

    // init kparam input/output layout
    setup_kern_params_layout_and_mode(mode, inp_dtype, ishp, data_type);

    // init workspace size
    memset(m_workspace_spec, 0, sizeof(m_workspace_spec));

    for (auto&& i : m_kern_param) {
        opr->param() = i.kparam;
M
Megvii Engine Team 已提交
1164
        i.workspace.size = opr->get_workspace_in_bytes(i.input.layout, i.output.layout);
1165 1166 1167 1168 1169 1170
        update_max(m_workspace_spec[2].size, i.workspace.size);
    }

    mgb_assert(ishp.eq_shape(oshp));

    if (m_kern_param.size() >= 2) {
M
Megvii Engine Team 已提交
1171
        m_workspace_spec[0].size = m_kern_param[1].input.layout.span().high_byte;
1172 1173
    }
    if (m_kern_param.size() >= 3) {
M
Megvii Engine Team 已提交
1174
        m_workspace_spec[1].size = m_kern_param[2].input.layout.span().high_byte;
1175 1176 1177
    }

    auto align = comp_node.get_mem_addr_alignment();
M
Megvii Engine Team 已提交
1178 1179 1180
    for (int i = 0; i < 2; ++i) {
        m_workspace_spec[i + 1].offset =
                get_aligned_power2(m_workspace_spec[i].end(), align);
1181 1182 1183 1184 1185 1186 1187 1188
    }

    update_kparam_for_elemwise_side_effect(comp_node, mode, data_type);

    m_shape_computed = true;
}

void Reduce::KernScheduler::update_kparam_for_elemwise_side_effect(
M
Megvii Engine Team 已提交
1189
        CompNode comp_node, Mode mode, const Param::DataType data_type) {
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    m_apply_side_effect = nullptr;
    m_elemwise_trans_opr.reset();
    m_typecvt_opr.reset();
    if (!m_kern_param.empty()) {
        // no need to set m_apply_side_effect
        return;
    } /* else */
    // case A: input.layout == output.layout
    // case B: input.total_nr_elems == 1 and output is a scalar

    if (mode == Mode::SUM_SQR) {
M
Megvii Engine Team 已提交
1201 1202
        m_elemwise_trans_opr =
                intl::get_megdnn_handle(comp_node)->create_operator<megdnn::Elemwise>();
1203 1204 1205 1206
        m_elemwise_trans_opr->param() = {Elemwise::Mode::MUL};
    }
    if (data_type != Param::DataType::DEFAULT) {
        m_side_affect_wkspc = DeviceTensorND{comp_node, dtype::Float32()};
M
Megvii Engine Team 已提交
1207 1208
        m_typecvt_opr =
                intl::get_megdnn_handle(comp_node)->create_operator<megdnn::TypeCvt>();
1209 1210 1211 1212
    }
    if (!m_typecvt_opr && !m_elemwise_trans_opr)
        return;

M
Megvii Engine Team 已提交
1213
    m_apply_side_effect = [this](const DeviceTensorND& in, const DeviceTensorND& out) {
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        if (m_typecvt_opr) {
            m_side_affect_wkspc.resize(in.shape());
        }
        if (!m_elemwise_trans_opr) {
            mgb_assert(m_typecvt_opr);
            m_typecvt_opr->exec(in.as_megdnn(), out.as_megdnn());
            return;
        }
        auto im = in.as_megdnn();
        megdnn::TensorND wm;
        if (m_typecvt_opr && in.dtype() != m_side_affect_wkspc.dtype()) {
            m_side_affect_wkspc.resize(in.shape());
            wm = m_side_affect_wkspc.as_megdnn();
            m_typecvt_opr->exec(im, wm);
        } else {
            wm = im;
        }
        if (m_typecvt_opr && wm.layout.dtype != out.dtype()) {
            m_elemwise_trans_opr->exec({wm, wm}, wm);
            m_typecvt_opr->exec(wm, out.as_megdnn());
        } else {
M
Megvii Engine Team 已提交
1235
            auto&& wshp = wm.layout;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
            if (wshp.ndim != out.layout().ndim) {
                // to ensure that wkspc.ndim equals out.ndim in the case:
                // wkspc.shape=(1, 1, ..., 1) and out.shape=(1), otherwise it
                // may lead the 'TensorShape Dimension' assertion failed in
                // the following broadcast operator
                mgb_assert(wshp.total_nr_elems() == 1 && out.layout().ndim == 1);
                wshp.ndim = 1;
            }
            m_elemwise_trans_opr->exec({wm, wm}, out.as_megdnn());
        }
    };
}

void Reduce::KernScheduler::update_ptr(
M
Megvii Engine Team 已提交
1250 1251
        const DeviceTensorND& input, const DeviceTensorND& dest,
        const DeviceTensorND& workspace) {
1252 1253 1254 1255 1256
    auto dtype = dest.layout().dtype;
    mgb_assert(dtype.valid());
    mgb_assert(m_shape_computed);

    if (workspace_size()) {
M
Megvii Engine Team 已提交
1257 1258
        mgb_assert(
                workspace.layout().dtype == dtype::Byte() &&
1259 1260 1261 1262 1263 1264 1265
                workspace.layout().ndim == 1 &&
                workspace.shape()[0] >= workspace_size());
    }

    if (m_kern_param.empty())
        return;

M
Megvii Engine Team 已提交
1266 1267
    mgb_assert(
            input.layout().total_nr_elems() ==
1268
            m_kern_param[0].input.layout.total_nr_elems());
M
Megvii Engine Team 已提交
1269 1270
    mgb_assert(
            dest.shape().total_nr_elems() ==
1271
            m_kern_param.back().output.layout.total_nr_elems());
1272 1273 1274
    auto in_tensor = input.as_megdnn();
    in_tensor.layout = m_kern_param[0].input.layout;
    m_kern_param[0].input = in_tensor;
1275

M
Megvii Engine Team 已提交
1276 1277 1278 1279 1280 1281 1282 1283
    dt_byte *workspace_begin = workspace_size()
                                     ? const_cast<dt_byte*>(workspace.raw_ptr())
                                     : nullptr,
            *tmp_reduce_ptr[2] =
                    {workspace_begin + m_workspace_spec[0].offset,
                     workspace_begin + m_workspace_spec[1].offset},
            *kern_workspace = workspace_begin + m_workspace_spec[2].offset;
    for (size_t i = 0; i < m_kern_param.size() - 1; ++i) {
1284
        auto optr = tmp_reduce_ptr[i % 2];
1285 1286
        m_kern_param[i].output.reset_ptr(optr);
        m_kern_param[i + 1].input.reset_ptr(optr);
1287
    }
M
Megvii Engine Team 已提交
1288
    for (auto&& i : m_kern_param)
1289
        i.workspace.raw_ptr = kern_workspace;
1290 1291 1292
    auto out_tensor = dest.as_megdnn();
    out_tensor.layout = m_kern_param.back().output.layout;
    m_kern_param.back().output = out_tensor;
1293 1294 1295
}

void Reduce::KernScheduler::execute(
M
Megvii Engine Team 已提交
1296
        megdnn::Reduce* opr, const DeviceTensorND& input, const DeviceTensorND& dest) {
1297 1298 1299 1300 1301 1302 1303
    if (m_apply_side_effect) {
        mgb_assert(m_kern_param.empty());
        m_apply_side_effect(input, dest);
        return;
    }

    mgb_assert(!m_kern_param.empty());
1304 1305 1306 1307 1308

    // empty input
    if (input.shape_valid() && input.empty()) {
        auto mode = m_kern_param[0].kparam.mode;
        if (!m_fill_opr) {
M
Megvii Engine Team 已提交
1309 1310
            m_fill_opr = intl::get_megdnn_handle(dest.comp_node())
                                 ->create_operator<megdnn::Fill>();
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        }
        std::string err_msg;
        switch (mode) {
            case Reduce::Mode::SUM:
                if (!dest.empty()) {
                    m_fill_opr->param() = 0;
                    m_fill_opr->exec(dest.as_megdnn(), {});
                }
                break;
            case Reduce::Mode::PRODUCT:
                if (!dest.empty()) {
                    m_fill_opr->param() = 1;
                    m_fill_opr->exec(dest.as_megdnn(), {});
                }
                break;
            case Reduce::Mode::MEAN:
M
Megvii Engine Team 已提交
1327 1328
                err_msg = "mean";
                break;
1329
            case Reduce::Mode::MIN:
M
Megvii Engine Team 已提交
1330 1331
                err_msg = "min";
                break;
1332
            case Reduce::Mode::MAX:
M
Megvii Engine Team 已提交
1333 1334
                err_msg = "max";
                break;
1335
            case Reduce::Mode::SUM_SQR:
M
Megvii Engine Team 已提交
1336 1337
                err_msg = "sum_sqr";
                break;
1338 1339 1340 1341 1342
            default:
                mgb_throw(MegBrainError, "bad reduce mode");
        }
        if (!err_msg.empty()) {
            mgb_throw(
M
Megvii Engine Team 已提交
1343 1344
                    MegBrainError, "empty input is not allowed for reduce mode: %s",
                    err_msg.c_str());
1345 1346 1347
        }
        return;
    }
M
Megvii Engine Team 已提交
1348 1349
    mgb_assert(
            input.layout().is_contiguous() &&
1350 1351
            input.raw_ptr() == m_kern_param[0].input.raw_ptr() &&
            dest.raw_ptr() == m_kern_param.back().output.raw_ptr());
M
Megvii Engine Team 已提交
1352
    for (auto&& i : m_kern_param) {
1353 1354 1355 1356 1357 1358 1359 1360 1361
        opr->param() = i.KernParam::kparam;
        opr->exec(i.input, i.output, i.workspace);
    }
}

class Reduce::OutTensorShapeExtender {
public:
    OutTensorShapeExtender(const TensorShape& ishp, const TensorShape& oshp)
            : m_oshp(oshp) {
M
Megvii Engine Team 已提交
1362 1363 1364 1365 1366 1367
        mgb_assert(
                oshp.ndim <= ishp.ndim,
                "output ndim should be less and equal than input ndim for "
                "reduction: "
                "ishp=%s oshp=%s",
                ishp.to_string().c_str(), oshp.to_string().c_str());
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        // Ex. ishp = (a, b, c, d), oshp = (c, d)
        if (!oshp.is_scalar() && ishp.ndim != oshp.ndim) {
            size_t ndim_diff = ishp.ndim - oshp.ndim;
            auto&& canonized_oshp = m_canonized_oshp_storage.emplace(oshp);
            for (size_t i = 0; i < ishp.ndim; ++i)
                if (i < ndim_diff)
                    canonized_oshp[i] = 1;
                else
                    canonized_oshp[i] = oshp[i - ndim_diff];
            canonized_oshp.ndim = ishp.ndim;
        }
    }

    const TensorShape& get() const {
        return m_canonized_oshp_storage.valid() ? m_canonized_oshp_storage.val()
                                                : m_oshp;
    }

private:
    Maybe<TensorShape> m_canonized_oshp_storage;
    const TensorShape& m_oshp;
};

MGB_DYN_TYPE_OBJ_FINAL_IMPL(Reduce);
M
Megvii Engine Team 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400
Reduce::Reduce(
        VarNode* inp, VarNode* target_shape, const Param& param,
        const OperatorNodeConfig& config)
        : Super{inp->owner_graph(),
                config,
                ssprintf("reduce%d", static_cast<int>(param.mode)),
                {inp}},
          m_param{param},
          m_kern_scheduler{std::make_unique<KernScheduler>()} {
1401 1402 1403 1404
    add_input({inp});

    if (inp->dtype().enumv() == DTypeEnum::Quantized8Asymm &&
        inp->dtype().category() == DTypeCategory::QUANTIZED) {
M
Megvii Engine Team 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413
        mgb_assert(
                param.mode != Param::Mode::PRODUCT,
                "Reduce does not support PRODUCT mode on quantized input");
        mgb_assert(
                param.mode != Param::Mode::SUM_SQR,
                "Reduce does not support SUM_SQR mode on quantized input");
        mgb_assert(
                param.mode != Param::Mode::SUM,
                "Reduce does not support SUM mode on quantized input");
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    }

    DType out_dtype;
    switch (param.data_type) {
        case Param::DataType::DEFAULT:
            out_dtype = inp->dtype();
            break;
#if !MEGDNN_DISABLE_FLOAT16
        case Param::DataType::FLOAT_O16xC32:
            out_dtype = dtype::Float16();
            break;
        case Param::DataType::FLOAT_IO16xC32:
            mgb_assert(false);
#endif
        case Param::DataType::FLOAT_O32xC32:
            out_dtype = dtype::Float32();
            break;
        case Param::DataType::QUINT_I8xO32:
            out_dtype = dtype::QuantizedS32(
                    inp->dtype().param<dtype::Quantized8Asymm>().scale);
            break;
        case Param::DataType::QINT_I8xO32:
M
Megvii Engine Team 已提交
1436 1437
            out_dtype =
                    dtype::QuantizedS32(inp->dtype().param<dtype::QuantizedS8>().scale);
1438 1439
            break;
        default:
M
Megvii Engine Team 已提交
1440
            mgb_throw(GraphError, "invalid param data_type: %d", int(param.data_type));
1441
    }
M
Megvii Engine Team 已提交
1442
    add_output(None)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE).dtype(out_dtype);
1443 1444 1445 1446 1447
    cg::add_workspace_output(this);

    add_equivalence_component<PODHash<Param>>(&m_param);

    if (param.axis >= -MEGDNN_MAX_NDIM && param.axis < MEGDNN_MAX_NDIM) {
M
Megvii Engine Team 已提交
1448 1449
        mgb_throw_if(
                target_shape, GraphError,
1450 1451 1452
                "could not specify both axis and target shape");
        m_is_symtshp = false;
    } else {
M
Megvii Engine Team 已提交
1453 1454
        mgb_throw_if(
                !target_shape, GraphError, "neither axis or target_shape specified");
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        add_input({target_shape});
        m_is_symtshp = true;

        outshape_by_symvar_enable(0, 1);
    }
}

Reduce::~Reduce() = default;

SymbolVar Reduce::make(
        SymbolVar src, Param param, SymbolVar target_shape,
M
Megvii Engine Team 已提交
1466
        const OperatorNodeConfig& config) {
1467
    if (param.data_type == Param::DataType::FLOAT_IO16xC32) {
M
Megvii Engine Team 已提交
1468 1469
        mgb_log_warn(
                "DataType FLOAT_IO16xC32 has been deprecated "
1470 1471 1472 1473
                "use FLOAT_O16xC32 instead");
        param.data_type = Param::DataType::FLOAT_O16xC32;
    }

M
Megvii Engine Team 已提交
1474
    if (param.mode == Mode::SUM && src.node()->owner_opr()->same_type<Elemwise>()) {
1475
        // replace sum(x^2) by sum_sqr(x)
M
Megvii Engine Team 已提交
1476
        auto&& opr = src.node()->owner_opr()->cast_final<Elemwise>();
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
        if (opr.param().mode == Elemwise::Mode::POW) {
            mgb_assert(opr.input().size() == 2);
            auto pow = SymbolVar{opr.input(1)}.as_immutable_scalar();
            if (pow.valid() && pow->get_cast<float>() == 2) {
                src = opr.input(0);
                param.mode = Mode::SUM_SQR;
            }
        }
    }
    return src.insert_single_output_opr<Reduce>(
            src.node(), target_shape.node(), param, config);
}

void Reduce::outshape_by_symvar_do_get_output_shape(
M
Megvii Engine Team 已提交
1491
        TensorShape& dest, const ShapeInferInfo& shpinfo) {
1492 1493 1494 1495 1496
    cg::copy_tensor_value_to_shape(dest, *shpinfo.shpval_inp_val.at(0));
}

void Reduce::init_output_static_infer_desc() {
    using namespace cg::static_infer;
M
Megvii Engine Team 已提交
1497
    auto&& mgr = owner_graph()->static_infer_manager();
1498 1499 1500 1501 1502 1503 1504

    // infer output shape
    if (m_is_symtshp) {
        // reduce to target shape
        Super::init_output_static_infer_desc();
    } else {
        // reduce along axis
M
Megvii Engine Team 已提交
1505
        auto infer_shape = [this](TensorShape& dest, const InpVal& inp) {
1506
            dest = inp.val.at(0).shape();
M
Megvii Engine Team 已提交
1507 1508 1509 1510 1511
            mgb_assert(
                    m_param.axis < static_cast<int>(dest.ndim) &&
                            m_param.axis >= -static_cast<int>(dest.ndim),
                    "invalid axis for reduction: shape=%s axis=%d",
                    dest.to_string().c_str(), m_param.axis);
1512 1513 1514 1515 1516 1517 1518
            int real_axis = m_param.axis;
            if (real_axis < 0)
                real_axis += dest.ndim;
            dest.shape[real_axis] = 1;
            return true;
        };
        mgr.register_shape_infer(
M
Megvii Engine Team 已提交
1519 1520
                output(0),
                {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape});
1521 1522 1523
    }

    // infer workspace
M
Megvii Engine Team 已提交
1524
    auto infer_workspace = [this](TensorShape& dest, const InpVal& inp) {
1525 1526 1527 1528 1529
        init_kern_sched_shape(inp.val[0].shape(), inp.val[1].shape());
        dest.ndim = 1;
        dest.shape[0] = m_kern_scheduler->workspace_size();
        return true;
    };
M
Megvii Engine Team 已提交
1530 1531 1532 1533
    mgr.register_shape_infer(
            output(1), {SourceType::DEP,
                        {{input(0), DepType::SHAPE}, {output(0), DepType::SHAPE}},
                        infer_workspace});
1534 1535 1536 1537

    // infer value

    static StaticInferOpr<megdnn::Reduce> static_infer_opr;
M
Megvii Engine Team 已提交
1538
    auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
1539 1540
        DeviceTensorND workspace;
        auto sopr = static_infer_opr.lock();
M
Megvii Engine Team 已提交
1541 1542
        perform(m_param.mode, dest, workspace, inp.val[0].value(), output(0)->dtype(),
                inp.val.at(1).shape(), sopr(), m_param.data_type);
1543 1544 1545
        return true;
    };

M
Megvii Engine Team 已提交
1546 1547 1548 1549
    mgr.register_value_infer(
            output(0), {SourceType::DEP,
                        {{input(0), DepType::VALUE}, {output(0), DepType::SHAPE}},
                        infer_value});
1550 1551
}

M
Megvii Engine Team 已提交
1552
void Reduce::init_kern_sched_shape(const TensorShape& ishp, const TensorShape& oshp) {
1553 1554
    OutTensorShapeExtender extender(ishp, oshp);
    auto&& canonized_oshp = extender.get();
M
Megvii Engine Team 已提交
1555 1556 1557
    m_kern_scheduler->init_shapes(
            static_cast<megdnn::Reduce*>(megdnn_opr()), comp_node(), input(0)->dtype(),
            m_param.mode, ishp, canonized_oshp, m_param.data_type);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
}

cg::OperatorNodeBase::OprEventCallback Reduce::get_opr_event_callback() {
    auto on_mem_status_changed = [this]() {
        auto&& ishp = input(0)->shape();
        auto&& oshp = output(0)->shape();
        OutTensorShapeExtender extender(ishp, oshp);
        auto&& canonized_oshp = extender.get();
        m_kern_scheduler->check_shapes(input(0)->shape(), canonized_oshp);
        m_kern_scheduler->update_ptr(
                input(0)->dev_tensor(), output(0)->dev_tensor(),
M
Megvii Engine Team 已提交
1569
                output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    };
    return {on_mem_status_changed};
}

void Reduce::mem_plan_fwd_in2out_readonly() {
    init_kern_sched_shape(input(0)->shape(), output(0)->shape());

    if (!m_kern_scheduler->has_actual_computing()) {
        // forward memory if no actual computing needed

        if (!output(0)->mem_plan().valid()) {
            // output(0) is dynamic but current is staic alloc phase (for
            // workspace)
            return;
        }
        auto&& ily = input(0)->layout();
        auto&& oly = output(0)->layout();
        const TensorLayout* fwd_spec = nullptr;
        Maybe<TensorLayout> ily_modified_storage;

        if (!ily.eq_shape(oly)) {
            auto&& ily_modified = ily_modified_storage.emplace(ily);
            mgb_assert(ily.ndim > oly.ndim);
            for (size_t i = 0; i < ily.ndim - oly.ndim; ++i)
                mgb_assert(ily.shape[i] == 1);
            ily_modified = ily_modified.reshape(oly);
            fwd_spec = &ily_modified;
        } else {
            fwd_spec = &ily;
        }
        m_mem_fwd_success = output(0)->set_fwd_in2out_readonly(
                input(0), SubTensorSpec::make_from_layout(*fwd_spec));
    }
}

void Reduce::add_input_layout_constraint() {
    if (!cg::is_static_var_shape(output(0))) {
        // output shape can not be inferred; require contiguous to be safe
        input(0)->add_layout_constraint_contiguous();
    } else {
M
Megvii Engine Team 已提交
1610 1611
        auto check = [this](const TensorLayout& ily) {
            auto&& mgr = owner_graph()->static_infer_manager();
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            auto oshp = mgr.infer_shape(output(0));
            init_kern_sched_shape(ily, oshp);
            if (m_kern_scheduler->has_actual_computing())
                return ily.is_contiguous();
            return true;
        };
        input(0)->add_layout_constraint(check);
    }
}

void Reduce::scn_do_execute() {
    auto&& inp = input(0)->dev_tensor();
    auto&& out = output(0)->dev_tensor();
    auto&& ishp = input(0)->shape();
    auto&& oshp = output(0)->shape();
    const DeviceTensorND* out_ptr;
    Maybe<DeviceTensorND> canonized_storage;
    OutTensorShapeExtender extender(ishp, oshp);
    auto&& canonized_oshp = extender.get();
    if (canonized_oshp.ndim != out.shape().ndim) {
        auto&& canonized_out = canonized_storage.emplace(out);
        canonized_out.reset(
                canonized_out.storage(),
                canonized_out.layout().reshape(canonized_oshp));
        out_ptr = &canonized_out;
    } else {
        out_ptr = &out;
    }
    // shape initialized either in deducing workspace,
    // mem_plan_fwd_in2out_readonly, or check input layout
    m_kern_scheduler->check_shapes(inp.shape(), out_ptr->shape());

    if (m_kern_scheduler->has_actual_computing()) {
M
Megvii Engine Team 已提交
1645 1646
        m_kern_scheduler->execute(
                static_cast<megdnn::Reduce*>(megdnn_opr()), inp, *out_ptr);
1647 1648 1649
    } else {
        // no reduction needed, just forward
        if (m_mem_fwd_success) {
M
Megvii Engine Team 已提交
1650 1651 1652 1653
            mgb_assert(
                    inp.raw_ptr() == out_ptr->raw_ptr() &&
                    out_ptr->layout().total_nr_elems() ==
                            inp.layout().total_nr_elems());
1654 1655
        } else {
            if (!out_ptr->shape().eq_shape(inp.shape())) {
M
Megvii Engine Team 已提交
1656 1657 1658
                mgb_assert(
                        out_ptr->shape().is_scalar() &&
                        inp.shape().total_nr_elems() == 1);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
                out_ptr->sub(SubTensorSpec::make_from_layout(inp.layout()))
                        .copy_from_fixlayout(inp);
            } else {
                out_ptr->copy_from_fixlayout(inp);
            }
        }
    }
}

void Reduce::perform(
M
Megvii Engine Team 已提交
1669 1670 1671 1672 1673 1674
        Mode mode, DeviceTensorND& dest, DeviceTensorND& workspace,
        const DeviceTensorND& input, const DType& target_dtype,
        const TensorShape& target_shape, intl::UniqPtrWithCN<megdnn::Reduce>& opr,
        const Param::DataType data_type) {
    mgb_assert(
            !dest.storage().comp_node_valid() || opr.comp_node() == dest.comp_node());
1675
    KernScheduler ksched;
1676 1677
    OutTensorShapeExtender extender(input.shape(), target_shape);
    auto&& canonized_oshp = extender.get();
M
Megvii Engine Team 已提交
1678 1679 1680
    ksched.init_shapes(
            opr.get(), opr.comp_node(), input.layout().dtype, mode, input.shape(),
            canonized_oshp, data_type);
1681 1682

    if (!ksched.has_actual_computing()) {
M
Megvii Engine Team 已提交
1683
        mgb_assert(target_shape.total_nr_elems() == input.layout().total_nr_elems());
1684 1685 1686 1687 1688
        dest.copy_from(input);
        dest.reset(dest.storage(), {target_shape, dest.dtype()});
        return;
    }

M
Megvii Engine Team 已提交
1689
    workspace.comp_node(opr.comp_node()).dtype(dtype::Byte());
1690 1691
    size_t workspace_size = ksched.workspace_size();
    DeviceTensorND input_contig_storage;
M
Megvii Engine Team 已提交
1692
    const DeviceTensorND* input_contig = &input;
1693 1694 1695
    if (!input.layout().is_contiguous()) {
        auto offset = get_aligned_power2(
                workspace_size, opr.comp_node().get_mem_addr_alignment());
M
Megvii Engine Team 已提交
1696
        workspace_size = offset + input.dtype().size(input.shape().total_nr_elems());
1697 1698

        workspace.resize({workspace_size});
M
Megvii Engine Team 已提交
1699 1700 1701
        input_contig_storage
                .reset(workspace.storage().sub(offset), {input.shape(), input.dtype()})
                .copy_from(input);
1702 1703 1704 1705 1706 1707
        input_contig = &input_contig_storage;
    } else {
        workspace.resize({workspace_size});
    }

    opr.comp_node().activate();
1708
    dest.comp_node(opr.comp_node()).dtype(target_dtype).resize(target_shape);
1709 1710 1711 1712
    ksched.update_ptr(*input_contig, dest, workspace);
    ksched.execute(opr.get(), *input_contig, dest);
}

1713 1714
Reduce::NodeProp* Reduce::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
M
Megvii Engine Team 已提交
1715
    ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
1716 1717 1718
    return ret;
}

1719
void Reduce::create_megdnn_opr() {
M
Megvii Engine Team 已提交
1720 1721
    set_megdnn_opr(
            intl::get_megdnn_handle(comp_node())->create_operator<megdnn::Reduce>());
1722 1723
}

1724
#if MGB_ENABLE_GRAD
1725
MGB_IMPL_OPR_GRAD(Reduce) {
M
Megvii Engine Team 已提交
1726
    for (size_t i = 1; i < opr.output().size(); ++i)
1727
        mgb_assert(!out_grad[i]);
1728
    if (wrt_idx || opr.input(0)->dtype().category() != DTypeCategory::FLOAT)
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        return InvalidGrad::make(opr, wrt_idx);
    SymbolVar og{out_grad[0]}, iv{opr.input(0)}, ov{opr.output(0)};
    constexpr auto cmv = Elemwise::Mode::COND_LEQ_MOV;
    using Mode = Reduce::Mode;
    SymbolVar grad = [&]() {
        switch (opr.param().mode) {
            case Mode::SUM:
                return Broadcast::make(og, GetVarShape::make(iv));
            case Mode::SUM_SQR:
                return (og * og.make_scalar_dt(2) * iv);
            case Mode::PRODUCT:
                return ((og * ov) / iv);
            case Mode::MIN:
                return Elemwise::make({iv, ov, og}, cmv);
            case Mode::MAX:
                return Elemwise::make({ov, iv, og}, cmv);
            case Mode::MEAN: {
                auto og_shape = opr::GetVarShape::make(og),
M
Megvii Engine Team 已提交
1747 1748 1749 1750
                     iv_shape = opr::GetVarShape::make(iv),
                     scale =
                             div(opr::reduce_prod(og_shape, og_shape.make_scalar(1)),
                                 opr::reduce_prod(iv_shape, iv_shape.make_scalar(1)));
1751 1752 1753 1754 1755 1756 1757 1758 1759
                return scale * Broadcast::make(og, GetVarShape::make(iv));
            }
            default:
                mgb_throw(MegBrainError, "bad reduce mode");
        }
    }();
    grad = TypeCvt::make(grad, iv.dtype());
    return grad.node();
}
1760
#endif
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

void Reduce::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
    m_kern_scheduler->record_execute_deps(deps);
}

/* =========================== PowC =========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(PowC);

M
Megvii Engine Team 已提交
1771 1772 1773
PowC::PowC(VarNode* i0, const Param& param, const OperatorNodeConfig& config)
        : Super(OperatorNodeBaseCtorParam{
                  i0->owner_graph(), config, ssprintf("powc_%g", param.exp), {i0}}) {
1774 1775 1776 1777 1778
    init_megdnn_opr(*this, param);
    add_input({i0});
    output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    intl::MegDNNOprInitPostCtor<PowC>::apply(*this);
}
1779

M
Megvii Engine Team 已提交
1780 1781
SymbolVar PowC::make(
        SymbolVar x, const Param& param, const OperatorNodeConfig& config) {
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    if (almost_equal(param.exp, 1.f)) {
        return x;
    }
    if (almost_equal(param.exp, 0.f)) {
        return x.make_scalar_dt(1).broadcast(x.symshape());
    }
    return x.insert_single_output_opr<PowC>(x.node(), param, config);
}

void PowC::add_input_layout_constraint() {
    input(0)->add_layout_constraint_monotone();
}

void PowC::mem_plan_fwd_in2out_writable() {
    output(0)->set_fwd_in2out_writable(input(0));
}

void PowC::init_output_static_infer_desc() {
    Super::init_output_static_infer_desc();
    static StaticInferOpr<megdnn::PowC> static_infer_opr;
    using namespace cg::static_infer;

    auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
        auto infer_opr_lock = static_infer_opr.lock();
        auto&& infer_opr = infer_opr_lock();
        infer_opr->param() = this->param();
        auto&& ival = inp.val[0].value().as_megdnn();
        infer_opr->exec(ival, dest.resize(ival.layout).as_megdnn());
        return true;
    };
    owner_graph()->static_infer_manager().register_value_infer(
M
Megvii Engine Team 已提交
1813
            output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
1814 1815
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
void PowC::scn_do_execute() {
    if (input(0)->dev_tensor().empty()) {
        mgb_assert(output(0)->dev_tensor().empty());
        return;
    }
    mgb_assert(!output(0)->dev_tensor().empty());
    Super::scn_do_execute();
}

PowC::NodeProp* PowC::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
M
Megvii Engine Team 已提交
1827
    ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
1828 1829 1830
    return ret;
}

1831
#if MGB_ENABLE_GRAD
1832 1833 1834 1835 1836 1837
MGB_IMPL_OPR_GRAD(PowC) {
    auto exp = opr.param().exp;
    return (exp * SymbolVar{out_grad[0]} *
            PowC::make(opr.input(0), exp - 1, opr.config()))
            .node();
}
1838
#endif
1839 1840

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}