states.h 13.3 KB
Newer Older
1 2 3 4 5
#pragma once

#include <set>
#include <any>
#include <typeindex>
6 7 8
#include <sstream>

#include "nlohmann/json.hpp"
9 10 11

#include "megbrain/tensor.h"

12 13
#include "./events.h"

14 15
namespace mgb::imperative::profiler {

16
using StackManager = interpreter::intl::StackManager;
17 18

struct ProfileTensorState {
19 20
    uint64_t id = 0;
    std::optional<uint64_t> source;
21 22 23
    TensorLayout layout;
    CompNode device;
    std::string name;
24 25
    profiler::HostTime produced = profiler::HostTime::min();
    profiler::Duration living_time = profiler::Duration::zero();
26 27 28 29 30 31 32 33

    size_t size_in_bytes() const {
        if (!layout.dtype.valid()) {
            return 0;
        }
        return layout.dtype.size(layout.total_nr_elems());
    }

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    std::string info(HostTime current_time) {
        std::string shape = layout.TensorShape::to_string();
        std::string dtype = layout.dtype.name();
        return ssprintf("%s(%s:%s:%s)", name.c_str(), shape.c_str(), dtype.c_str(), device.to_string().c_str());
    }

    nlohmann::json detail(HostTime current_time) {
        nlohmann::json args;
        args["id"] = id;
        args["name"] = name;
        args["shape"] = layout.TensorShape::to_string();
        args["dtype"] = layout.dtype.name();
        args["nr_elements"] = layout.total_nr_elems();
        args["device"] = device.to_string();
        if (produced != produced.min()) {
            double ms_count = std::chrono::duration_cast<std::chrono::duration<double, std::micro>>(current_time - produced + living_time).count();
            args["living_time"] = ssprintf("%lf ms", ms_count);
        }
        return args;
    }
54 55 56
};

struct ProfileOperatorState {
57
    uint64_t id = 0;
58
    std::string name;
59
    OpParams params;
60 61 62
    SmallVector<uint64_t> inputs;
    SmallVector<uint64_t> outputs;
    CompNode device;
63
    Trace trace;
64

65 66
    profiler::HostTime execute_begin;
    profiler::HostTime execute_end;
67

68 69 70 71 72 73 74 75 76 77
    nlohmann::json detail() {
        nlohmann::json args;
        for (auto&& [name, value]: params) {
            args[name] = value;
        }
        args["__id__"] = id;
        args["__name__"] = name;
        args["__device__"] = device.to_string();
        return args;
    }
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
};

template <typename TProp>
struct ProfileTensorPropPair {
    uint64_t id;
    TProp value;

    bool operator<(const ProfileTensorPropPair& lhs) const {
        return value == lhs.value ? id < lhs.id : value < lhs.value;
    }

    bool operator==(const ProfileTensorPropPair& lhs) const {
        return id == lhs.id && value == lhs.value;
    }

    bool operator>(const ProfileTensorPropPair& lhs) const {
        return value == lhs.value ? id > lhs.id : value > lhs.value;
    }
};

using ProfileTensorSizePair = ProfileTensorPropPair<size_t>;
using ProfileTensorProducedPair = ProfileTensorPropPair<uint64_t>;

struct ProfileState {
    std::unordered_map<uint64_t, ProfileTensorState> tensors;
    std::unordered_map<uint64_t, ProfileOperatorState> operators;
    std::unordered_map<std::string, uint64_t> tensor_name_counter;
    std::set<ProfileTensorSizePair> tensors_by_size;
    std::set<ProfileTensorSizePair> tensors_by_produced;

    std::vector<uint64_t> top_k_tensor_in_device(CompNode device, size_t k) {
        std::vector<uint64_t> results;
        for (auto iter = tensors_by_size.rbegin(); iter != tensors_by_size.rend(); ++iter) {
            if (!k) {
                break;
            }
            if (tensors[iter->id].device == device) {
                results.push_back(iter->id);
                --k;
            }
        }
        return results;
    }
121
};
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
template<typename T, typename = void>
struct is_op_event : std::false_type { };

template<typename T>
struct is_op_event<T, decltype(std::declval<T>().op_id, void())> : std::true_type { };

template<typename T, typename = void>
struct is_tensor_event : std::false_type { };

template<typename T>
struct is_tensor_event<T, decltype(std::declval<T>().tensor_id, void())> : std::true_type { };
template<typename T, typename = void>
struct is_trace_event : std::false_type { };
template<typename T>
struct is_trace_event<T, decltype(std::declval<T>().trace, void())> : std::true_type { };

template <typename... TItems>
class AnyToVariantConverter {
public:
142
    using any_t = AnyPtr;
143 144
    using variant_t = std::variant<TItems...>;
private:
145
    std::unordered_map<std::type_index, std::function<variant_t(const any_t&)>> m_table;
146 147 148

    template <typename TItem>
    void register_converter() {
149 150
        m_table[typeid(TItem)] = [](const any_t& input) {
            return variant_t(*input.as<TItem>());
151 152 153 154 155 156
        };
    }
public:
    AnyToVariantConverter() {
        (register_converter<TItems>(), ...);
    }
157
    variant_t operator()(const any_t& input) {
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        return m_table[input.type()](std::move(input));
    }
};

template <typename TSelf>
class EventVisitor {
private:
    std::unordered_map<size_t, ProfileOperatorState> m_operators;
    std::unordered_map<size_t, ProfileTensorState> m_tensors;
    std::unordered_map<size_t, std::vector<Profiler::Record>> m_duration_stack;
    HostTime m_start_time;
    CompNode::UnorderedMap<size_t> m_device_tid_table;
    std::unordered_map<std::thread::id, size_t> m_host_tid_table;
    CompNode::UnorderedMap<std::map<profiler::HostTime, profiler::RealDuration>> m_device_timeline;
    std::unordered_map<std::thread::id, std::vector<Trace>> m_trace_stack;
    std::unordered_map<std::string, int64_t> m_counter_table;
protected:
    Profiler::Record* current;
    ProfileOperatorState* current_op;
    ProfileTensorState* current_tensor;
protected:
    profiler::Duration since_start(profiler::HostTime time) {
        return time - m_start_time;
    }

    profiler::HostTime to_device_time(profiler::HostTime time, CompNode device) {
        auto& device_timeline = m_device_timeline[device];
        auto upper = device_timeline.lower_bound(time);
        if (upper == device_timeline.end()) {
            if (upper == device_timeline.begin()) {
                return time;
            } else {
                --upper;
                return time + std::chrono::duration_cast<profiler::Duration>(upper->second);
            }
        } else if (upper->first == time) {
            return time + std::chrono::duration_cast<profiler::Duration>(upper->second);
        } else if (upper == device_timeline.begin()) {
            return time + std::chrono::duration_cast<profiler::Duration>(upper->second);
197
        }
198 199 200 201 202 203 204
        auto lower = upper;
        -- lower;
        double ratio = ((double)(time - lower->first).count() / (double)(upper->first - lower->first).count());
        mgb_assert(ratio > 0 && ratio < 1, "invalid ratio");
        mgb_assert(lower->first + lower->second <= upper->first + upper->second, "device time corr");
        auto shift = lower->second + ratio * (upper->second - lower->second);
        auto result = time + std::chrono::duration_cast<profiler::Duration>(shift);
205 206
        return result;
    }
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

    size_t to_tid(std::thread::id host_tid) {
        return m_host_tid_table.at(host_tid);
    }

    size_t to_tid(CompNode device) {
        return m_device_tid_table.at(device);
    }

    void inc_counter(const char* key, int64_t delta) {
        if (!m_counter_table.count(key)) {
            m_counter_table[key] = 0;
        }
        auto& value = m_counter_table[key];
        static_cast<TSelf&>(*this).notify_counter(key, value, value + delta);
        value += delta;
    }
public:
225
    void process_events(Profiler::bundle_t& bundle) {
226 227 228 229 230 231 232 233
        m_start_time = bundle.start_at;

        auto& self = static_cast<TSelf&>(*this);
        AnyToVariantConverter<OpDispatchEvent, OpExecuteEvent, OpExecuteFinishEvent,
                KernelLaunchEvent, KernelLaunchFinishEvent,
                OpInputEvent, OpInputFinishEvent, OpOutputEvent, OpOutputFinishEvent,
                TensorDeclareEvent, TensorProduceEvent, TensorUsageEvent, TensorReleaseEvent, TensorEraseEvent,
                TensorGetPropEvent, TensorNotifyPropEvent, TensorWaitPropEvent, TensorWaitPropFinishEvent,
234
                SampleDeviceEvent, SampleDeviceFinishEvent, WorkerExceptionEvent, ShapeInferEvent, SyncEvent, SyncFinishEvent,
235 236
                StartProfileEvent, StartProfileFinishEvent, StopProfileEvent, StopProfileFinishEvent,
                TensorCommandEvent, TensorCommandFinishEvent, AutoEvictEvent, AutoEvictFinishEvent,
237 238
                CustomEvent, CustomFinishEvent, RecordDeviceEvent, ScopeEvent, ScopeFinishEvent,
                HostToDeviceEvent, HostToDeviceFinishEvent> converter;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

        auto for_each_entry = [&](auto&& handler) {
            for (auto& entry: bundle.entries) {
                current = &entry;
                std::visit(handler, converter(entry.data));
            }
            current = nullptr;
        };

        // build device timeline
        struct DeviceStartPair {
            profiler::HostTime host;
            std::shared_ptr<CompNode::Event> device;
        };
        CompNode::UnorderedMap<DeviceStartPair> device_start_table;

        for_each_entry([&](auto&& event){
            using T = std::decay_t<decltype(event)>;
            if constexpr (std::is_same_v<T, RecordDeviceEvent>) {
                using namespace std::chrono_literals;
                DeviceStartPair& device_start = device_start_table[event.event->comp_node()];
                if (!device_start.device) {
                    device_start = { current->time, event.event };
                }
                event.event->host_wait();
                auto device_time = (device_start.host - current->time) + std::chrono::duration_cast<profiler::RealDuration>(device_start.device->elapsed_time_until(*event.event) * 1s);
                m_device_timeline[event.event->comp_node()][current->time] = device_time;
            }
        });

        // register host threads
        for_each_entry([&](auto&& event){
            if (!m_host_tid_table.count(current->tid)) {
                m_host_tid_table[current->tid] = {m_device_tid_table.size() + m_host_tid_table.size()};
            }
        });

        for_each_entry([&](auto&& event){
            using T = std::decay_t<decltype(event)>;
            if constexpr (std::is_same_v<T, OpDispatchEvent>) {
                auto& op = m_operators[event.op_id];
                mgb_assert(op.id == 0, "duplicate operator id");
                op.id = event.op_id;
                op.name = event.op_name;
                op.params = event.op_params();
                op.inputs = event.inputs;
                op.outputs = event.outputs;
                op.trace = event.trace;
                for (auto&& output: event.outputs) {
                    m_tensors.at(output).source = op.id;
                }
            } else if constexpr (std::is_same_v<T, TensorDeclareEvent>) {
                auto& tensor = m_tensors[event.tensor_id];
                mgb_assert(tensor.id == 0, "duplicated tensor id");
                tensor.id = event.tensor_id;
                tensor.name = event.name;
            } else if constexpr (std::is_same_v<T, TensorProduceEvent>) {
                auto& tensor = m_tensors.at(event.tensor_id);
                if (!m_device_tid_table.count(event.device)) {
                    m_device_tid_table[event.device] = {m_device_tid_table.size() + m_host_tid_table.size()};
                }
                tensor.device = event.device;
301
                tensor.layout = event.layout;
302 303 304 305 306 307 308 309 310 311 312
            }
        });

        // replay execution
        using namespace std::placeholders;
        for_each_entry([&](auto&& event){
            using T = std::decay_t<decltype(event)>;
            // update current_op/tensor
            if constexpr (is_op_event<T>::value) {
                current_op = &m_operators.at(event.op_id);
            } else if constexpr (is_tensor_event<T>::value) {
313
                mgb_assert(m_tensors.count(event.tensor_id) != 0, "tensor not found");
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                current_tensor = &m_tensors.at(event.tensor_id);
            }
            if constexpr (std::is_same_v<T, OpExecuteEvent>) {
                current_op->execute_begin = current->time;
            } else if constexpr (std::is_same_v<T, OpExecuteFinishEvent>) {
                current_op->execute_end = current->time;
            }
            // update counters
            if constexpr (std::is_same_v<T, OpDispatchEvent>) {
                inc_counter("nr_op_pending", 1);
            } else if constexpr (std::is_same_v<T, OpExecuteEvent>) {
                inc_counter("nr_op_pending", -1);
            } else if constexpr (std::is_same_v<T, TensorProduceEvent>) {
                inc_counter("nr_alive_tensor", 1);
            } else if constexpr (std::is_same_v<T, TensorReleaseEvent>) {
                inc_counter("nr_alive_tensor", -1);
            } else if constexpr (std::is_same_v<T, TensorEraseEvent>) {
                if (event.use_count == 0) {
                    inc_counter("nr_redunant_tensor", 1);
                }
            } else if constexpr (std::is_same_v<T, ShapeInferEvent>) {
                if (!event.success) {
                    inc_counter("nr_shape_infer_failure", 1);
                }
            } else if constexpr (std::is_same_v<T, WorkerExceptionEvent>) {
                inc_counter("nr_exception", 1);
            }
            // visit_event_impl
            self.visit_event(event);
            // reset current_op/tensor
            if constexpr (is_op_event<T>::value) {
                current_op = nullptr;
            } else if constexpr (is_tensor_event<T>::value) {
                current_tensor = nullptr;
            }
        });
    }
351 352 353
};

}