winograd_algo.cpp 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/**
 * \file dnn/src/x86/conv_bias/f32/winograd_algo.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/x86/conv_bias/f32/algos.h"
#include "src/common/utils.h"
#include "src/x86/conv_bias/opr_impl.h"
#include "src/x86/conv_bias/postprocess_helper.h"
#include "src/x86/handle.h"
#include "src/x86/profile.h"
#include "src/x86/conv_bias/f32/strategy.h"

#include "midout.h"

MIDOUT_DECL(megdnn_x86_winograd_fp32)

using namespace megdnn;
using namespace x86;

/* ======================= AlgoFP32WinogradF63_8*8 ======================== */

bool ConvBiasImpl::AlgoFP32WinogradF63_8x8::usable(
        fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MEGDNN_MARK_USED_VAR(opr);
    MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 1, 0) {
        //! TODO: now nchw88 winograd only support Dense mode
        if (param.filter_meta.icpg % 8 != 0 ||
            param.filter_meta.ocpg % 8 != 0 || param.filter_meta.group != 1)
            return false;
        using Strategy = winograd::winograd_nchw88_6x3_8x8_f;
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
        auto&& matmul_param =
                megdnn::winograd::ConvBias<Strategy,
                                           param::MatrixMul::Format::MK8>(
                        strategy, m_tile_size, param.nr_threads, param.osz[0],
                        param.osz[1], param.filter_meta.ocpg)
                        .get_matmul_kern_param(param);
        return m_matmul_algo->usable(matmul_param) &&
               (opr->param().format == param::ConvBias::Format::NCHW88 ||
                (opr->param().format ==
                         param::ConvBias::Format::NCHW88_WINOGRAD &&
                 opr->param().output_block_size == 6 &&
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::MK8)) &&
               opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 3) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float32 &&
               is_supported(SIMDType::AVX2);
    }
    MIDOUT_END();
    return false;
}

size_t ConvBiasImpl::AlgoFP32WinogradF63_8x8::get_workspace(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
    MEGDNN_MARK_USED_VAR(param);
    MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 1, 1) {
        winograd::winograd_nchw88_6x3_8x8_f strategy(
                param.src_type, param.filter_type, param.dst_type);
        return megdnn::winograd::ConvBias<winograd::winograd_nchw88_6x3_8x8_f,
                                          param::MatrixMul::Format::MK8>(
                       strategy, m_tile_size, param.nr_threads, param.osz[0],
                       param.osz[1], param.filter_meta.ocpg)
                .get_workspace_size(param, m_matmul_algo);
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoFP32WinogradF63_8x8::dispatch_kerns(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
    MEGDNN_MARK_USED_VAR(param);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 1, 2) {
        winograd::winograd_nchw88_6x3_8x8_f strategy(
                param.src_type, param.filter_type, param.dst_type);
        auto winograd_impl =
                megdnn::winograd::ConvBias<winograd::winograd_nchw88_6x3_8x8_f,
                                           param::MatrixMul::Format::MK8>(
                        strategy, m_tile_size, param.nr_threads, param.osz[0],
                        param.osz[1], param.filter_meta.ocpg);
        return winograd_impl.get_kerns(param, m_matmul_algo);
    }
    MIDOUT_END();
    return {};
}

/* ======================= AlgoFP32WinogradF23_8*8 ======================== */

bool ConvBiasImpl::AlgoFP32WinogradF23_8x8::usable(
        fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MEGDNN_MARK_USED_VAR(opr);
    MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 2, 0) {
        //! TODO: now nchw88 winograd only support Dense mode
        if (param.filter_meta.icpg % 8 != 0 ||
            param.filter_meta.ocpg % 8 != 0 || param.filter_meta.group != 1)
            return false;
        using Strategy = winograd::winograd_nchw88_2x3_8x8_f;
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
        auto&& matmul_param =
                megdnn::winograd::ConvBias<Strategy,
                                           param::MatrixMul::Format::MK8>(
                        strategy, m_tile_size, param.nr_threads, param.osz[0],
                        param.osz[1], param.filter_meta.ocpg)
                        .get_matmul_kern_param(param);
        return m_matmul_algo->usable(matmul_param) &&
               (opr->param().format == param::ConvBias::Format::NCHW88 ||
                (opr->param().format ==
                         param::ConvBias::Format::NCHW88_WINOGRAD &&
                 opr->param().output_block_size == 2 &&
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::MK8)) &&
               opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 3) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float32 &&
               is_supported(SIMDType::AVX2);
    }
    MIDOUT_END();
    return false;
}

size_t ConvBiasImpl::AlgoFP32WinogradF23_8x8::get_workspace(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
    MEGDNN_MARK_USED_VAR(param);
    MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 2, 1) {
        winograd::winograd_nchw88_2x3_8x8_f strategy(
                param.src_type, param.filter_type, param.dst_type);
        return megdnn::winograd::ConvBias<winograd::winograd_nchw88_2x3_8x8_f,
                                          param::MatrixMul::Format::MK8>(
                       strategy, m_tile_size, param.nr_threads, param.osz[0],
                       param.osz[1], param.filter_meta.ocpg)
                .get_workspace_size(param, m_matmul_algo);
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoFP32WinogradF23_8x8::dispatch_kerns(
        fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
    MEGDNN_MARK_USED_VAR(param);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 2, 2) {
        winograd::winograd_nchw88_2x3_8x8_f strategy(
                param.src_type, param.filter_type, param.dst_type);
        auto winograd_impl =
                megdnn::winograd::ConvBias<winograd::winograd_nchw88_2x3_8x8_f,
                                           param::MatrixMul::Format::MK8>(
                        strategy, m_tile_size, param.nr_threads, param.osz[0],
                        param.osz[1], param.filter_meta.ocpg);
        return winograd_impl.get_kerns(param, m_matmul_algo);
    }
    MIDOUT_END();
    return {};
}
// vim: syntax=cpp.doxygen