backward_graph.cpp 8.5 KB
Newer Older
1 2
/**
 * \file imperative/src/test/backward_graph.cpp
M
Megvii Engine Team 已提交
3
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
M
Megvii Engine Team 已提交
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12 13 14 15
 */

#include "./helper.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/dnn/batch_norm.h"
#include "megbrain/imperative/ops/opr_attr.h"
16 17
#include "megbrain/imperative/ops/autogen.h"
#include "megbrain/imperative/backward_graph_opt.h"
18 19 20 21 22

using namespace mgb;
using namespace cg;
using namespace imperative;

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename T>
T prepare_backward_graph_inputs(const BackwardGraphResult& bg, const T& inputs, const T& outputs, const T& grads) {
    T ret;
    size_t i = 0;
    for (auto&& t : inputs) {
        if (bg.save_for_backward[i++]) {
            ret.push_back(t);
        }
    }
    for (auto&& t : outputs) {
        if (bg.save_for_backward[i++]) {
            ret.push_back(t);
        }
    }
    for (auto&& t : grads) {
        if (bg.save_for_backward[i++]) {
            ret.push_back(t);
        }
    }
    return ret;
}

template <typename T, typename U>
T expand_grads(const U& bg, const T& outputs) {
    T ret(bg.input_has_grad.size());
    for (size_t i = 0, j = 0; i < bg.input_has_grad.size(); ++i) {
        if (bg.input_has_grad[i]) {
            ret[i] = outputs[j++];
        }
    }
    return ret;
}

template <typename T>
T prepare_optimized_backward_inputs(const OptimizedBackwardGraphResult& bg, const T& precomp, const T& inputs, const T& outputs, const T& grads) {
    T ret = precomp;
    size_t i = 0;
    for (auto&& t : inputs) {
        if (bg.save_for_backward[i++]) {
            ret.push_back(t);
        }
    }
    for (auto&& t : outputs) {
        if (bg.save_for_backward[i++]) {
            ret.push_back(t);
        }
    }
    for (auto&& t : grads) {
        if (bg.save_for_backward[i++]) {
            ret.push_back(t);
        }
    }
    return ret;
}

78 79 80 81 82 83 84 85 86 87 88
TEST(TestImperative, BackwardGraphBasic) {
    HostTensorGenerator<> gen;
    SmallVector<HostTensorND> hvs;
    SmallVector<TensorPtr> inputs;
    for(size_t i = 0; i < 2; ++ i) {
        hvs.push_back(*gen({42}));
        inputs.push_back(Tensor::make(hvs.back()));
    }

    using Param = opr::Elemwise::Param;
    Param param{Param::Mode::MUL};
89 90
    auto attr = OprAttr::make("Elemwise");
    attr->cast_final_safe<OprAttr>().param.write_pod(param);
91 92 93 94 95

    SmallVector<LogicalTensorDesc> input_descs;
    for (auto&& i : inputs) {
        input_descs.push_back({i->layout(), i->comp_node()});
    }
96
    auto result = OpDef::make_backward_graph(*attr, input_descs, {true, true}, {true});
97 98 99
    auto&& save_for_backward = result.save_for_backward;
    auto&& input_has_grad = result.input_has_grad;

100
    auto outputs = OpDef::apply_on_physical_tensor(*attr, inputs);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    inputs.push_back(outputs[0]);
    hvs.push_back(*gen({42}));
    inputs.push_back(Tensor::make(hvs.back()));
    mgb_assert(save_for_backward.size() == inputs.size());
    for (size_t i = 0; i < inputs.size(); ++ i) {
        if (!save_for_backward[i]) {
            inputs[i].reset(); // drop unused tensor
        }
    }
    SmallVector<TensorPtr> backward_graph_inputs;
    for (auto&& i : inputs) {
        if (i) {
            backward_graph_inputs.push_back(i);
        }
    }
    inputs.clear();
    auto input_grads = OpDef::apply_on_physical_tensor(*(result.backward), backward_graph_inputs);
    mgb_assert(input_grads.size() == input_has_grad.size());
    for (size_t i = 0; i < input_has_grad.size(); ++ i) {
        mgb_assert(input_has_grad[i] == static_cast<bool>(input_grads[i]));
    }

    SmallVector<HostTensorND> res;
    for (auto&& i : input_grads) {
        res.emplace_back();
        res.back().copy_from(i->dev_tensor()).sync();
    }
    for (size_t i = 0; i < 42; ++ i) {
        for (size_t j = 0; j < 1; ++ j) {
            ASSERT_EQ(hvs[2].ptr<float>()[i] * hvs[j].ptr<float>()[i], res[j ^ 1].ptr<float>()[i]);
        }
    }
}

TEST(TestImperative, BackwardGraphIdentity) {
    HostTensorGenerator<> gen;
    auto host_a = gen({42}), host_dc = gen({42});
    auto a = Tensor::make(*host_a), dc = Tensor::make(*host_dc);
    SmallVector<TensorPtr> inputs;
    inputs.push_back(a);

142 143
    auto attr = OprAttr::make("Identity");
    attr->cast_final_safe<OprAttr>().param.write_pod<megdnn::param::Empty>({});
144 145 146

    SmallVector<LogicalTensorDesc> input_descs;
    input_descs.push_back({a->layout(), a->comp_node()});
147
    auto result = OpDef::make_backward_graph(*attr, input_descs, {true}, {true});
148 149 150
    auto&& save_for_backward = result.save_for_backward;
    auto&& input_has_grad = result.input_has_grad;

151
    auto outputs = OpDef::apply_on_physical_tensor(*attr, inputs);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    inputs.push_back(outputs[0]);
    inputs.push_back(dc);
    mgb_assert(save_for_backward.size() == inputs.size());
    for (size_t i = 0; i < inputs.size(); ++ i) {
        if (!save_for_backward[i]) {
            inputs[i].reset(); // drop unused tensor
        }
    }
    SmallVector<TensorPtr> backward_graph_inputs;
    for (auto&& i : inputs) {
        if (i) {
            backward_graph_inputs.push_back(i);
        }
    }
    inputs.clear();
    auto input_grads = OpDef::apply_on_physical_tensor(*(result.backward), backward_graph_inputs);
    mgb_assert(input_grads.size() == input_has_grad.size());
    for (size_t i = 0; i < input_has_grad.size(); ++ i) {
        mgb_assert(input_has_grad[i] == static_cast<bool>(input_grads[i]));
    }

    HostTensorND hv;
    hv.copy_from(input_grads[0]->dev_tensor()).sync();
    for (size_t i = 0; i < 42; ++ i) {
        ASSERT_EQ(host_dc->ptr<float>()[i], hv.ptr<float>()[i]);
    }
}

TEST(TestImperative, BatchNormGrad) {
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    auto cn = CompNode::load("xpux");
    using Param = opr::BatchNorm::Param;
    size_t N=2, C=3, H=5, W=5;
    LogicalTensorDesc inp{TensorLayout{{N, C, H, W}, dtype::Float32()}, cn};
    LogicalTensorDesc stat{TensorLayout{{C}, dtype::Float32()}, cn};
    {
        auto op = OprAttr::make("BatchNorm");
        auto&& attr = op->cast_final_safe<OprAttr>();
        Param param;
        param.fwd_mode = Param::FwdMode::TRAINING;
        attr.param.write_pod(param);
        OpDef::make_backward_graph(attr, {inp, stat, stat, stat, stat},
            {true, true ,true, false, false}, {false, false, false, false, true});
    }
    {
        auto op = OprAttr::make("BatchNorm");
        auto&& attr = op->cast_final_safe<OprAttr>();
        Param param;
        param.fwd_mode = Param::FwdMode::TRAINING;
        attr.param.write_pod(param);
        OpDef::make_backward_graph(attr, {inp, stat, stat},
            {true, true ,true}, {false, false, true});
    }
}

TEST(TestImperative, OptimizedBackwardGraphBasic) {
    auto cn = CompNode::load("xpux");
    LogicalTensorDesc desc = {TensorLayout(dtype::Float32()), cn};
    HostTensorGenerator<> gen;
    auto op = std::shared_ptr<OpDef>(Elemwise::make(Elemwise::Mode::ADD));
    auto bg = OpDef::make_backward_graph(*op, {desc, desc}, {true, true}, {true});
    auto obg = OptimizedBackwardGraphResult(bg);
    ASSERT_EQ(obg.save_for_backward.size(), 4);
    ASSERT_FALSE(obg.save_for_backward[0]);
    ASSERT_FALSE(obg.save_for_backward[1]);
    ASSERT_FALSE(obg.save_for_backward[2]);

    auto a_hv = gen({42});
    auto b_hv = gen({5, 42});
    auto dc_hv = gen({5, 42});
    auto a_tn = Tensor::make(*a_hv);
    auto b_tn = Tensor::make(*b_hv);
    auto dc_tn = Tensor::make(*dc_hv);
    auto c_tn = OpDef::apply_on_physical_tensor(*op, {a_tn, b_tn})[0];

    auto backward_graph_inputs = prepare_backward_graph_inputs<SmallVector<TensorPtr>>(bg, {a_tn, b_tn}, {c_tn}, {dc_tn});
    auto grads = expand_grads(bg, OpDef::apply_on_physical_tensor(*bg.backward, backward_graph_inputs));

    auto precomp = OpDef::apply_on_physical_tensor(*obg.precomp, {a_tn, b_tn, c_tn});
    ASSERT_EQ(precomp.size(), 2);
    ASSERT_EQ(precomp[0]->shape().ndim, 1);
    ASSERT_LE(precomp[0]->shape()[0], 2);
    ASSERT_EQ(precomp[1]->shape().ndim, 1);
    ASSERT_LE(precomp[1]->shape()[0], 2);

    auto backward_inputs = prepare_optimized_backward_inputs<SmallVector<TensorPtr>>(obg, precomp, {a_tn, b_tn}, {c_tn}, {dc_tn});
    auto grads2 = expand_grads(obg, OpDef::apply_on_physical_tensor(*obg.backward, backward_inputs));

    ASSERT_EQ(grads2.size(), 2);
    MGB_ASSERT_TENSOR_EQ(grads[0]->get_value(), grads2[0]->get_value());
    MGB_ASSERT_TENSOR_EQ(grads[1]->get_value(), grads2[1]->get_value());
242
}