opr_param_defs.py 60.6 KB
Newer Older
1 2 3 4 5
pdef('Empty')

pdef('Axis').add_fields('int32', 'axis', 0)

(pdef('Convolution', version=0, is_legacy=True).
6
 add_enum('Mode', 'CROSS_CORRELATION = 0', 'CONVOLUTION = 1').
7 8 9 10 11 12 13 14 15 16 17 18
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1
 ).
 add_enum('DataType',
19 20 21 22
          Doc('FLOAT = 0', 'input/output both float32/float16'),
          'INT8x8x16 = 1',
          'INT8x8x32 = 2',
          Doc('FLOAT_IO16xC32 = 3', 'input/output both float16, the internal '
23
              'compute is float32'),
24 25 26
          Doc('QUINT8x8x32 = 4', 'input QuantizedAsymm8, output QuantizedS32'),
          Doc('INT8x8xX = 5', 'input int8, output specified by tensor DType'),
          Doc('QUINT4x4x32 = 6', 'input QuantizedAsymm4, output QuantizedS32'),
27 28
          name_field='data_type').
 add_enum('Sparse',
29
          Doc('DENSE = 0', 'dense convolution: filter shape should be '
30 31
              '[oc, ic, spatial...] if format is NCHW, '
              '[oc, spatial..., ic] if format is NHWC'),
32
          Doc('GROUP = 1', 'group convolution: filter shape should be '
33 34 35 36 37
              '[group, oc_per_group, ic_per_group, spatial...] if format is NCHW, '
              '[group, oc_per_group, spatial..., ic_per_group] if format is NHWC')
          ).
 add_enum(Doc('Format', 'convolution data/filter/output format; see '
              ':class:`RelayoutFormat` for more details'),
38
          'NCHW = 0', 'NHWC = 1', 'NHWCD4 = 2', 'NCHW4 = 3', 'NCHW8 = 4', 'NCHW32 = 5', 'NCHW88 = 6',
39
          'NCHW44 = 7','NCHW44_DOT = 8',
40
          Doc('NCHW_WINOGRAD = 9', 'NCHW layout with weights tranformed by winograd'),
41 42
          Doc('NCHW88_WINOGRAD = 10', 'NCHW88 layout with weights tranformed by winograd'),
          Doc('NCHW44_WINOGRAD = 11', 'NCHW44 layout with weights tranformed by winograd'),
43 44 45
          Doc('NCHW4_NCHW32 = 12', 'NCHW4_NCHW32 means input tensors are nchw4 layout, output tensor is nchw32 layout'),
          Doc('NCHW32_NCHW4 = 13', 'NCHW32_NCHW4 means input tensors are nchw32 layout, output tensor is nchw4 layout'),
          Doc('NCHW4_NCHW = 14', 'NCHW4_NCHW means input tensors are nchw4 layout, output tensor is nchw layout'),
46
          Doc('NHWC_NCHW = 15', 'NHWC_NCHW means input tensors are nhwc layout, '
47
              'output tensor is nchw layout'),
48
          Doc('NHWC_NCHW4_IC_SMALL = 16', 'NHWC_NCHW4_IC_SMALL means input tensors are nhwc(c < 4) layout, '
49
              'output tensor is nchw4 layout, padding c=4'),
50
          Doc('NCHW_NCHW4_IC_SMALL = 17', 'NCHW_NCHW4_IC_SMALL means input tensors are nchw(c < 4) layout, '
51
              'output tensor is nchw4 layout, padding c=4'),
52 53 54
          Doc('CHWN4 = 18', 'CHWN4 is currently only used on Nvidia platform for fast implementation '
              'of convolution using CUDA/SASS. The channels are splitted to groups of 4 channels.'),
          Doc('NCHW4_NHWC = 19', 'NCHW4_NHWC means input tensors are nchw4 layout, output tensor is nhwc layout'))
55 56
 )

57
(pdef('Convolution', version=1, is_legacy=True).
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_enum(Doc('ComputeMode', 'Specifies special computation modes, e.g. '
                             'different combinations of intermediate result '
                             'data types.'),
75
          Doc('DEFAULT = 0', 'No special requirements on the precision of '
76
                         'intermediate results.'),
77
          Doc('FLOAT32 = 1', 'Use Float32 accumulator and intermediate result. '
78 79 80 81
                         'Only supported when input and output is Float16.'),
          name_field='compute_mode')
 )

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
(pdef('Convolution', version=2).
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum(Doc('Format', 'convolution data/filter/output format; see '
              ':class:`RelayoutFormat` for more details'),
98
          'NCHW = 0', 'NHWC = 1', 'NHWCD4 = 2', 'NCHW4 = 3', 'NCHW8 = 4', 'NCHW32 = 5', 'NCHW88 = 6',
99 100 101
          'NCHW44 = 7','NCHW44_DOT = 8',
          Doc('NCHW4_NCHW32 = 9', 'NCHW4_NCHW32 means input tensors are nchw4 layout, output tensor is nchw32 layout'),
          Doc('NCHW32_NCHW4 = 10', 'NCHW32_NCHW4 means input tensors are nchw32 layout, output tensor is nchw4 layout'),
102
          Doc('NCHW4_NCHW = 11', 'NCHW4_NCHW means input tensors are nchw4 layout, output tensor is nchw layout'),
103
          Doc('NHWC_NCHW = 12', 'NHWC_NCHW means input tensors are nhwc layout, '
104
              'output tensor is nchw layout'),
105
          Doc('NHWC_NCHW4_IC_SMALL = 13', 'NHWC_NCHW4_IC_SMALL means input tensors are nhwc(c < 4) layout, '
106
              'output tensor is nchw4 layout, padding c=4'),
107
          Doc('NCHW_NCHW4_IC_SMALL = 14', 'NCHW_NCHW4_IC_SMALL means input tensors are nchw(c < 4) layout, '
108
              'output tensor is nchw4 layout, padding c=4'),
109
          Doc('CHWN4 = 15', 'CHWN4 is currently only used on Nvidia platform for fast implementation '
110
              'of convolution using CUDA/SASS. The channels are splitted to groups of 4 channels.'),
111
          Doc('NCHW64 = 16', 'NCHW64 is designed for convolution implementation to utilizing TensorCore '
112
              'instructions for 4-bit integers on Nvidia platforms'),
113
          Doc('NCHW4_NHWC = 17', 'NCHW4_NHWC means input tensors are nchw4 layout, output tensor is nhwc layout')).
114
 add_enum_alias('ComputeMode', 'ConvolutionV1',name_field='compute_mode')
115 116 117
 )


118 119 120 121 122 123 124 125 126 127 128 129 130 131
(pdef('MaskPropagate').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('kernel_h', 'kernel height'), 1,
     Doc('kernel_w', 'kernel width'), 1,
     Doc('dilate_h', 'dilate height'), 1,
     Doc('dilate_w', 'dilate width'), 1)
 )

(pdef('ConvPooling').
132
 add_enum('Method', 'WITH_TEXTURE_OBJ = 0', 'WITH_SHARED_MEM = 1').
133
 add_enum_alias('ConvMode', 'ConvolutionV0', 'Mode').
134 135
 add_enum('PoolMode', 'AVERAGE = 0', 'MAX = 1').
 add_enum('NonlineMode', 'IDENTITY = 0', 'RELU = 1', 'SIGMOID = 2').
136
 add_fields('uint32', 'pool_shape_h', 1, 'pool_shape_w', 1, 'pool_stride_h', 1, 'pool_stride_w', 1, \
137 138 139
  'pool_pad_h', 0, 'pool_pad_w', 0, 'conv_stride_h', 1, 'conv_stride_w', 1, 'conv_pad_h', 0, 'conv_pad_w', 0))

(pdef('ConvBias', 'legacy conv_bias', version=0, is_legacy=True).
140
 add_enum('NonlineMode', 'IDENTITY = 0', 'RELU = 1', 'SIGMOID = 2', 'H_SWISH = 3').
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1))

(pdef('ConvBias', 'active(conv(x, w) + bias)', version=1, is_legacy=True).
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_enum_alias('DataType', 'ConvolutionV0', name_field='data_type').
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1)
 )

(pdef('ConvBias', 'active(conv(x, w) + bias)', version=2, is_legacy=True).
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1).
177
 add_enum_alias('ComputeMode', 'ConvolutionV1', name_field='compute_mode')
178 179
 )

180
(pdef('ConvBias', 'active(conv(x, w) + bias)', version=3, is_legacy=True).
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('output_block_size', 'detail meaning \see winograd in conv bias'), 0).
196
 add_enum_alias('ComputeMode', 'ConvolutionV1', name_field='compute_mode')
197 198
 )

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
(pdef('ConvBias', 'active(conv(x, w) + bias)', version=4).
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'Convolution').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1).
 add_enum_alias('ComputeMode', 'ConvolutionV1', name_field='compute_mode')
 )
216 217
(pdef('SeparableConv').
 add_enum_alias('Mode', 'ConvolutionV0').
218
 add_enum('BorderMode', 'BORDER_REPLICATE = 0', 'BORDER_REFLECT = 1',
219 220
          'BORDER_REFLECT_101 = 2','BORDER_WRAP = 3',
          'BORDER_CONSTANT = 4', 'BORDER_TRANSPARENT = 5','BORDER_ISOLATED = 6').
221 222 223 224 225 226
 add_fields('bool', 'is_symm_kernel', 'true').
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1,
            'ksize_h', 3, 'ksize_w', 3, 'anchor_h', 1, 'anchor_w', 1))

(pdef('Images2Neibs').
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1,
227
            'dilate_h', 1, 'dilate_w', 1, 'window_h', 3, 'window_w', 3))
228

229 230 231 232
(pdef('SlidingWindowTranspose').
 add_fields('uint32', 'out_h', 0, 'out_w', 0, 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1,
            'dilate_h', 1, 'dilate_w', 1, 'window_h', 3, 'window_w', 3))

233
(pdef('Pooling', version=0, is_legacy=True).
234 235
 add_enum(
     'Mode',
236 237
     Doc('MAX = 0', 'maximum value inside pooling window'),
     Doc('AVERAGE = 1',
238 239
         'arithmetic mean of all values inside pooling window. Padding values '
         'are taken into account and are viewed as zero'),
240
     Doc('AVERAGE_COUNT_EXCLUDE_PADDING = 2',
241 242 243 244 245 246 247 248
         'arithmetic mean of all values inside pooling window. No padding is'
         'used.')
 ).
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 2, 'stride_w', 2,
            'window_h', 2, 'window_w', 2).
 add_enum_alias('Format', 'ConvolutionV0')
 )

249
(pdef('Pooling', version=1).
250
 add_enum_alias('Mode','PoolingV0').
251 252 253 254 255
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 2, 'stride_w', 2,
            'window_h', 2, 'window_w', 2).
 add_enum_alias('Format', 'Convolution')
 )

256 257 258 259
(pdef('Softmax').
 add_fields('int32', 'axis', -1)
)

260
(pdef('AdaptivePooling', version=0, is_legacy=True).
261
 add_enum_alias('Mode', 'PoolingV0').
262 263 264
 add_enum_alias('Format', 'ConvolutionV0')
 )

265 266 267 268 269
(pdef('AdaptivePooling', version=1).
 add_enum_alias('Mode', 'PoolingV0').
 add_enum_alias('Format', 'Convolution')
 )

270 271 272 273 274 275 276 277 278 279
(pdef('LRN',
      'see ImageNet Classification with Deep Convolutional Neural Networks for'
      ' meaning of the fields').
 add_fields('uint32', Doc('n', 'must be odd'), 5).
 add_fields('float32', 'k', '2.f', 'alpha', '1e-4f', 'beta', '0.75f')
)

(pdef('BN').
 add_enum(
     'ParamDim',
280 281 282
     Doc('DIM_11HW = 0', 'Dim of params (Sigma, Mu) is 1 x 1 x H x W'),
     Doc('DIM_1CHW = 1', 'Dim of params (Sigma, Mu) is 1 x C x H x W'),
     Doc('DIM_1C11 = 2', 'Dim of params (Sigma, Mu) is 1 x C x 1 x 1'),
283
     Doc('DIM_111C = 3', 'Dim of params (Sigma, Mu) is 1 x 1 x 1 x C'),
284 285 286 287
     name_field='param_dim'
 ).
 add_enum(
     'FwdMode',
288 289
     Doc('TRAINING = 0', 'Training phase.'),
     Doc('INFERENCE = 1', 'Inference phase.'),
290 291 292 293 294 295 296 297 298 299 300
     name_field='fwd_mode'
 ).
 add_fields('float64', 'epsilon', '1e-4f').
 add_fields('float64', 'avg_factor', '1.f').
 add_fields('float32', 'scale', '1.f').
 add_fields('float32', 'bias', '0.f')
)

(pdef('ROIPooling').
 add_enum(
     'Mode',
301
     Doc('MAX = 0', 'maximum value inside pooling window; pooling result would '
302
         'be 0 if pooling window is empty'),
303
     Doc('AVERAGE = 1',
304 305 306 307 308
         'arithmetic mean of all values inside pooling window; pooling result '
         'would be 0 if pooling window is empty')
 ).
 add_fields('float32', 'scale', '1.f'))

309
INTERP_MODES = ['NEAREST = 0', 'LINEAR = 1', 'AREA = 2', 'CUBIC = 3', 'LANCZOS4 = 4']
310 311 312 313 314 315 316
BORDER_MODES = [Doc('REPLICATE = 0', 'aaaaaa|abcdefgh|hhhhhhh'),
                Doc('REFLECT = 1', 'fedcba|abcdefgh|hgfedcb'),
                Doc('REFLECT_101 = 2', 'gfedcb|abcdefgh|gfedcba'),
                Doc('WRAP = 3', 'cdefgh|abcdefgh|abcdefg'),
                Doc('CONSTANT = 4', 'iiiiii|abcdefgh|iiiiiii'),
                Doc('TRANSPARENT = 5', ''),
                Doc('ISOLATED = 6', '')]
317
(pdef('WarpPerspective', version=1, is_legacy=True).
318 319 320 321 322 323 324 325 326 327 328
 add_enum('InterpolationMode', *INTERP_MODES,
          name_field='imode', default=1,
          member_alias=[(i, 'INTER_{}'.format(i)) for i in INTERP_MODES]
          ).
 add_enum('BorderMode', *BORDER_MODES,
          name_field='bmode',
          member_alias=[(i, 'BORDER_{}'.format(i)) for i in BORDER_MODES]
          ).
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f'))

329
(pdef('WarpPerspective', version=2).
330 331
 add_enum_alias('InterpolationMode','WarpPerspectiveV1',name_field="imode").
 add_enum_alias('BorderMode','WarpPerspectiveV1',name_field="bmode").
332 333 334 335
 add_enum_alias('Format', 'Convolution').
 add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f'))


336 337
pdef('SpatialTfGridGenerator').add_enum('Mode', 'AFFINE = 0')
pdef('SpatialTfSampler').add_enum('Mode', 'BILINEAR = 0')
338 339 340 341 342 343

pdef('AddUpdate').add_fields(
    'float32', 'alpha', '1.f', 'beta', '1.f', 'bias', '0.f')

pdef('Elemwise').add_enum(
    'Mode',
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    Doc('RELU = 0', 'unary: max(x, 0)'),
    Doc('ABS = 1', 'unary: abs(x)'),
    Doc('ACOS = 2', 'unary: acos(x)'),
    Doc('ASIN = 3', 'unary: asin(x)'),
    Doc('CEIL = 4', 'unary: ceil(x)'),
    Doc('COS = 5', 'unary: cos(x)'),
    Doc('EXP = 6', 'unary: exp(x)'),
    Doc('EXPM1 = 7', 'unary: numerically stable exp(x)-1'),
    Doc('FLOOR = 8', 'unary: floor(x)'),
    Doc('LOG = 9', 'unary: natural logarithm, log(x)'),
    Doc('LOG1P = 10', 'unary: numerically stable log(x+1)'),
    Doc('NEGATE = 11', 'unary: -x'),
    Doc('SIGMOID = 12', 'unary: 1/(1+exp(-x))'),
    Doc('SIN = 13', 'unary: sin(x)'),
    Doc('TANH = 14', 'unary: tanh(x)'),

    Doc('ABS_GRAD = 15', 'binary: x > 0 ? y : -y'),
    Doc('ADD = 16', 'binary: x + y'),
    Doc('FLOOR_DIV = 17', 'binary: floor(x / y)'),
    Doc('MAX = 18', 'binary: max(x, y)'),
    Doc('MIN = 19', 'binary: min(x, y)'),
    Doc('MOD = 20', 'binary: x % y or fmodf(x, y)'),
    Doc('MUL = 21', 'binary: x * y'),
    Doc('POW = 22', 'binary: pow(x, y)'),
    Doc('SIGMOID_GRAD = 23', 'binary: x * (1 - x) * y'),
    Doc('SUB = 24', 'binary: x - y'),
    Doc('SWITCH_GT0 = 25', 'binary: (x > 0) * y'),
    Doc('TANH_GRAD = 26', 'binary: (1 - x * x) * y'),
    Doc('TRUE_DIV = 27', 'binary: x / y'),
    Doc('LOG_SUM_EXP = 28', 'binary: numerically stable log(exp(x) + exp(y))'),

    Doc('LT = 29', 'binary: x < y'),
    Doc('LEQ = 30', 'binary: x <= y'),
    Doc('EQ = 31', 'binary: x == y'),

    Doc('SHL = 32', 'bitwise binary: x << y. '
380 381 382
        'Note that result is undefined if y < 0 or y >= bitwidth. Logical '
        'shift is performed for unsigned intergers, and arithmetic shift for '
        'signed ones.'),
383
    Doc('SHR = 33', 'bitwise binary: x >> y; see SHL mode for more details'),
384

385 386
    Doc('COND_LEQ_MOV = 34', 'ternary: x <= y ? z : 0'),
    Doc('FUSE_MUL_ADD3 = 35',
387 388 389
        'compute ``a * b + c`` where c must either have same layout as '
        'a or b, or be a scalar'),

390
    Doc('FUSE_MUL_ADD4 = 36',
391 392 393 394
        'compute ``a * A + b * B`` where a and b must have equal layout, '
        'and A and B must have equal layout. In the inputs ``b`` and ``B`` '
        'can be swapped'),

395 396 397 398 399
    Doc('FUSE_ADD_RELU = 37', 'binary: max(x+y, 0)'),
    Doc('FUSE_ADD_SIGMOID = 38', 'binary: 1/(1+exp(-(x+y)))'),
    Doc('FUSE_ADD_TANH = 39', 'binary: tanh(x+y)'),
    Doc('FAST_TANH = 40', 'unary: rational approximation of tanh(x)'),
    Doc('FAST_TANH_GRAD = 41', 'binary: grad of the rational approximation of tanh(x)'),
400

401
    Doc('ROUND = 42', 'unary: round(x), the nearest integer value to x, rounding '
402
                 'halfway cases away from zero. Float only.'),
403
    Doc('RMULH = 43', 'binary: rounded higher l bits of x * y, where l is the bit '
404 405
                'length of x.'),

406
    Doc('ATAN2 = 44','binary: atan2(y,x)'),
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    Doc('ERF = 45', 'unary: erf(x)'),
    Doc('ERFINV = 46', 'unary: inverse function of erf(x)'),
    Doc('ERFC = 47', 'unary: erfc(x)'),
    Doc('ERFCINV = 48', 'unary: inverse function of erfc(x)'),
    Doc('H_SWISH = 49', 'unary: x * clip(x + 3, 0, 6) / 6'),
    Doc('H_SWISH_GRAD = 50', 'binary: x < -3 ? 0 : (x > 3 ? y : (2 * x + 3) / 6 * y)'),
    Doc('FUSE_ADD_H_SWISH = 51', 'binary: hswish(x+y)'),

    Doc('NOT = 52', 'unary: !x'),
    Doc('AND = 53', 'binary: x && y'),
    Doc('OR = 54', 'binary: x || y'),
    Doc('XOR = 55', 'binary: x ^ y'),
    Doc('SILU = 56', 'unary: x / (1 + exp(-x))'),
    Doc('SILU_GRAD = 57', 'binary: grad(x / (1 + exp(-x))'),
    Doc('GELU = 58', 'unary: x Phi(x)'),
    Doc('GELU_GRAD = 59', 'binary: grad(x Phi(x))'),
423
    Doc('COND_LT_MOV = 60', 'ternary: x < y ? z : 0'),
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    Doc('SINH = 61', 'unary: sinh(x)'),
    Doc('COSH = 62', 'unary: cosh(x)'),
    Doc('ASINH = 63', 'unary: asinh(x)'),
    Doc('ACOSH = 64', 'unary: acosh(x)'),
    Doc('ATANH = 65', 'unary: atanh(x)'),
    Doc('TAN = 66', 'unary: tan(x)'),
    Doc('ASINH_GRAD = 67', 'binary: y / sqrt(x^2 + 1)'),
    Doc('ACOSH_GRAD = 68', 'binary: y / sqrt(x^2 - 1) (x > 1)'),
    Doc('ATANH_GRAD = 69', 'binary: y / (1 - x^2) (|x| < 1)'),
    Doc('PRELU = 70', 'binary: x > 0 ? x : x * y'),
    Doc('CLIP = 71', 'ternary: x <= y ? y : (x <= z ? x : z)'),
    Doc('PRELU_GRAD = 72', 'ternary: x > 0 ? y : y * z'),
    Doc('SOFTPLUS = 73', 'unary: log(1 + e^x)'),
    Doc('SOFTPLUS_GRAD = 74', 'binary: y * e^x / (1 + e^x)'),
    Doc('RELU6 = 75', 'unary: min(max(0, x), 6)'),
    Doc('RELU6_GRAD = 76', 'binary: x < 0 ? 0 : (x > 6 ? 0 : y)'),
    Doc('HSIGMOID = 77', 'unary: relu6(x + 3) / 6'),
    Doc('HSIGMOID_GRAD = 78', 'binary: x < -3 ? 0 : (x > 3 ? 0 : y / 6)'),
    Doc('LOGSIGMOID = 79', 'unary: -log(1 + e^(-x))'),
    Doc('SQRT = 80', 'unary: x^(1/2)'),
    Doc('SQUARE = 81', 'unary: x^2'),
    Doc('SIGN = 82', 'unary: sgn(x)'),
446 447 448
    Doc('NEQ = 83', 'binary: x != y'),
    Doc('ISNAN = 84', 'unary: isnan(x)'),
    Doc('ISINF = 85', 'unary: isinf(x)'),
449 450 451 452
)

pdef('ElemwiseMultiType').add_enum(
    'Mode',
453
    Doc('FUSE_MUL_ADD3_INT16x32x32x32 = 0',
454 455 456 457
        'compute ``a * b + c`` requiring that ``a`` be int16 and ``b`` and '
        '``c``  int32, and the result is int32. This mode is optimized for '
        'the channel-broadacsted case, i.e. ``a`` has shape (A, B, C) and '
        '``b`` and ``c`` have shape (1, C, 1)'),
458
    Doc('FUSE_MUL_ADD3_IXxF32xF32xI8 = 1',
459 460 461 462 463 464
        'compuate ``a * b + c`` where the inputs ``a`` is an integer type '
        '``b`` and ``c`` are both ``float32``, the result is '
        '``int8``. This is currently only optimized for ``(1, x)`` '
        'broadcast for ``b`` and ``c``. Computation is carried in floating '
        'points and results are rounded towards zero with saturated cast to '
        'int.'),
465
    Doc('ROUND_SHR_SATURATE_IXxI8xI8 = 2',
466 467 468
        'Compute ``a >> b``, round the result according to lower ``b`` bits '
        'of ``a``` and make a saturating conversion to int8. Where ``a`` should'
        ' be an integer tensor and ``b`` should be an int8 scalar.'),
469
    Doc('FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT16x16x16x8 = 3',
470 471
        'Fused operation of an int16 elemwise add, an int16 rounding multiply '
        'high and an int16 to int8 rounding right shift with saturation.'),
472
    Doc('FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT32x32x32x8 = 4',
473 474
        'Fused operation of an int32 elemwise add, an int32 rounding multiply '
        'high and an int32 to int8 rounding right shift with saturation.'),
475
    Doc('ROUND_SHR_SATURATE_IXxI8xI16 = 5',
476 477 478
        'Compute ``a >> b``, round the result according to lower ``b`` bits of '
        '``a``` and make a saturating conversion to int16. Where ``a`` should'
        ' be an integer tensor and ``b`` should be an int8 scalar.'),
479
    Doc('QADD = 6', 'Fused elemwise add two quantized int8 with specified'
480
        'output quantized dtype'),
481
    Doc('QFUSE_ADD_RELU = 7', 'Fused elemwise add two quantized int8 followed'
482
         ' by ReLU and typecvt to specified dtype'),
483
    Doc('QMUL = 8', 'Fused elemwise multiply two quantized int8 with specified'
484
        'output quantized dtype'),
485
    Doc('QMIN = 9', 'Fused elemwise min two quantized int8 with specified'
486
        'output quantized dtype'),
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    Doc('QMAX = 10', 'quantized: max(x, y), with specified output quantized dtype'),
    Doc('QSUB = 11', 'quantized: x - y'),
    Doc('QTRUE_DIV = 12', 'quantized: x / y'),
    Doc('QFUSE_ADD_SIGMOID = 13', 'quantized: sigmoid(x + y)'),
    Doc('QFUSE_ADD_TANH = 14', 'quantized: tanh(x + y)'),
    Doc('QRELU = 15', 'quantized: x > 0 ? x : 0'),
    Doc('QABS = 16', 'quantized: x > 0 ? x : -x'),
    Doc('QSIGMOID = 17', 'quantized: sigmoid(x)'),
    Doc('QEXP = 18', 'quantized: exp(x)'),
    Doc('QTANH = 19', 'quantized: tanh(x)'),
    Doc('QFUSE_MUL_ADD3 = 20', 'quantized: x * y + z'),
    Doc('QFAST_TANH = 21', 'quantized: fast_tanh(x)'),
    Doc('QNEGATE = 22', 'quantized: -x'),
    Doc('QACOS = 23', 'quantized: acos(x)'),
    Doc('QASIN = 24', 'quantized: asin(x)'),
    Doc('QCEIL = 25', 'quantized: ceil(x)'),
    Doc('QCOS = 26', 'quantized: cos(x)'),
    Doc('QEXPM1 = 27', 'quantized: expm1(x)'),
    Doc('QFLOOR = 28', 'quantized: floor(x)'),
    Doc('QLOG = 29', 'quantized: log(x)'),
    Doc('QLOG1P = 30', 'quantized: log1p(x)'),
    Doc('QSIN = 31', 'quantized: sin(x)'),
    Doc('QROUND = 32', 'quantized: round(x)'),
    Doc('QERF = 33', 'quantized: erf(x)'),
    Doc('QERFINV = 34', 'quantized: erfinv(x)'),
    Doc('QERFC = 35', 'quantized: erfc(x)'),
    Doc('QERFCINV = 36', 'quantized: erfcinv(x)'),
    Doc('QABS_GRAD = 37', 'quantized: abs_grad'),
    Doc('QFLOOR_DIV = 38', 'quantized floor_div'),
    Doc('QMOD = 39', 'quantized mod'),
    Doc('QSIGMOID_GRAD = 40', 'quantized sigmoid_grad'),
    Doc('QSWITCH_GT0 = 41', 'quantized switch_gt0'),
    Doc('QTANH_GRAD = 42', 'quantized tanh_grad'),
    Doc('QLT = 43', 'quantized lt'),
    Doc('QLEQ = 44', 'quantized leq'),
    Doc('QEQ = 45', 'quantized eq'),
    Doc('QPOW = 46', 'quantized pow'),
    Doc('QLOG_SUM_EXP = 47', 'quantized log_sum_exp'),
    Doc('QFAST_TANH_GRAD = 48', 'quantized fast_tanh_grad'),
    Doc('QATAN2 = 49', 'quantized atan2'),
    Doc('QCOND_LEQ_MOV = 50', 'quantized cond_leq_mov'),
    Doc('QH_SWISH = 51', 'quantized h_swish'),
    Doc('QFUSE_ADD_H_SWISH = 52', 'quantized h_swish(x+y)'),
530 531 532 533 534 535 536 537 538
    Doc('QH_SWISH_GRAD = 53', 'quantized h_swish_grad'),
    Doc('FUSE_MUL_ADD3_INT16xF32xF32xF32 = 54',
        'compute ``a * b + c`` requiring that ``a`` be int16 and ``b`` and '
        '``c``  float32, and the result is float32.'),
    Doc('MUL_INT16xF32xF32 = 55',
        'compute ``a * b `` requiring that ``a`` be int16 and ``b`` float32, '
        'and the result is float32.'),
    Doc('FUSE_MUL_ADD3_UINT8xF32xF32xF32 = 56',
        'compute ``a * b + c`` requiring that ``a`` be uint8 and ``b`` and '
539 540
        '``c``  float32, and the result is float32.'),
    Doc('QCOND_LT_MOV = 57', 'quantized cond_lt_mov'),
541 542 543 544 545 546
    Doc('EQ = 58', 'eq'),
    Doc('NEQ = 59', 'eq'),
    Doc('LT = 60', 'lt'),
    Doc('LEQ = 61', 'leq'),
    Doc('ISNAN = 62', 'isnan'),
    Doc('ISINF = 63', 'isinf')
547 548 549 550
)

pdef('PowC', 'power with constant exponent').add_fields('float32', 'exp', 0)

551
(pdef('DctChannelSelect', '2d discrete cosine transform', version=0, is_legacy=True).add_enum_alias('Format', 'ConvolutionV0').
552
 add_enum('FastImpl', 'NONE = 0', 'FIX_32_MASK = 1').add_fields('int32', 'dct_block_size', 8))
553

554 555 556
(pdef('DctChannelSelect', '2d discrete cosine transform', version=1).add_enum_alias('Format', 'Convolution').
 add_enum_alias('FastImpl', 'DctChannelSelectV0').add_fields('int32', 'dct_block_size', 8))

557 558 559
(pdef('MatrixMul', version=0, is_legacy=True).
 add_fields('bool', 'transposeA', 'false', 'transposeB', 'false').
 add_enum('DataType',
560 561 562 563
     Doc('FLOAT = 0', 'input/output both float32/float16'),
     'INT8x8x16 = 1',
     'INT8x8x32 = 2',
     Doc('FLOAT_IO16xC32 = 3', 'input/output both float16, the internal compute is '
564
         'float32'),
565 566
     Doc('QUINT8x8x32 = 4', 'input QuantizedAsymm8, output QuantizedS32'),
     Doc('QUINT4x4x32 = 5', 'input QuantizedAsymm4, output QuantizedS32'),
567 568 569 570 571 572 573
     name_field='data_type'))

(pdef('MatrixMul', version=1, is_legacy=True).
 add_fields('bool', 'transposeA', 'false', 'transposeB', 'false').
 add_enum(Doc('ComputeMode', 'Specifies special computation modes, e.g. '
                             'different combinations of intermediate result '
                             'data types.'),
574
          Doc('DEFAULT = 0', 'No special requirements on the precision of '
575
                         'intermediate results.'),
576
          Doc('FLOAT32 = 1', 'Use Float32 accumulator and intermediate result. '
577 578 579 580 581 582 583
                         'Only supported when input and output is Float16.'),
          name_field='compute_mode'))

(pdef('MatrixMul', version=2).
 add_fields('bool', 'transposeA', 'false', 'transposeB', 'false').
 add_enum_alias('ComputeMode', 'MatrixMulV1', name_field='compute_mode').
 add_enum('Format',
584 585
          Doc('DEFAULT = 0', 'Normal matrix mul: (M, K) x (K, N) = (M, N)'),
          Doc('MK4 = 1', 'Split 4 from M and K, better for neon compute:'
586 587
              '(M/4, K/4, 4(k), 4(m)) x (K/4, N, 4(k)). if transposeA the '
              'layout is (K/4, M/4, 4(k), 4(m)) x (K/4, N, 4(k))'),
588
          Doc('MK8 = 2', 'Split 8 from M and K, better for neon compute:'
589
              '(M/8, K/8, 8(k), 8(m)) x (K/8, N, 8(k)). if transposeA the '
590
              'layout is (K/8, M/8, 8(k), 8(m)) x (K/8, N, 8(k))'),
591
          Doc('MK4_DOT = 3', 'Split 4 from M and K, better for neon dotprod:'
592
              'M/4, K/4, 4(m), 4(k)) x (K/4, N, 4(k)). if transposeA the '
593 594 595 596
              'layout is (K/4, M/4, 4(m), 4(k)) x (K/4, N, 4(k))'),
          Doc('N32K4_DOT = 4', 'Split 32 from N and 4 from K, better for neon gevm dotprod:'
              'N/32, K/4, 32(n), 4(k)')
              )
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
 )

(pdef('SVD').
 add_fields('bool',
            Doc('full_matrices',
                'Whether to compute the full-sized u and v or only the leading'
                ' min(m, n) singular vectors. Ignored if compute_uv is '
                'false.'),
            'false',
            Doc('compute_uv',
                'Whether the left (u) and right (v) singular vectors will be '
                'computed and outputted.'),
            'true'))

(pdef('Reduce', 'legacy reduce', version=0, is_legacy=True).
 add_enum('Mode',
613 614 615
          'SUM = 0',
          Doc('SUM_SQR = 1', 'sum of x * x for each element x'),
          'PRODUCT = 2', 'MIN = 3', 'MAX = 4').
616 617 618 619 620 621 622 623
 add_fields('int32',
            Doc('axis',
                'axis along which reduction is performed; if -1 is given, '
                'reduce to given target shape (only used in megbrain)'),
            -1))

(pdef('Reduce', 'reduce along given axis', version=1, is_legacy=True).
 add_enum('Mode',
624 625 626
          'SUM = 0',
          Doc('SUM_SQR = 1', 'sum of x * x for each element x'),
          'PRODUCT = 2', 'MIN = 3', 'MAX = 4', 'MEAN = 5').
627 628 629 630 631 632
 add_fields('int32',
            Doc('axis',
                'axis along which reduction is performed; if -1 is given, '
                'reduce to given target shape (only used in megbrain)'),
            -1).
 add_enum('DataType',
633
          Doc('DEFAULT = 0',
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
'''
input/output are the same data type, and the internal computation type would be chosen by the input/output dtypes and the reduction mode.
Currently, ```DEFAULT``` mode means:

+--------------------+-----------------------------------+-------------------+
| Input/Output DType | Mode                              | Computation DType |
+====================+===================================+===================+
| FLOAT32            | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | FLOAT32           |
+--------------------+-----------------------------------+-------------------+
| FLOAT16            | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | FLOAT16           |
+--------------------+-----------------------------------+-------------------+
| INT32              | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | INT32             |
+--------------------+-----------------------------------+-------------------+
| INT8               | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | INT8              |
+--------------------+-----------------------------------+-------------------+
| QuantizedS8        | MIN/MAX                           | QuantizedS8       |
+--------------------+-----------------------------------+-------------------+
| QuantizedS8        | MEAN/SUM                          | QuantizedS32      |
+--------------------+-----------------------------------+-------------------+
| Quantized8Asymm    | MIN/MAX                           | Quantized8Asymm   |
+--------------------+-----------------------------------+-------------------+
| Quantized8Asymm    | MEAN/SUM                          | QuantizedS32      |
+--------------------+-----------------------------------+-------------------+

'''
),
660
          Doc('FLOAT_IO16xC32 = 1', 'Deprecated. This was replaced by '
661
              'FLOAT_O16xC32, and input\'s dtype decided by actual input tensor.'),
662 663 664 665
          Doc('FLOAT_O32xC32 = 2', 'compute/output both are float32'),
          Doc('FLOAT_O16xC32 = 3', 'compute are float32, output float16'),
          Doc('QUINT_I8xO32 = 4', 'input quint8, compute and output are qint32'),
          Doc('QINT_I8xO32 = 5', 'input qint8, compute and output are qint32'),
666 667 668 669
     name_field='data_type'))

(pdef('Reduce', 'reduce along given axis', version=2).
 add_enum('Mode',
670 671 672
          'SUM = 0',
          Doc('SUM_SQR = 1', 'sum of x * x for each element x'),
          'PRODUCT = 2', 'MIN = 3', 'MAX = 4', 'MEAN = 5').
673 674 675 676
 add_fields('int32',
            Doc('axis',
                'axis along which reduction is performed; if INT_MAX is given, '
                'reduce to given target shape (only used in megbrain)'),
677
            (1<<31)-1).
678
 add_enum('DataType',
679
          Doc('DEFAULT = 0',
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
'''
input/output are the same data type, and the internal computation type would be chosen by the input/output dtypes and the reduction mode.
Currently, ```DEFAULT``` mode means:

+--------------------+-----------------------------------+-------------------+
| Input/Output DType | Mode                              | Computation DType |
+====================+===================================+===================+
| FLOAT32            | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | FLOAT32           |
+--------------------+-----------------------------------+-------------------+
| FLOAT16            | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | FLOAT16           |
+--------------------+-----------------------------------+-------------------+
| INT32              | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | INT32             |
+--------------------+-----------------------------------+-------------------+
| INT8               | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | INT8              |
+--------------------+-----------------------------------+-------------------+
| QuantizedS8        | MIN/MAX                           | QuantizedS8       |
+--------------------+-----------------------------------+-------------------+
| QuantizedS8        | MEAN/SUM                          | QuantizedS32      |
+--------------------+-----------------------------------+-------------------+
| Quantized8Asymm    | MIN/MAX                           | Quantized8Asymm   |
+--------------------+-----------------------------------+-------------------+
| Quantized8Asymm    | MEAN/SUM                          | QuantizedS32      |
+--------------------+-----------------------------------+-------------------+

'''
),
706
          Doc('FLOAT_IO16xC32 = 1', 'Deprecated. This was replaced by '
707
              'FLOAT_O16xC32, and input\'s dtype decided by actual input tensor.'),
708 709 710 711
          Doc('FLOAT_O32xC32 = 2', 'compute/output both are float32'),
          Doc('FLOAT_O16xC32 = 3', 'compute are float32, output float16'),
          Doc('QUINT_I8xO32 = 4', 'input quint8, compute and output are qint32'),
          Doc('QINT_I8xO32 = 5', 'input qint8, compute and output are qint32'),
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
     name_field='data_type'))

(pdef('Cumsum', 'calculate accumulated sum along given axis', version=0, is_legacy=True).
 add_fields('int32',
          Doc('axis',
              'axis along which cumsum is performed'),
          -1).
 add_fields('bool',
          Doc('exclusive',
              'whether the current element is taken into account'),
          'true').
 add_fields('bool',
          Doc('reverse',
              'whether the cumsum is forward or backward'),
          'false'))

(pdef('Cumsum', 'calculate accumulated sum along given axis', version=1).
 add_fields('int32',
          Doc('axis',
              'axis along which cumsum is performed, default with INT_MAX'),
732
          (1<<31)-1).
733 734 735 736 737 738 739 740 741 742 743
 add_fields('bool',
          Doc('exclusive',
              'whether the current element is taken into account'),
          'true').
 add_fields('bool',
          Doc('reverse',
              'whether the cumsum is forward or backward'),
          'false'))

(pdef('CondTake').
 add_enum('Mode',
744 745 746 747 748 749
          Doc('EQ = 0', 'take if ``abs(data-val)<eps``'),
          Doc('NEQ = 1', 'take if ``abs(data-val)>=eps``'),
          Doc('LT = 2', 'take if ``data<val``'),
          Doc('LEQ = 3', 'take if ``data<=val``'),
          Doc('GT = 4', 'take if ``data>val``'),
          Doc('GEQ = 5', 'take if ``data>=val``')).
750 751 752 753 754 755 756
 add_fields('float32',
            Doc('val', 'the value to be compared with; note that for integer '
                'data, val is also converted to int'), 0).
 add_fields('float32', Doc('eps', 'used for float equality comparison'),
            1e-6))


757
pdef('Argsort').add_enum('Order', 'ASCENDING = 0', 'DESCENDING = 1')
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

(pdef('IndexingRemap').
 add_fields('bool',
            Doc('is_non_overlapping',
                'Whether no two dst element maps to the same src element. '
                'Enabling this option can accelerate gradient operator since'
                ' atomic adding operations could be avoided.'),
            'false'))

pdef('Sleep').add_fields('float32', Doc('time', 'time to sleep in seconds'), 0)

(pdef('Linspace').
 add_fields('bool',
            Doc('endpoint',
                'Whether stop is included in the generated tensor'),
            'true'))

(pdef('LinspaceFull').
 add_fields('float64',
            Doc('start', 'The first val.'),
            0).
 add_fields('float64',
            Doc('stop', 'The last val.'),
            1).
 add_fields('bool',
            Doc('endpoint',
                'Whether stop is included in the generated tensor'),
            'true'))

(pdef('Eye').
 add_fields(
     'int32',
     Doc('k', 'Index of the diagonal: 0 (the default) refers to the main '
         'diagonal, a positive value refers to an upper diagonal, and a '
         'negative value to a lower diagonal.'),
     0).
 add_fields(
     'dtype', Doc('dtype', 'data type of output value'),
     'DTypeEnum::Float32'))

798 799 800 801 802 803 804 805
(pdef('Diag').
 add_fields(
     'int32',
     Doc('k', 'Index of the diagonal: 0 (the default) refers to the main '
         'diagonal, a positive value refers to an upper diagonal, and a '
         'negative value to a lower diagonal.'),
     0))

806 807 808 809
(pdef('UniformRNG', version=0, is_legacy=True).
 add_fields('uint64', 'seed', 0))

(pdef('UniformRNG', version=1).
810 811
 add_fields('uint64', 'seed', 0).
 add_fields(
812
     'dtype', Doc('dtype', 'The dtype of output Tensor. Only support Float32.'),
813
     'DTypeEnum::Float32'))
814

815 816 817 818 819
(pdef('GaussianRNG', version=0, is_legacy=True).
 add_fields('uint64', 'seed', 0).
 add_fields('float32', 'mean', 0, 'std', 1))

(pdef('GaussianRNG', version=1).
820
 add_fields('uint64', 'seed', 0).
821 822
 add_fields('float32', 'mean', 0, 'std', 1).
 add_fields(
823
     'dtype', Doc('dtype', 'The dtype of output Tensor. Only support Float32.'),
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
     'DTypeEnum::Float32'))

(pdef('GammaRNG').
 add_fields('uint64', 'seed', 0))

(pdef('BetaRNG').
 add_fields('uint64', 'seed', 0))

(pdef('PoissonRNG').
 add_fields('uint64', 'seed', 0))

(pdef('PermutationRNG').
 add_fields('uint64', 'seed', 0).
 add_fields(
     'dtype', Doc('dtype', 'The dtype of output Tensor. Int32, Int16 and '
                  'Float32 are supported.'),
     'DTypeEnum::Int32'))
841

842 843 844
(pdef('ShuffleRNG').
 add_fields('uint64', 'seed', 0))

845 846 847 848 849 850 851 852 853 854
(pdef('Flip').
 add_fields('bool', 'vertical', 'false', 'horizontal', 'false'))

(pdef('Rotate')
 .add_fields('bool', 'clockwise', 'true'))

(pdef('ROICopy')
 .add_fields('uint32', 'row_from', 0, 'row_to', 0, 'col_from', 0, 'col_to', 0))

(pdef('CvtColor')
855 856 857 858 859 860 861 862 863 864 865
 .add_enum('Mode', 'RGB2GRAY = 0', 'RGB2YUV = 1', 'YUV2RGB = 2', 'GRAY2RGB = 3', 'RGBA2RGB = 4',
    'RGBA2BGR = 5', 'RGBA2GRAY = 6', 'RGB2BGR = 7', 'BGR2GRAY = 8', 'BGR2RGB = 9',
    Doc('YUV2GRAY_NV21 = 10', 'For historical reasons, referred to as YCC by opencv'),
    'YUV2RGB_NV21 = 11', 'YUV2BGR_NV21 = 12', 'YUV2GRAY_NV12 = 13', 'YUV2RGB_NV12 = 14',
    'YUV2BGR_NV12 = 15', 'YUV2GRAY_YV12 = 16', 'YUV2RGB_YV12 = 17', 'YUV2BGR_YV12 = 18',
    'YUV2GRAY_YU12 = 19', 'YUV2RGB_YU12 = 20', 'YUV2BGR_YU12 = 21',
    'YCrCb2RGB = 22', 'YCrCb2BGR = 23',
    Doc('BT601_YUV2RGB_NV21 = 24', 'BT601 yuv format, referred to as YUV by opencv'),
    'BT601_YUV2BGR_NV21 = 25', 'BT601_YUV2RGB_NV12 = 26', 'BT601_YUV2BGR_NV12 = 27',
    'BT601_YUV2RGB_YV12 = 28', 'BT601_YUV2BGR_YV12 = 29', 'BT601_YUV2RGB_YU12 = 30',
    'BT601_YUV2BGR_YU12 = 31',
866 867 868 869
    member_alias=[('YUV2GRAY_NV21', 'BT601_YUV2GRAY_NV21'),
                  ('YUV2GRAY_NV12', 'BT601_YUV2GRAY_NV12'),
                  ('YUV2GRAY_YV12', 'BT601_YUV2GRAY_YV12'),
                  ('YUV2GRAY_YU12', 'BT601_YUV2GRAY_YU12')],
870
    name_field = 'mode'))
871 872

(pdef('WarpAffine', version=0, is_legacy=True)
873 874
 .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode')
 .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_mode')
875 876
 .add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f'))

877 878 879
(pdef('WarpAffine', version=1, is_legacy=True)
 .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode')
 .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_mode')
880 881 882
 .add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f')
 .add_enum_alias('Format', 'ConvolutionV0', default=1))

883 884 885 886 887 888 889
(pdef('WarpAffine', version=2)
 .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode')
 .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_mode')
 .add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f')
 .add_enum_alias('Format', 'Convolution', default=1))


890
(pdef('GaussianBlur')
891
 .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_mode')
892
 .add_fields('uint32', 'kernel_height', 0, 'kernel_width', 0)
893
 .add_fields('float32','sigma_x', '0.f', 'sigma_y', '0.f'))
894 895

(pdef('Resize', version=0, is_legacy=True)
896
 .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode'))
897

898 899
(pdef('Resize', version=1, is_legacy=True)
 .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode')
900 901
 .add_enum_alias('Format', 'ConvolutionV0', default=1))

902 903 904 905
(pdef('Resize', version=2)
 .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode')
 .add_enum_alias('Format', 'Convolution', default=1))

906
(pdef('Remap', version=0,is_legacy=True)
907 908
 .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode')
 .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_type')
909 910 911
 .add_enum_alias('Format', 'ConvolutionV0', default=1)
 .add_fields('float32', 'scalar', '0.f'))

912 913 914 915 916 917
(pdef('Remap', version=1)
 .add_enum_alias('InterpolationMode', 'WarpPerspectiveV1', name_field='imode')
 .add_enum_alias('BorderMode', 'WarpPerspectiveV1', name_field='border_type')
 .add_enum_alias('Format', 'Convolution', default=1)
 .add_fields('float32', 'scalar', '0.f'))

918
(pdef('Convolution3D').
919
 add_enum('Mode', 'CROSS_CORRELATION = 0', 'CONVOLUTION = 1').
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
 add_fields(
     'uint32',
     Doc('pad_d', 'padding on one side on the first dimension'), 0,
     Doc('pad_h', 'padding on one side on the second dimension'), 0,
     Doc('pad_w', 'padding on one side on the third dimension'), 0,
     Doc('stride_d', 'kernel stride on the first dimension'), 1,
     Doc('stride_h', 'kernel stride on the second dimension'), 1,
     Doc('stride_w', 'kernel stride on the third dimension'), 1,
     Doc('dilate_d', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the first dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the third dimension'), 1
 ).
 add_enum('Sparse',
936
          Doc('DENSE = 0', 'dense convolution: filter shape should be '
937 938
              '[oc, ic, spatial...] if format is NCDHW, '
              '[oc, spatial..., ic] if format is NDHWC'),
939
          Doc('GROUP = 1', 'group convolution: filter shape should be '
940 941 942 943
              '[group, oc_per_group, ic_per_group, spatial...] if format is NCDHW, '
              '[group, oc_per_group, spatial..., ic_per_group] if format is NDHWC')
          ).
 add_enum('DataType',
944 945
          Doc('FLOAT = 0', 'input/output both float32/float16'),
          Doc('FLOAT_IO16xC32 = 1', 'input/output both float16, the internal '
946 947
              'compute is float32'),
          name_field='data_type').
948
 add_enum('Format', 'NCDHW = 0', 'NDHWC = 1')
949 950 951
 )

(pdef('Conv3DBias').
952
 add_enum('NonlineMode', 'IDENTITY = 0', 'RELU = 1', 'SIGMOID = 2').
953 954 955 956 957 958
 add_enum_alias('Mode', 'Convolution3D').
 add_fields('uint32', 'pad_d', 0, 'pad_h', 0, 'pad_w', 0,
                'stride_d', 1, 'stride_h', 1, 'stride_w', 0))

(pdef('SeparableConv3D').
 add_enum_alias('Mode', 'Convolution3D').
959
 add_enum('BorderMode', 'BORDER_REPLICATE = 0', 'BORDER_REFLECT = 1',
960 961
          'BORDER_REFLECT_101 = 2','BORDER_WRAP = 3',
          'BORDER_CONSTANT = 4', 'BORDER_TRANSPARENT = 5','BORDER_ISOLATED = 6').
962 963 964 965 966 967 968 969 970
 add_fields('bool', 'is_symm_kernel', 'true').
 add_fields('uint32', 'pad_d', 0, 'pad_h', 0, 'pad_w', 0,
            'stride_d', 0, 'stride_h', 1, 'stride_w', 1,
            'ksize_d', 0, 'ksize_h', 3, 'ksize_w', 3,
            'anchor_d', 0, 'anchor_h', 1, 'anchor_w', 1))

(pdef('TopK').
 add_enum(
     'Mode',
971 972
     Doc('KTH_ONLY = 0', "only the value of the k'th element would be computed"),
     Doc('VALUE_IDX_NOSORT = 1',
973 974
         'all the top-k values and corresponding indices would be computed; '
         'no order is guaranteed'),
975
     Doc('VALUE_IDX_SORTED = 2',
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
         'all the top-k values and corresponding indices sorted'))
 )

RELAYOUT_FORMAT_MODE_DOC = """
Relayout mode.

**Naming conventions**

1. ``A_B`` means change from layout format ``A`` to ``B``.
2. ``INTER_WEIGHT_xx`` means relayout the weight for faster processing by
   :attr:`Convolution.Format.NHWCD4` convolutions.
3. A suffix of ``I`` means ``Image2DPack4TensorFormat`` tensor format is used
   for faster processing on GPUs.

**Layout definitions**

* ``NCHW`` layout: ``{N, C, H, W}``
* ``NHWC`` layout: ``{N, H, W, C}``
* ``NHWCD4`` layout: ``{N, H, (C + 3) / 4, W, 4}``
* ``NHWCD4I`` layout: with ``align_axis = 2``
* ``NCHW4`` layout: ``{N, C/4, H, W, 4}``
* ``NCHW88`` layout: ``{N, C/8, H, W, 8}``
* ``CHWN4`` layout: ``{C/4, H, W, N, 4}``
999
* ``NCHW64`` layout: ``{N, C/64, H, W, 64}``
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

**Float weight transformation definitions**

+---------------+---------------------------------+--------------------+--------------------------------------+------+
| Sparsity Type | Input Layout                    | Input Req          | Output Layout                        | Axis |
+===============+=================================+====================+======================================+======+
| DENSE         | ``{OC, IC, FH, FW}``            | ``OC % 4 == 0``    | ``{OC/4, FH, FW, IC, 4}``            | 3    |
+---------------+---------------------------------+--------------------+--------------------------------------+------+
| GROUP         | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 4 == 0``  | ``{GROUP, OCPG/4, FH, FW, ICPG, 4}`` | 4    |
|               |                                 | ``ICPG % 4 == 0``  |                                      |      |
+---------------+---------------------------------+--------------------+--------------------------------------+------+
| CHAN          | ``{GROUP, 1, 1, FH, FW}``       | ``GROUP % 4 == 0`` | ``{GROUP / 4, 1, FH ,FW, 4}``        | 1    |
+---------------+---------------------------------+--------------------+--------------------------------------+------+

**Float weight transformation nchw88 definitions**

+---------------+---------------------------------+--------------------+--------------------------------------+
| Sparsity Type | Input Layout                    | Input Req          | Output Layout                        |
+===============+=================================+====================+======================================+
| DENSE         | ``{OC, IC, FH, FW}``            | ``OC % 8 == 0``    |``{OC/8, IC/8 ,FH, FW, 8(IC), 8(OC)}``|
|               |                                 | ``IC % 8 == 0``    |                                      |
+---------------+---------------------------------+--------------------+--------------------------------------+
| GROUP         | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 8 == 0``  | ``{GROUP, OCPG/8, ICPG/8 FH, FW,     |
|               |                                 | ``ICPG % 8 == 0``  |  8(ICPG), 8(OCPG)} ``                |
+---------------+---------------------------------+--------------------+--------------------------------------+
| CHAN          | ``{GROUP, 1, 1, FH, FW}``       | ``GROUP % 8 == 0`` | ``{GROUP / 8, 1, FH ,FW, 8}``        |
+---------------+---------------------------------+--------------------+--------------------------------------+

**Int8(DOT) weight transformation definitions**

+---------------+---------------------------------+--------------------+------------------------------------------+------+
| Sparsity Type | Input Layout                    | Input Req          | Output Layout                            | Axis |
+===============+=================================+====================+==========================================+======+
| DENSE         | ``{OC, IC, FH, FW}``            | ``OC % 4 == 0``    | ``{OC/4, FH, FW, IC/4, 4, 4}`            | 3    |
+---------------+---------------------------------+--------------------+------------------------------------------+------+
| GROUP         | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 4 == 0``  | ``{GROUP, OCPG/4, FH, FW, ICPG/4, 4, 4}``| 4    |
|               |                                 | ``ICPG % 4 == 0``  |                                          |      |
+---------------+---------------------------------+--------------------+------------------------------------------+------+

Note: the axis column means the corresponding ``align_axis`` for image format
when the ``I`` suffix is present.

1042
Note: NCHW_NCHW4_WEIGHT will auto pad oc and ic, you should remove oc in later opr by seting group and oc param with NCHW4_NCHW
1043
"""
1044
(pdef('RelayoutFormat', 'Change the tensor layout format', version=0, is_legacy=True).
1045 1046
 add_enum(
     Doc('Mode', RELAYOUT_FORMAT_MODE_DOC),
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
     'NHWC_NHWCD4 = 0',
     'NHWCD4_NHWC = 1',
     'NHWC_NHWCD4I = 2',
     'NCHW_NHWCD4 = 3',
     'NCHW_NHWCD4I = 4',
     'NHWCD4I_NCHW = 5',
     'NHWCD4_NCHW = 6',
     'INTER_WEIGHT_DENSE = 7',
     'INTER_WEIGHT_DENSEI = 8',
     'INTER_WEIGHT_GROUP = 9',
     'INTER_WEIGHT_GROUPI = 10',
     'INTER_WEIGHT_CHAN = 11',
     'INTER_WEIGHT_CHANI = 12',
     'INTER_WEIGHT_DENSEI_DOT = 13',
     'INTER_WEIGHT_GROUPI_DOT = 14',
     'NCHW4_CHWN4 = 15',
     'CHWN4_NCHW4 = 16',
     'NCHW_NCHW88_CONV_DENSE_WEIGHT = 17',
     'NCHW_NCHW88_CONV_CHAN_WEIGHT = 18',
     'NCHW_NCHW88_CONV_GROUP_WEIGHT = 19',
     'NCHW_NCHW88 = 20',
     'NCHW88_NCHW = 21',
     'NCHW_NCHW4_IC_SMALL = 22',
     'NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT = 23',
     'NCHW_NCHW4 = 24',
     'NCHW4_NCHW = 25',
     'NCHW_NCHW4_WEIGHT = 26',
1074 1075 1076 1077
     'NCHW_NCHW64 = 27',
     'NCHW64_NCHW = 28',
     'NCHW_NHWC = 29',
     'NHWC_NCHW = 30',
1078
     'NHWCD4I_NHWC = 31',
1079
    )
1080
 )
1081

1082 1083 1084 1085 1086
(pdef('RelayoutFormat', 'Change the tensor layout format', version=1).
    add_enum_alias('Mode', 'RelayoutFormatV0').
    add_fields('uint32', 'oc', '0').
    add_fields('uint32', 'group', '1')
)
1087

1088
(pdef('SeparableFilter', version=0, is_legacy=True).
1089
 add_enum_alias('Format', 'ConvolutionV0').
1090 1091 1092 1093 1094 1095 1096
 add_enum_alias('BorderMode', 'WarpPerspectiveV1').
 add_fields('bool', 'is_symm_kernel', 'true').
 add_fields('uint32', 'ksize_h', 3, 'ksize_w', 3, 'anchor_h', 1, 'anchor_w', 1))

(pdef('SeparableFilter', version=1).
 add_enum_alias('Format', 'Convolution').
 add_enum_alias('BorderMode', 'WarpPerspectiveV1').
1097 1098 1099
 add_fields('bool', 'is_symm_kernel', 'true').
 add_fields('uint32', 'ksize_h', 3, 'ksize_w', 3, 'anchor_h', 1, 'anchor_w', 1))

1100
(pdef('LocalShare', 'Local share convolution',version=0, is_legacy=True).
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('spatial_groups_h', 'spatial groups on the first dimension'), 1,
     Doc('spatial_groups_w', 'spatial groups on the second dimension'), 1
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
1117
 add_enum_alias('ComputeMode', 'ConvolutionV1')
1118 1119
 )

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
(pdef('LocalShare', 'Local share convolution', version=1).
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('spatial_groups_h', 'spatial groups on the first dimension'), 1,
     Doc('spatial_groups_w', 'spatial groups on the second dimension'), 1
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'Convolution').
 add_enum_alias('ComputeMode', 'ConvolutionV1')
 )


1141
(pdef('ROIAlign',version=0,is_legacy=True).
1142
 add_enum('Mode', 'MAX = 0', 'AVERAGE = 1', name_field='mode').
1143 1144 1145
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields('float32', 'spatial_scale', '1.0').
 add_fields('float32', 'offset', '0.0').
1146 1147
 add_fields('uint32',
            'pooled_height', '1',
1148
            'pooled_width', '1',
1149
            'sample_height', '2',
1150 1151
            'sample_width', '2')
 )
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

(pdef('ROIAlign', version=1).
 add_enum_alias('Mode', 'ROIAlignV0', name_field='mode').
 add_enum_alias('Format', 'Convolution').
 add_fields('float32', 'spatial_scale', '1.0').
 add_fields('float32', 'offset', '0.0').
 add_fields('uint32',
            'pooled_height', '1',
            'pooled_width', '1',
            'sample_height', '2',
            'sample_width', '2')
 )

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
(pdef('Correlation').
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields('uint32', 'kernel_size', '1').
 add_fields('uint32', 'max_displacement', '1').
 add_fields('uint32', 'stride1', '1').
 add_fields('uint32', 'stride2', '1').
 add_fields('uint32', 'pad_size', '0').
 add_fields('bool', 'is_multiply', 'true')
 )

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
(pdef('DeformablePSROIPooling').
 add_fields('bool', 'no_trans', 'true').
 add_fields('float32', 'spatial_scale', 1,
     'trans_std', 1).
 add_fields('uint32',
    Doc('pooled_h', 'height of pooling output'), 1,
    Doc('pooled_w', 'width of pooling output'), 1,
    Doc('part_size', 'size of each deformable part'), 1,
    Doc('sample_per_part', 'sample count of each bbox'), 1))

1185
(pdef('BatchConvBias', 'Batch convolution (unshare weights on the batch dimension)',version=0,is_legacy=True).
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
1201
 add_enum_alias('ComputeMode', 'ConvolutionV1', name_field="compute_mode")
1202
 )
1203

1204
(pdef('BatchConvBias', 'Batch convolution (unshare weights on the batch dimension)',version=1).
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'Convolution').
 add_enum_alias('ComputeMode', 'ConvolutionV1', name_field="compute_mode")
 )

1223
(pdef('FakeQuant').
1224 1225
 add_fields('int32','qmin','-2147483648').
 add_fields('int32','qmax','2147483647')
1226
 )
M
Megvii Engine Team 已提交
1227 1228 1229 1230
(pdef('TQT').
 add_fields('int32', 'qmin', '-2147483648').
 add_fields('int32', 'qmax', '2147483647')
 )
M
Megvii Engine Team 已提交
1231 1232 1233 1234
(pdef('LSQ').
 add_fields('int32', 'qmin', '-2147483648').
 add_fields('int32', 'qmax', '2147483647')
 )
M
Megvii Engine Team 已提交
1235
pdef('Fill').add_fields('float32', 'value', '0')
1236

1237 1238
pdef('CheckNonFinite').add_fields('float32', 'scale', '1.0')

1239

1240 1241 1242
PADDING_MODES = [Doc('REPLICATE = 0', 'aaaaaa|abcdefgh|hhhhhhh'),
                Doc('REFLECT = 1', 'fedcba|abcdefgh|hgfedcb'),
                Doc('CONSTANT = 2', 'iiiiii|abcdefgh|iiiiiii')]
1243
(pdef('Padding').
1244 1245 1246 1247 1248 1249 1250
 add_fields('uint32', Doc('front_offset_dim0','offset in dim 0'), 0).
 add_fields('uint32', Doc('front_offset_dim1','offset in dim 1'), 0).
 add_fields('uint32', Doc('front_offset_dim2','offset in dim 2'), 0).
 add_fields('uint32', Doc('front_offset_dim3','offset in dim 3'), 0).
 add_fields('uint32', Doc('front_offset_dim4','offset in dim 4'), 0).
 add_fields('uint32', Doc('front_offset_dim5','offset in dim 5'), 0).
 add_fields('uint32', Doc('front_offset_dim6','offset in dim 6'), 0).
1251 1252 1253 1254 1255 1256 1257
 add_fields('uint32', Doc('back_offset_dim0', 'back offset in dim0'), 0).
 add_fields('uint32', Doc('back_offset_dim1', 'back offset in dim1'), 0).
 add_fields('uint32', Doc('back_offset_dim2', 'back offset in dim2'), 0).
 add_fields('uint32', Doc('back_offset_dim3', 'back offset in dim3'), 0).
 add_fields('uint32', Doc('back_offset_dim4', 'back offset in dim4'), 0).
 add_fields('uint32', Doc('back_offset_dim5', 'back offset in dim5'), 0).
 add_fields('uint32', Doc('back_offset_dim6', 'back offset in dim6'), 0).
1258
 add_fields('float32', Doc('padding_val','param of padding opr'), 0).
1259 1260 1261 1262 1263
 add_enum('PaddingMode', *PADDING_MODES,
          name_field='padding_mode', default=2,
          member_alias=[(i, 'PADDING_{}'.format(i)) for i in PADDING_MODES]
          )
)
1264 1265 1266 1267 1268 1269

(pdef('LayerNorm')
 .add_fields('bool', 'affine', 'true')
 .add_fields('float32', 'eps', '1e-5f')
 .add_fields('uint64', 'normalized_dim', '1')
 .add_fields('uint64', 'normalized_size', '1')
1270 1271 1272 1273 1274
)

(pdef('Dropout')
 .add_fields('float32', 'drop_prob', '0')
 .add_fields('uint64', 'seed', '0')
1275 1276
)

1277 1278 1279 1280 1281
(pdef('RNNCell').
 add_enum('NonlineMode', 'IDENTITY = 0', 'RELU = 1', 'TANH = 2')
 )

(pdef('RNN').
1282 1283 1284 1285 1286
 add_fields('uint32', Doc('num_layers', 'Number of recurrent layers'), '1').
 add_fields('bool', Doc('bidirectional', 'If becomes a bidirectional RNN'), 'false').
 add_fields('bool', Doc('bias', 'If the layer use bias weights b_ih and b_hh'), 'true').
 add_fields('uint32', Doc('hidden_size', 'The number of features in the hidden state'), '128').
 add_fields('float32', Doc('dropout', 'If introduce a Dropout layer on the outputs of each RNN layer'), '0.f').
1287 1288 1289 1290 1291
 add_enum_alias('NonlineMode', 'RNNCell').
 add_enum_alias('FwdMode', 'BN', name_field='fwd_mode')
 )

(pdef('LSTM').
1292 1293 1294 1295 1296 1297
 add_fields('uint32', Doc('num_layers', 'Number of recurrent layers'), '1').
 add_fields('bool', Doc('bidirectional', 'If becomes a bidirectional LSTM'), 'false').
 add_fields('bool', Doc('bias', 'If the layer use bias weights b_ih and b_hh'), 'true').
 add_fields('uint32', Doc('hidden_size', 'The number of features in the hidden state'), '128').
 add_fields('uint32', Doc('proj_size', 'If use LSTM with projections of corresponding size'), '0').
 add_fields('float32', Doc('dropout', 'If introduce a Dropout layer on the outputs of each LSTM layer'), '0.f').
1298
 add_enum_alias('FwdMode', 'BN', name_field='fwd_mode')
1299
 )
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

(pdef('LAMBUpdate').
 add_fields('float32', Doc('beta_1', 'beta_1 paramter of lamb'), '1.f').
 add_fields('float32', Doc('beta_2', 'beta_2 paramter of lamb'), '1.f').
 add_fields('float32', Doc('step', 'training step'), '1.f').
 add_fields('float32', Doc('lr', 'learning rate'), '1.f').
 add_fields('float32', Doc('weight_decay', 'weight decay to adjust learning rate'), '1.f').
 add_fields('float32', Doc('eps', 'eps to multi'), '1.f').
 add_fields('bool', Doc('bias_correction', 'whether correct bias'), 'true').
 add_fields('bool', Doc('always_adapt', 'apply adaptive lr to 0.0'), 'false')
)
1311 1312 1313 1314 1315 1316 1317 1318
(pdef("Norm").
 add_enum('Mode',
            Doc('P_NORM=0', 'calculate p-norm, parameter p would be ignored in other mode'),
            Doc('INF_NORM=1', 'infinite norm'),
            Doc('NEG_INF_NORM=2', 'negative infinite norm'), name_field="mode").
 add_fields('float32', Doc('p', 'the order of norm'), '2').
 add_fields('int32', Doc('dim', 'which dim the norm performed along'), '-1'),
 )