basic_arith.cpp 63.7 KB
Newer Older
1
#include "megbrain/opr/basic_arith.h"
M
Megvii Engine Team 已提交
2 3 4
#include "megbrain/gopt/basic_arith.h"
#include "megbrain/gopt/gtrans.h"
#include "megbrain/graph/grad_impl.h"
5 6
#include "megbrain/opr/basic_arith_wrapper.h"
#include "megbrain/opr/cond.h"
M
Megvii Engine Team 已提交
7
#include "megbrain/opr/io.h"
8
#include "megbrain/opr/tensor_manip.h"
M
Megvii Engine Team 已提交
9
#include "megbrain/opr/utility.h"
10 11 12 13 14 15 16 17 18 19 20
#include "megbrain/utils/arith_helper.h"

#include "./internal/megdnn_opr_wrapper.inl"

#include <cmath>

using namespace mgb;
using namespace opr;

namespace {

M
Megvii Engine Team 已提交
21 22 23 24 25
//! global operator instance for static inference
template <class Opr>
class StaticInferOpr {
    intl::UniqPtrWithCN<Opr> m_opr;
    MGB_MUTEX m_mtx;
26

M
Megvii Engine Team 已提交
27 28 29 30
public:
    class Lock {
        friend class StaticInferOpr;
        StaticInferOpr* m_owner;
31

M
Megvii Engine Team 已提交
32
        explicit Lock(StaticInferOpr* owner) : m_owner{owner} {
33
#if !__DEPLOY_ON_XP_SP2__
M
Megvii Engine Team 已提交
34
            m_owner->m_mtx.lock();
35
#endif
M
Megvii Engine Team 已提交
36
        }
37

M
Megvii Engine Team 已提交
38 39
    public:
        Lock(Lock&& rhs) : m_owner{rhs.m_owner} { rhs.m_owner = nullptr; }
40

M
Megvii Engine Team 已提交
41
        ~Lock() {
42
#if !__DEPLOY_ON_XP_SP2__
M
Megvii Engine Team 已提交
43 44
            if (m_owner)
                m_owner->m_mtx.unlock();
45
#endif
M
Megvii Engine Team 已提交
46 47 48 49 50 51
        }

        Lock& operator=(const Lock&) = delete;
        Lock& operator=(Lock&&) = delete;

        intl::UniqPtrWithCN<Opr>& operator()() { return m_owner->m_opr; }
52
    };
M
Megvii Engine Team 已提交
53 54 55 56 57 58 59 60 61 62 63

    //! lock and acquire the operator
    Lock lock() {
        Lock ret{this};
        if (!m_opr) {
            m_opr = intl::create_megdnn_opr<Opr>(CompNode::default_cpu());
        }
        return ret;
    }
};
}  // anonymous namespace
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

/* ========================= BatchedDTypePromotion ========================= */
intl::BatchedDTypePromotion::BatchedDTypePromotion(const VarNodeArrayView& vars)
        : m_orig_vars{vars} {
    mgb_assert(!vars.empty());
    DType final_dtype;
    bool changed = false;
    for (size_t i = 0; i < vars.size(); ++i) {
        auto cur = vars[i]->dtype();
        if (!i) {
            final_dtype = cur;
        } else {
            auto promoted = dtype_promotion(final_dtype, cur);
            changed |= promoted != final_dtype || promoted != cur;
            final_dtype = promoted;
        }
    }
    m_changed = changed;
    m_final_dtype = final_dtype;
}

void intl::BatchedDTypePromotion::set_dtype(DType dtype) {
    mgb_assert(!m_finalized);
    if (m_final_dtype != dtype) {
        m_final_dtype = dtype;
        m_changed = true;
    }
}

const VarNodeArrayView& intl::BatchedDTypePromotion::get_vars() {
    m_finalized = true;
    if (!m_changed) {
        return m_orig_vars;
    }
    if (!m_cvt_vars_view.valid()) {
        m_cvt_vars.resize(m_orig_vars.size());
        auto dtype = m_final_dtype;
        for (size_t i = 0; i < m_cvt_vars.size(); ++i) {
            m_cvt_vars[i] = TypeCvt::make(m_orig_vars[i], dtype).node();
        }
        m_cvt_vars_view.emplace(m_cvt_vars);
    }
    return m_cvt_vars_view.val();
}

/* =========================== Elemwise =========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(Elemwise);
Elemwise::Elemwise(
M
Megvii Engine Team 已提交
113 114 115
        const ModeTrait& mode_trait, const VarNodeArrayView& inputs, Param param,
        const OperatorNodeConfig& config)
        : Super{inputs.at(0)->owner_graph(), config, mode_trait.name, inputs} {
116
    init_megdnn_opr(*this, param);
117
    output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    if (mode_trait.commutable) {
        mgb_assert(inputs.size() == 2);
        add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
    } else {
        if (param.mode == Mode::FUSE_MUL_ADD3) {
            add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
            add_input({inputs[2]});
        } else if (param.mode == Mode::FUSE_MUL_ADD4) {
            auto i0 = inputs[0], i1 = inputs[1], i2 = inputs[2], i3 = inputs[3];
            if (i0->id() > i1->id())
                std::swap(i0, i1);
            if (i2->id() > i3->id())
                std::swap(i2, i3);
            if (i0->id() > i2->id()) {
                std::swap(i0, i2);
                std::swap(i1, i3);
            }
            add_input({i0, i1, i2, i3});
        } else {
M
Megvii Engine Team 已提交
137
            for (auto i : inputs)
138 139 140 141 142
                add_input({i});
        }
    }

    mgb_assert(m_input_broadcastable.size() >= inputs.size());
M
Megvii Engine Team 已提交
143 144
    for (size_t i = 0; i < inputs.size(); ++i) {
        if (input()[i]->owner_opr()->same_type<opr::MarkNoBroadcastElemwise>()) {
145 146 147 148 149 150 151 152 153 154
            m_input_broadcastable[i] = false;
        } else {
            m_input_broadcastable[i] = true;
        }
    }
    if (inputs.size() == 1) {
        m_input_broadcastable[0] = false;
    } else {
        Maybe<size_t> non_scalar;
        using namespace cg::static_infer;
M
Megvii Engine Team 已提交
155 156
        auto&& mgr = owner_graph()->static_infer_manager();
        for (size_t i = 0; i < input().size(); ++i) {
157 158
            auto it = mgr.get_infer_type(input(i));
            if (!((it.shape & InferType::CONST) &&
M
Megvii Engine Team 已提交
159
                  mgr.infer_shape(input(i)).is_scalar())) {
160 161 162 163 164 165 166 167 168 169 170 171 172
                if (non_scalar.valid()) {
                    non_scalar.invalidate();
                    break;
                }
                non_scalar = i;
            }
        }
        if (non_scalar.valid()) {
            // exactly one input is non-scalar
            m_input_broadcastable[non_scalar.val()] = false;
        }
    }

M
Megvii Engine Team 已提交
173 174 175 176 177 178 179 180 181 182
    if (inputs.size() && inputs[0]->dtype().category() == DTypeCategory::QUANTIZED) {
        mgb_assert(
                param.mode == Param::Mode::ADD || param.mode == Param::Mode::SUB ||
                        param.mode == Param::Mode::NEGATE ||
                        param.mode == Param::Mode::RELU ||
                        param.mode == Param::Mode::MAX ||
                        param.mode == Param::Mode::MIN,
                "Only ADD, SUB, NEGATE, RELU, MAX and MIN is guaranteed "
                "to be supported on Elemwise for quantized DType, no support %d",
                (int)param.mode);
183 184 185
    }
}

M
Megvii Engine Team 已提交
186 187
SymbolVar Elemwise::make(
        const VarNodeArrayView& inputs, Param param, const OperatorNodeConfig& config) {
188
    auto trait = ModeTrait::from_mode(param.mode);
M
Megvii Engine Team 已提交
189 190 191
    mgb_assert(
            inputs.size() == trait.arity, "%s expects %u inputs; got %zu actually",
            trait.name, trait.arity, inputs.size());
192 193 194 195 196
    intl::BatchedDTypePromotion dtp{inputs};
    if (dtp.get_dtype().category() == DTypeCategory::INT && !trait.allow_int) {
        dtp.set_dtype(dtype::Float32());
    }

M
Megvii Engine Team 已提交
197 198 199 200 201 202
    mgb_throw_if(
            dtp.get_dtype().category() == DTypeCategory::FLOAT && !trait.allow_float,
            ConversionError,
            "elemwise mode %s does not allow float input; "
            "got inputs: %s",
            trait.name, cg::dump_var_info(inputs).c_str());
203 204

#if !MGB_BUILD_SLIM_SERVING
205 206
    auto&& options = inputs[0]->owner_graph()->options();
    if (options.graph_opt_level && !(options.disable_inplace_arith_opt)) {
M
Megvii Engine Team 已提交
207
        auto repl = gopt::optimize_elemwise_expr_inplace(dtp.get_vars(), param, config);
208 209 210 211 212 213 214 215 216 217
        if (repl)
            return repl;
    }
#endif

    return SymbolVar{inputs[0]}.insert_single_output_opr<Elemwise>(
            trait, dtp.get_vars(), param, config);
}

TensorShape Elemwise::get_output_var_shape(
M
Megvii Engine Team 已提交
218
        Mode mode, const TensorShapeArray& input_shapes) {
219 220 221 222 223 224 225
    mgb_assert(input_shapes.size() == ModeTrait::from_mode(mode).arity);
    TensorShape ret;
    megdnn::Elemwise::deduce_shape(input_shapes, ret);
    return ret;
}

void Elemwise::perform(
M
Megvii Engine Team 已提交
226 227
        Mode mode, DeviceTensorND& dest, const SmallVector<DeviceTensorND>& inputs,
        intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
228 229 230 231
    megdnn::TensorNDArray dnn_inputs(inputs.size());
    TensorShapeArray inp_shapes(inputs.size());
    DType out_dt;
    CompNode out_cn;
M
Megvii Engine Team 已提交
232 233
    for (size_t i = 0; i < inputs.size(); ++i) {
        auto&& t = inputs[i];
234 235 236 237 238 239 240
        if (!i) {
            out_cn = t.comp_node();
            out_dt = t.dtype();
        } else {
            mgb_assert(t.comp_node() == out_cn);
            mgb_assert(t.dtype() == out_dt);
        }
241 242 243 244
        if (t.shape().is_empty()) {
            mgb_assert(dest.empty());
            return;
        }
245 246 247 248 249 250 251 252
        inp_shapes[i] = t.shape();
    }
    if (!opr) {
        opr = intl::create_megdnn_opr<megdnn::Elemwise>(out_cn);
    } else {
        mgb_assert(out_cn == opr.comp_node());
    }
    out_cn.activate();
M
Megvii Engine Team 已提交
253
    for (size_t i = 0; i < inputs.size(); ++i)
254
        dnn_inputs[i] = inputs[i].as_megdnn();
M
Megvii Engine Team 已提交
255
    dest.comp_node(out_cn).dtype(out_dt).resize(get_output_var_shape(mode, inp_shapes));
256
    opr->param() = {mode};
M
Megvii Engine Team 已提交
257
    call_megdnn_opr_exec(out_cn, dnn_inputs, dest.as_megdnn(), opr.get(), nullptr);
258 259
}

260 261 262 263 264 265
void Elemwise::perform_dnn(
        CompNode cn, DeviceTensorND& dest, megdnn::TensorNDArray& inputs,
        intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
    call_megdnn_opr_exec(cn, inputs, dest.as_megdnn(), opr.get(), nullptr);
}

M
Megvii Engine Team 已提交
266
TensorLayoutArray Elemwise::collective_collapse(const TensorLayoutArray& layouts) {
267 268
    TensorLayoutPtrArray inp(layouts.size());
    TensorLayoutArray result(inp.size());
M
Megvii Engine Team 已提交
269
    for (size_t i = 0; i < layouts.size(); ++i) {
270 271 272 273 274 275 276
        result[i] = layouts[i];
        inp[i] = &result[i];
    }
    collective_collapse_inplace(inp);
    return result;
}

M
Megvii Engine Team 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
void Elemwise::collective_collapse_inplace(const TensorLayoutPtrArray& layouts) {
    mgb_assert(layouts.size());
    size_t ndim = layouts[0]->ndim;
    for (auto i : layouts) {
        if (i->ndim != ndim)
            mgb_throw(MegBrainError, "ndims must be same");
    }

    auto update_all = [&layouts](size_t axis) {
        for (auto i : layouts) {
            i->shape[axis] *= i->shape[axis + 1];
            i->stride[axis] = i->stride[axis + 1];
            i->remove_axis_inplace(axis + 1);
        }
    };

    auto check = [&layouts](size_t axis) -> bool {
        auto std_p =
                std::make_pair(layouts[0]->shape[axis], layouts[0]->shape[axis + 1]);
        for (auto i : layouts) {
            auto cur_p = std::make_pair(i->shape[axis], i->shape[axis + 1]);
            if (std_p != cur_p)
                return false;
            if (i->stride[axis] !=
                i->stride[axis + 1] * static_cast<ptrdiff_t>(i->shape[axis + 1]))
                return false;
        }
        return true;
    };

    for (int i = static_cast<int>(ndim) - 2; i >= 0; i--) {
        if (check(i)) {
            update_all(i);
        }
    }
312 313 314
}

void Elemwise::broadcast_collective_collapse(
M
Megvii Engine Team 已提交
315 316
        const TensorLayoutPtrArray& inp_layouts, TensorLayout* target_layout) {
    for (auto&& p : inp_layouts) {
317 318 319 320 321
        *p = p->broadcast(*target_layout);
    }
    TensorLayoutPtrArray buf(inp_layouts.size() + 1);
    buf[0] = target_layout;
    for (size_t i = 0; i < inp_layouts.size(); i++) {
M
Megvii Engine Team 已提交
322
        buf[i + 1] = inp_layouts[i];
323 324 325 326 327
    }
    collective_collapse_inplace(buf);
}

void Elemwise::mem_plan_fwd_in2out_writable() {
328
    mixin_mem_plan_fwd_in2out_writable(*this);
329 330 331
}

void Elemwise::scn_do_execute() {
332 333
    auto&& inp = input();
    megdnn::TensorNDArray dnn_inp;
M
Megvii Engine Team 已提交
334
    mgb_assert(dnn_inp.capacity() >= inp.size(), "heap allocation in elemwise exec");
335 336
    dnn_inp.resize(inp.size());
    for (size_t i = 0; i < inp.size(); ++i) {
337 338 339 340
        if (inp[i]->dev_tensor().empty()) {
            mgb_assert(output(0)->dev_tensor().empty());
            return;
        }
341
        dnn_inp[i] = (inp[i]->dev_tensor().as_megdnn());
342 343
    }
    mgb_assert(!output(0)->dev_tensor().empty());
344 345

    megdnn_opr()->param() = param();
M
Megvii Engine Team 已提交
346 347 348
    call_megdnn_opr_exec(
            comp_node(), dnn_inp, output(0)->dev_tensor().as_megdnn(), megdnn_opr(),
            this);
349 350 351 352 353 354 355 356
}

void Elemwise::init_output_static_infer_desc() {
    Super::init_output_static_infer_desc();
    static StaticInferOpr<megdnn::Elemwise> static_infer_opr;

    using namespace cg::static_infer;

M
Megvii Engine Team 已提交
357
    auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
358
        SmallVector<DeviceTensorND> inp_vals(inp.val.size());
M
Megvii Engine Team 已提交
359
        for (size_t i = 0; i < inp_vals.size(); ++i)
360 361 362 363 364 365 366
            inp_vals[i] = inp.val[i].value();
        auto sopr = static_infer_opr.lock();
        perform(param().mode, dest, inp_vals, sopr());
        return true;
    };

    DepVal deps(input().size());
M
Megvii Engine Team 已提交
367
    for (size_t i = 0; i < input().size(); ++i)
368 369 370 371 372 373
        deps[i] = {input(i), DepType::VALUE};
    owner_graph()->static_infer_manager().register_value_infer(
            output(0), {SourceType::DEP, deps, infer_value});
}

void Elemwise::get_output_var_shape(
M
Megvii Engine Team 已提交
374
        const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
375
    out_shape.at(0) = get_output_var_shape(param().mode, inp_shape);
M
Megvii Engine Team 已提交
376 377 378 379
    for (size_t i = 0; i < input().size(); ++i) {
        mgb_throw_if(
                !m_input_broadcastable[i] && !out_shape[0].eq_shape(inp_shape[i]),
                GraphError,
380
                "input %zu declared to be non-broadcastable but broacast "
M
Megvii Engine Team 已提交
381 382
                "actually happened",
                i);
383 384 385 386
    }
}

void Elemwise::add_input_layout_constraint() {
M
Megvii Engine Team 已提交
387
    for (auto i : input()) {
388 389 390 391 392
        i->add_layout_constraint_monotone();
    }
}

void Elemwise::call_megdnn_opr_exec(
M
Megvii Engine Team 已提交
393 394
        CompNode comp_node, megdnn::TensorNDArray& inp, const megdnn::TensorND& out,
        megdnn::Elemwise* opr, Elemwise* caller) {
395
    if (opr->param().mode == Mode::FUSE_MUL_ADD3 &&
M
Megvii Engine Team 已提交
396 397
        !(inp[2].layout.eq_layout(inp[0].layout) ||
          inp[2].layout.eq_layout(inp[1].layout) || inp[2].layout.is_scalar())) {
398
        if (caller && !caller->fuse_badlayout_warn_printed()) {
M
Megvii Engine Team 已提交
399 400
            mgb_log_debug(
                    "%s: FUSE_MUL_ADD3 input layouts mismatch: %s %s %s; "
401
                    "fallback to normal computing",
M
Megvii Engine Team 已提交
402
                    caller->cname(), inp[0].layout.to_string().c_str(),
403
                    inp[1].layout.to_string().c_str(),
M
Megvii Engine Team 已提交
404
                    inp[2].layout.to_string().c_str());
405 406 407
            caller->m_fuse_badlayout_warn_printed = true;
        }

M
Megvii Engine Team 已提交
408
        for (auto&& i : inp) {
409 410 411 412
            i.layout = i.layout.broadcast(out.layout);
        }

        megdnn::TensorNDArray run_inp(2);
M
Megvii Engine Team 已提交
413 414
        auto run = [&](Mode mode, const megdnn::TensorND& i0,
                       const megdnn::TensorND& i1, const megdnn::TensorND& out) {
415 416 417 418 419 420
            run_inp[0] = i0;
            run_inp[1] = i1;
            opr->param() = {mode};
            opr->exec(run_inp, out);
        };

M
Megvii Engine Team 已提交
421 422
        auto tmp = intl::get_temp_tensor(
                caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
423 424 425 426 427
        auto tmpv = tmp.as_megdnn();

        MGB_TRY {
            run(Mode::MUL, inp[0], inp[1], tmpv);
            run(Mode::ADD, inp[2], tmpv, out);
M
Megvii Engine Team 已提交
428 429
        }
        MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD3});
430 431 432 433
        return;
    }

    if (opr->param().mode == Mode::FUSE_MUL_ADD4 &&
M
Megvii Engine Team 已提交
434 435 436 437
        !(inp[0].layout.eq_layout(inp[2].layout) &&
          inp[1].layout.eq_layout(inp[3].layout)) &&
        !(inp[0].layout.eq_layout(inp[3].layout) &&
          inp[1].layout.eq_layout(inp[2].layout))) {
438 439 440 441
        if (caller && !caller->fuse_badlayout_warn_printed()) {
            mgb_log_debug(
                    "%s: FUSE_MUL_ADD4 input layouts mismatch: %s %s %s %s; "
                    "fallback to normal computing",
M
Megvii Engine Team 已提交
442
                    caller->cname(), inp[0].layout.to_string().c_str(),
443 444
                    inp[1].layout.to_string().c_str(),
                    inp[2].layout.to_string().c_str(),
M
Megvii Engine Team 已提交
445
                    inp[3].layout.to_string().c_str());
446 447 448
            caller->m_fuse_badlayout_warn_printed = true;
        }

M
Megvii Engine Team 已提交
449
        for (auto&& i : inp) {
450 451 452 453
            i.layout = i.layout.broadcast(out.layout);
        }

        megdnn::TensorNDArray run_inp(2);
M
Megvii Engine Team 已提交
454 455
        auto run = [&](Mode mode, const megdnn::TensorND& i0,
                       const megdnn::TensorND& i1, const megdnn::TensorND& out) {
456 457 458 459 460 461
            run_inp[0] = i0;
            run_inp[1] = i1;
            opr->param() = {mode};
            opr->exec(run_inp, out);
        };

M
Megvii Engine Team 已提交
462 463
        auto tmp = intl::get_temp_tensor(
                caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
464 465 466 467 468 469
        auto tmpv = tmp.as_megdnn();

        MGB_TRY {
            run(Mode::MUL, inp[0], inp[1], tmpv);
            run(Mode::MUL, inp[2], inp[3], out);
            run(Mode::ADD, out, tmpv, out);
M
Megvii Engine Team 已提交
470 471
        }
        MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD4});
472 473 474 475 476 477 478
        return;
    }

    // All Elemwise operations on QuantizedS32/QuantizedS8 are not related to
    // scale. MegDNN does not support computing Elemwise for
    // QuantizedS32/QuantizedS8, we translate the data type to Int32/Int8 before
    // passing to MegDNN.
M
Megvii Engine Team 已提交
479
    if (inp.size() && inp[0].layout.dtype.category() == DTypeCategory::QUANTIZED) {
480 481 482 483 484 485 486
        auto inp_dtype = inp[0].layout.dtype;
        DType compute_dtype;
        if (inp_dtype.enumv() == DTypeEnum::QuantizedS32) {
            compute_dtype = dtype::Int32();
        } else if (inp_dtype.enumv() == DTypeEnum::QuantizedS8) {
            compute_dtype = dtype::Int8();
        } else {
M
Megvii Engine Team 已提交
487 488 489 490
            mgb_throw(
                    MegBrainError, "Unsupported Quantized Elemwise Mode %s: %d on %s",
                    inp[0].layout.dtype.name(), int(opr->param().mode),
                    comp_node.to_string().c_str());
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        }

        megdnn::TensorNDArray run_inp(inp);
        for (size_t i = 0; i < inp.size(); i++) {
            run_inp[i].layout.dtype = compute_dtype;
        }
        megdnn::TensorND run_out = out;
        run_out.layout.dtype = compute_dtype;
        opr->exec(run_inp, run_out);
        return;
    }

    opr->exec(inp, out);
}

506
#if MGB_ENABLE_GRAD
507 508
MGB_IMPL_OPR_GRAD(Elemwise) {
    SymbolVar i[5];
M
Megvii Engine Team 已提交
509 510
    SymbolVar i0(opr.input(0)), i1, i2, out(opr.output(0)), og{out_grad.at(0)}, result;
    for (size_t t = 0; t < opr.input().size(); ++t)
511 512 513 514 515 516 517 518
        i[t] = opr.input()[t];
    if (opr.input().size() >= 2)
        i1 = opr.input(1);
    if (opr.input().size() >= 3)
        i2 = opr.input(2);

    // negate after reduce, for better performance
    bool negate_result = false;
M
Megvii Engine Team 已提交
519 520 521 522 523
#define RET(_v)    \
    result = (_v); \
    break
#define EL1(_mode, _a)         Elemwise::make({_a}, Mode::_mode)
#define EL2(_mode, _a, _b)     Elemwise::make({_a, _b}, Mode::_mode)
524
#define EL3(_mode, _a, _b, _c) Elemwise::make({_a, _b, _c}, Mode::_mode)
M
Megvii Engine Team 已提交
525
#define RET_INVALID()          return InvalidGrad::make(opr, wrt_idx)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

    using Mode = Elemwise::Mode;

    switch (opr.param().mode) {
        // unary
        case Mode::RELU:
        case Mode::FUSE_ADD_RELU:
            RET(EL2(SWITCH_GT0, out, og));
        case Mode::ABS:
            RET(EL2(ABS_GRAD, i0, og));
        case Mode::ACOS:
            negate_result = true;
            RET(og / EL1(SIN, out));
        case Mode::ASIN:
            RET(og / EL1(COS, out));
        case Mode::ATAN2:
            if (wrt_idx) {
                negate_result = true;
            }
            RET(og * i[!wrt_idx] / (i0 * i0 + i1 * i1));
        case Mode::CEIL:
            return nullptr;
        case Mode::COS:
            negate_result = true;
            RET(EL1(SIN, i0) * og);
        case Mode::EXP:
            RET(og * out);
        case Mode::EXPM1:
            RET(og * EL1(EXP, i0));
        case Mode::FLOOR:
            return nullptr;
        case Mode::LOG:
            RET(og / i0);
        case Mode::LOG1P:
            RET(og / (i0 + 1));
        case Mode::NEGATE:
            negate_result = true;
            RET(og);
        case Mode::SIGMOID:
        case Mode::FUSE_ADD_SIGMOID:
            RET(EL2(SIGMOID_GRAD, out, og));
        case Mode::SIN:
            RET(EL1(COS, i0) * og);
        case Mode::TANH:
        case Mode::FUSE_ADD_TANH:
            RET(EL2(TANH_GRAD, out, og));
        case Mode::FAST_TANH:
            RET(EL2(FAST_TANH_GRAD, i0, og));
        case Mode::ROUND:
            return nullptr;
        case Mode::ERF:
M
Megvii Engine Team 已提交
577
            RET(EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
578 579 580 581 582 583 584 585
        case Mode::ERFINV:
            RET(EL1(EXP, out * out) * static_cast<float>(sqrt(M_PI)) / 2 * og);
        case Mode::ERFC:
            RET(-EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
        case Mode::H_SWISH:
            RET(EL2(H_SWISH_GRAD, i0, og));
        case Mode::FUSE_ADD_H_SWISH:
            RET(EL2(H_SWISH_GRAD, (i0 + i1), og));
M
Megvii Engine Team 已提交
586 587
        case Mode::NOT:
            return nullptr;
588 589 590 591
        case Mode::SILU:
            RET(EL2(SILU_GRAD, i0, og));
        case Mode::GELU:
            RET(EL2(GELU_GRAD, i0, og));
592 593 594 595 596 597 598 599 600 601 602 603

        // binary
        case Mode::ABS_GRAD:
            if (wrt_idx == 0) {
                return nullptr;
            }
            RET(EL2(ABS_GRAD, i0, og));
        case Mode::ADD:
            RET(og);
        case Mode::FLOOR_DIV:
            return nullptr;
        case Mode::MAX:
604 605 606 607 608
            if (wrt_idx) {
                RET(EL3(COND_LT_MOV, i[0], i[1], og));
            } else {
                RET(EL3(COND_LEQ_MOV, i[1], i[0], og));
            }
609
        case Mode::MIN:
610 611 612 613 614
            if (wrt_idx) {
                RET(EL3(COND_LT_MOV, i[1], i[0], og));
            } else {
                RET(EL3(COND_LEQ_MOV, i[0], i[1], og));
            }
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        case Mode::MOD:
            if (wrt_idx == 0) {
                RET(og);
            }
            RET_INVALID();
        case Mode::MUL:
            RET(og * i[!wrt_idx]);
        case Mode::POW:
            if (wrt_idx) {
                RET(out * EL1(LOG, i0) * og);
            }
            RET(og * i1 * EL2(POW, i0, i1 - 1));
        case Mode::SIGMOID_GRAD:
            if (wrt_idx == 0) {
                auto one = i0.make_scalar_dt(1), two = i0.make_scalar_dt(2);
                RET((one - i0 * two) * i1 * og);
            }
            RET(EL2(SIGMOID_GRAD, i0, og));
        case Mode::SUB:
            negate_result = wrt_idx;
            RET(og);
        case Mode::SWITCH_GT0:
            if (!wrt_idx)
                return nullptr;
            RET(EL2(SWITCH_GT0, i0, og));
        case Mode::TANH_GRAD:
            if (wrt_idx == 0) {
                auto mtwo = i0.make_scalar_dt(-2);
                RET(mtwo * i0 * i1 * og);
            }
            RET(EL2(TANH_GRAD, i0, og));
        case Mode::TRUE_DIV:
            if (wrt_idx == 0) {
                RET(og / i1);
            }
            negate_result = true;
            RET((og * i0) * EL2(POW, i1, i1.make_scalar(-2)));
        case Mode::LOG_SUM_EXP:
            if (wrt_idx == 0) {
                RET(og * EL1(SIGMOID, i0 - i1));
            }
            RET(og * EL1(SIGMOID, i1 - i0));
        case Mode::LT:
        case Mode::LEQ:
            return nullptr;
        case Mode::EQ:
            RET_INVALID();
M
Megvii Engine Team 已提交
662 663 664 665
        case Mode::OR:
        case Mode::XOR:
        case Mode::AND:
            return nullptr;
666 667 668 669 670 671

        // ternary
        case Mode::COND_LEQ_MOV:
            if (wrt_idx <= 1)
                return nullptr;
            RET(EL3(COND_LEQ_MOV, i0, i1, og));
672 673 674 675
        case Mode::COND_LT_MOV:
            if (wrt_idx <= 1)
                return nullptr;
            RET(EL3(COND_LT_MOV, i0, i1, og));
676 677 678 679 680 681 682 683 684 685
        // fuse oprs
        case Mode::FUSE_MUL_ADD3:
            if (wrt_idx < 2) {
                RET(og * i[wrt_idx ^ 1]);
            } else {
                RET(og);
            }
        case Mode::FUSE_MUL_ADD4:
            RET(og * i[wrt_idx ^ 1]);
        default:
M
Megvii Engine Team 已提交
686 687 688
            mgb_throw(
                    GraphError, "grad for elemwise mode %s unimplemented",
                    megdnn::Elemwise::ModeTrait::from_mode(opr.param().mode).name);
689 690 691 692 693 694 695
    }
#undef EL3
#undef EL2
#undef EL1
#undef RET

    if (opr.input_broadcastable()[wrt_idx]) {
M
Megvii Engine Team 已提交
696
        result = reduce_sum(result, opr::GetVarShape::make(opr.input(wrt_idx)));
697 698
    } else if (result.node()->owner_opr()->same_type<Broadcast>()) {
        // forward broadcast for optimizer to work
M
Megvii Engine Team 已提交
699 700
        result = opr::Broadcast::make(
                result.node()->owner_opr()->input(0),
701 702 703 704 705 706
                opr::GetVarShape::make(i[wrt_idx]));
    }
    if (negate_result)
        result = -result;
    return result.node();
}
707
#endif
708

M
Megvii Engine Team 已提交
709
VarNode* Elemwise::sum_grad_list(VarNode* wrt, VarNodeArray& grads) {
710 711 712 713 714 715 716
    mgb_assert(!grads.empty());
    if (grads.size() == 1)
        return grads[0];
#if MGB_ENABLE_COND_EXEC
    CondExecMerge::modify_grad_sum_list(wrt, grads);
#endif
    VarNodeArray mid_results;
M
Megvii Engine Team 已提交
717
    VarNode* ret;
718 719 720
    if (wrt->owner_graph()->options().graph_opt_level) {
        ret = gopt::GradSumListOptimizer{wrt, grads, mid_results}.get_sum();
    } else {
M
Megvii Engine Team 已提交
721
        ret = gopt::elemwise_reduce_var_list(grads, Elemwise::Mode::ADD, &mid_results);
722 723 724 725 726 727 728 729 730
    }
    mid_results.swap(grads);
    return ret;
}

void Elemwise::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
}

731 732 733
Elemwise::NodeProp* Elemwise::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
    for (auto& inp : input()) {
M
Megvii Engine Team 已提交
734
        ret->add_dep_type_existing_var(inp, NodeProp::DepType::VALUE_ALLOW_EMPTY);
735 736 737 738
    }
    return ret;
}

739 740 741 742
/* =========================== TypeCvt =========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(TypeCvt);

M
Megvii Engine Team 已提交
743 744 745 746 747
TypeCvt::TypeCvt(VarNode* inp, DType dest_type, const OperatorNodeConfig& config)
        : Super{inp->owner_graph(),
                config,
                std::string("as") + dest_type.name(),
                {inp}} {
748 749 750 751 752 753 754 755
    init_megdnn_opr(*this, {});
    mgb_assert(dest_type.valid());
    add_input({inp});
    add_equivalence_component<ScalarHash<const void*>>(dest_type.handle());
    output(0)->dtype(dest_type).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
}

SymbolVar TypeCvt::make(
M
Megvii Engine Team 已提交
756
        SymbolVar input, DType dest_type, const OperatorNodeConfig& config) {
757 758
    if (input.dtype() == dest_type)
        return input;
M
Megvii Engine Team 已提交
759
    return input.insert_single_output_opr<TypeCvt>(input.node(), dest_type, config);
760 761
}

M
Megvii Engine Team 已提交
762 763 764
void TypeCvt::perform(
        DeviceTensorND& dest, DType dest_type, const DeviceTensorND& src,
        intl::UniqPtrWithCN<megdnn::TypeCvt>& opr) {
765 766
    mgb_assert(src.comp_node() == opr.comp_node());
    mgb_assert(dest_type.valid());
767 768 769 770
    if (src.empty()) {
        mgb_assert(dest.empty());
        return;
    }
771 772 773 774 775 776 777 778 779 780
    if (src.dtype() == dest_type) {
        dest.copy_from(src);
        return;
    }
    src.comp_node().activate();
    dest.comp_node(src.comp_node()).dtype(dest_type).resize(src.shape());
    opr->exec(src.as_megdnn(), dest.as_megdnn());
}

void TypeCvt::add_input_layout_constraint() {
781 782
    //! Because the implementation of typecvt on arm/x86/cuda/opencl support
    //! non-contiguous memory. So we change constraint of typecvt to monotone
M
Megvii Engine Team 已提交
783
    for (auto i : input()) {
784
        i->add_layout_constraint_monotone();
785 786 787 788 789
    }
}

TypeCvt::NodeProp* TypeCvt::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
M
Megvii Engine Team 已提交
790
    ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
791 792 793
    return ret;
}

794
#if MGB_ENABLE_GRAD
795 796 797 798 799 800 801 802 803 804 805 806
MGB_IMPL_OPR_GRAD(TypeCvt) {
    MGB_MARK_USED_VAR(wrt_idx);
    auto itype = opr.input(0)->dtype(), otype = opr.output(0)->dtype();
    if (itype.category() == DTypeCategory::FLOAT &&
        otype.category() == DTypeCategory::INT) {
        return nullptr;
    }
    if (itype.category() != DTypeCategory::FLOAT) {
        return InvalidGrad::make(opr, 0);
    }
    return TypeCvt::make(out_grad[0], opr.input(0)->dtype()).node();
}
807
#endif
808 809

void TypeCvt::mem_plan_fwd_in2out_writable() {
M
Megvii Engine Team 已提交
810 811 812
    bool cond_low_bit = input(0)->dtype().is_low_bit() &&
                        output(0)->dtype().is_low_bit() &&
                        input(0)->dtype().low_bit() == output(0)->dtype().low_bit();
813 814 815 816
    bool cond_normal = !input(0)->dtype().is_low_bit() &&
                       !output(0)->dtype().is_low_bit() &&
                       input(0)->dtype().size() == output(0)->dtype().size();
    if ((cond_low_bit || cond_normal) && input(0)->layout().is_contiguous()) {
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        output(0)->set_fwd_in2out_writable(input(0));
    }
}

void TypeCvt::scn_do_execute() {
    auto ovar = output(0)->dev_tensor().as_megdnn();
    for (size_t i = 0; i < ovar.layout.ndim; ++i) {
        if (!ovar.layout[i]) {
            // skip execution for empty var
            return;
        }
    }
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), ovar);
}

void TypeCvt::init_output_static_infer_desc() {
    static StaticInferOpr<megdnn::TypeCvt> static_infer_opr;
    Super::init_output_static_infer_desc();

    using namespace cg::static_infer;

M
Megvii Engine Team 已提交
838
    auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
839 840 841 842 843
        auto sopr = static_infer_opr.lock();
        perform(dest, output(0)->dtype(), inp.val.at(0).value(), sopr());
        return true;
    };
    owner_graph()->static_infer_manager().register_value_infer(
M
Megvii Engine Team 已提交
844
            output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
845 846 847 848 849 850 851 852 853 854
}

void TypeCvt::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
}

/* =========================== AddUpdate =========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(AddUpdate);

M
Megvii Engine Team 已提交
855 856 857 858 859
AddUpdate::AddUpdate(
        VarNode* dest, VarNode* delta, const Param& param,
        const OperatorNodeConfig& config)
        : Super{dest->owner_graph(), config, "inplace_add", {dest, delta}},
          m_param{param} {
860
    auto dest_opr = dest->owner_opr();
M
Megvii Engine Team 已提交
861 862
    mgb_throw_if(
            dest_opr->same_type<ImmutableTensor>(), GraphError,
863
            "AddUpdate cannot be applied on ImmutableTensor; ");
864 865 866 867 868 869 870
    add_input({dest, delta});

    /*
     * here we tell the system that output(0) would force-update input(0); the
     * topo-sorting system would ensure that all the readers finish before
     * executing this AddUpdate operation
     */
M
Megvii Engine Team 已提交
871 872
    add_output(None)->set_fwd_in2out_writable_force(input(0)).add_flag(
            VarNode::Flag::NO_MEM_RECLAIM);
873

M
Megvii Engine Team 已提交
874 875
    mgb_assert(
            m_param.disable->dtype() == dtype::Int32{},
876 877 878 879 880 881 882 883 884
            "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
            m_param.disable->dtype().name());

    add_equivalence_component<ScalarHash<void*>>(m_param.alpha.get());
    add_equivalence_component<ScalarHash<void*>>(m_param.beta.get());
    add_equivalence_component<ScalarHash<void*>>(m_param.bias.get());
    add_equivalence_component<ScalarHash<void*>>(m_param.disable.get());
}

M
Megvii Engine Team 已提交
885 886 887
SymbolVar AddUpdate::make(
        SymbolVar dest, SymbolVar delta, const Param& param,
        const OperatorNodeConfig& config) {
888 889 890 891 892 893 894 895 896 897 898 899
    delta = opr::TypeCvt::make(delta, dest.dtype());
    return dest.insert_single_output_opr<AddUpdate>(
            dest.node(), delta.node(), param, config);
}

cg::OperatorNodeBase::NodeProp* AddUpdate::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
    ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
    return ret;
}

void AddUpdate::create_megdnn_opr() {
M
Megvii Engine Team 已提交
900 901
    set_megdnn_opr(
            intl::get_megdnn_handle(comp_node())->create_operator<megdnn::AddUpdate>());
902 903 904
}

void AddUpdate::scn_do_execute() {
M
Megvii Engine Team 已提交
905 906
    mgb_assert(
            m_param.disable->dtype() == dtype::Int32{},
907 908 909
            "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
            m_param.disable->dtype().name());
    auto disable = m_param.disable->get_cast<int>();
M
Megvii Engine Team 已提交
910 911 912 913 914 915 916 917 918 919
    if (disable == 1)
        return;
    mgb_assert(
            disable == 0,
            "disable flag on AddUpdate can only be 0 or 1,"
            " got %d actually.",
            disable);

    auto&& dest = output(0)->dev_tensor();
    auto&& delta_nobrd = input(1)->dev_tensor();
920 921 922 923 924
    auto delta = delta_nobrd.sub(SubTensorSpec::make_from_offset_elem(
            delta_nobrd.layout().broadcast(dest.shape()), 0));
    mgb_assert(input(0)->dev_tensor().raw_ptr() == dest.raw_ptr());
    auto beta = m_param.beta->get_cast<float>();
    if (!m_param.alpha->get_cast<bool>() && beta == 1 &&
M
Megvii Engine Team 已提交
925
        !m_param.bias->get_cast<bool>()) {
926 927 928 929
        dest.copy_from_fixlayout(delta);
    } else {
        auto opr = static_cast<megdnn::AddUpdate*>(megdnn_opr());
        opr->param() = {
M
Megvii Engine Team 已提交
930 931
                m_param.alpha->get_cast<float>(), beta,
                m_param.bias->get_cast<float>()};
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
        opr->exec(dest.as_megdnn(), delta.as_megdnn());
    }
}

void AddUpdate::init_output_static_infer_desc() {
    using namespace cg::static_infer;

    owner_graph()->static_infer_manager().register_shape_infer(
            output(0), ShapeInferDesc::make_identity(input(0)));
}

void AddUpdate::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
}

947
#if MGB_ENABLE_GRAD
948 949 950 951
MGB_IMPL_OPR_GRAD(AddUpdate) {
    // actually valid, just not implemented
    return InvalidGrad::make(opr, wrt_idx);
}
952
#endif
953

954 955 956 957 958
/* =========================== Reduce =========================== */

class Reduce::KernScheduler {
    class ValueDep final : public ExecDependency {
        DeviceTensorStorage m_val;
M
Megvii Engine Team 已提交
959

960 961 962 963
    public:
        explicit ValueDep(DeviceTensorStorage val) : m_val(std::move(val)) {}
    };

M
Megvii Engine Team 已提交
964 965 966 967 968
public:
    bool has_actual_computing() const {
        mgb_assert(m_shape_computed);
        return !m_kern_param.empty() || m_apply_side_effect;
    }
969

M
Megvii Engine Team 已提交
970
    size_t workspace_size() const { return m_workspace_spec[2].end(); }
971

M
Megvii Engine Team 已提交
972
    bool shape_computed() const { return m_shape_computed; }
973

M
Megvii Engine Team 已提交
974 975 976 977
    //! init shapes in kern param
    void init_shapes(
            megdnn::Reduce* opr, CompNode comp_node, DType dtype, Mode mode,
            TensorShape ishp, TensorShape oshp, const Param::DataType data_type);
978

M
Megvii Engine Team 已提交
979 980
    void setup_kern_params_layout_and_mode(
            Mode mode, DType inp_dtype, TensorShape& inp_shp, const Param::DataType);
981

M
Megvii Engine Team 已提交
982 983 984
    void check_shapes(const TensorShape& ishp, const TensorShape& oshp) {
        mgb_assert(m_prev_ishp.eq_shape(ishp) && m_prev_oshp.eq_shape(oshp));
    }
985

M
Megvii Engine Team 已提交
986 987 988 989
    //! update pointers in kern param; the tensors must have been allocated
    void update_ptr(
            const DeviceTensorND& input, const DeviceTensorND& dest,
            const DeviceTensorND& workspace);
990

M
Megvii Engine Team 已提交
991 992 993
    void execute(
            megdnn::Reduce* opr, const DeviceTensorND& input,
            const DeviceTensorND& dest);
994

M
Megvii Engine Team 已提交
995 996 997 998 999 1000
    void record_execute_deps(ExecDependencyArray& deps) {
        if (m_elemwise_trans_opr) {
            deps.emplace_back(std::make_unique<intl::MegDNNGraphDep>(
                    std::move(m_elemwise_trans_opr)));
        }
        if (m_typecvt_opr) {
1001
            deps.emplace_back(
M
Megvii Engine Team 已提交
1002
                    std::make_unique<intl::MegDNNGraphDep>(std::move(m_typecvt_opr)));
1003
        }
M
Megvii Engine Team 已提交
1004 1005
        deps.emplace_back(std::make_unique<ValueDep>(m_side_affect_wkspc.storage()));
    }
1006

M
Megvii Engine Team 已提交
1007 1008 1009
private:
    struct KernParam {
        megdnn::TensorND input, output;
1010

M
Megvii Engine Team 已提交
1011 1012
        //! param passed to megdnn
        megdnn::param::Reduce kparam;
1013

M
Megvii Engine Team 已提交
1014
        megdnn::Workspace workspace;
1015

M
Megvii Engine Team 已提交
1016 1017
        KernParam(Mode mode, int32_t ra) : kparam{mode, ra} {}
    };
1018

M
Megvii Engine Team 已提交
1019 1020 1021 1022
    struct SubWorkspace {
        size_t size, offset;
        size_t end() const { return size + offset; }
    };
1023

M
Megvii Engine Team 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    void update_kparam_for_elemwise_side_effect(
            CompNode comp_node, Mode mode, const Param::DataType data_type);

    bool m_shape_computed = false;
    std::vector<KernParam> m_kern_param;
    TensorShape m_prev_ishp, m_prev_oshp;
    SubWorkspace m_workspace_spec[3];  //! tmp output[2], kern workspce

    /*!
     * some reduce mode (like SUM_SQR) has side effect of element-wise
     * trans. If this is the case and there is no kernel param,
     * m_apply_side_effect would be non-null
     */
    thin_function<void(const DeviceTensorND& in, const DeviceTensorND& out)>
1038
            m_apply_side_effect;
M
Megvii Engine Team 已提交
1039 1040 1041 1042
    std::unique_ptr<megdnn::Elemwise> m_elemwise_trans_opr;
    std::unique_ptr<megdnn::TypeCvt> m_typecvt_opr;
    std::unique_ptr<megdnn::Fill> m_fill_opr;
    DeviceTensorND m_side_affect_wkspc;
1043 1044
};

M
Megvii Engine Team 已提交
1045 1046
void Reduce::KernScheduler::setup_kern_params_layout_and_mode(
        Mode mode, DType inp_dtype, TensorShape& ishp,
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        const Param::DataType data_type) {
    auto prev_dtype = inp_dtype;
    for (size_t idx = 0; idx < m_kern_param.size(); ++idx) {
        auto&& i = m_kern_param[idx];

#if !MEGDNN_DISABLE_FLOAT16
        if (idx == 0 && data_type == Param::DataType::FLOAT_O32xC32) {
            i.input.layout.dtype = inp_dtype;
            i.output.layout.dtype = dtype::Float32();
            i.kparam.data_type = data_type;
        } else if (data_type == Param::DataType::FLOAT_O16xC32) {
            i.input.layout.dtype = prev_dtype;
            if (idx + 1 == m_kern_param.size()) {
                i.output.layout.dtype = dtype::Float16();
                i.kparam.data_type = data_type;
M
Megvii Engine Team 已提交
1062
            } else {
1063 1064 1065 1066 1067 1068
                i.output.layout.dtype = dtype::Float32();
                i.kparam.data_type = Param::DataType::FLOAT_O32xC32;
            }
        } else
#endif
        {
M
Megvii Engine Team 已提交
1069 1070 1071
            mgb_assert(
                    data_type == Param::DataType::DEFAULT ||
                    (data_type == Param::DataType::FLOAT_O32xC32 && idx));
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            i.input.layout.dtype = prev_dtype;
            i.output.layout.dtype = prev_dtype;
            i.kparam.data_type = Param::DataType::DEFAULT;
        }
        prev_dtype = i.output.layout.dtype;

        i.input.layout.init_contiguous_stride(ishp);
        ishp.shape[i.kparam.axis] = 1;
        i.output.layout.init_contiguous_stride(ishp);
    }
    if (mode == Mode::SUM_SQR) {
M
Megvii Engine Team 已提交
1083
        for (size_t i = 1; i < m_kern_param.size(); ++i)
1084 1085 1086 1087 1088
            m_kern_param[i].kparam.mode = Mode::SUM;
    }
}

void Reduce::KernScheduler::init_shapes(
M
Megvii Engine Team 已提交
1089
        megdnn::Reduce* opr, CompNode comp_node, DType inp_dtype, Mode mode,
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        TensorShape ishp, TensorShape oshp, const Param::DataType data_type) {
    mgb_assert(ishp.ndim && oshp.ndim);

    if (ishp.eq_shape(m_prev_ishp) && oshp.eq_shape(m_prev_oshp))
        return;

    m_prev_ishp = ishp;
    m_prev_oshp = oshp;

    m_kern_param.clear();

    if (oshp.is_scalar()) {
        // if ishp is non-contiguous, add_layout_constraint_contiguous would be
        // added; so we do not have to worry about this
        ishp.shape[0] = ishp.total_nr_elems();
        ishp.ndim = 1;
    }

M
Megvii Engine Team 已提交
1108 1109
    mgb_assert(
            oshp.ndim == ishp.ndim,
1110 1111 1112
            "input and output ndim mismatch for reduction: ishp=%s oshp=%s",
            ishp.to_string().c_str(), oshp.to_string().c_str());

M
Megvii Engine Team 已提交
1113
    for (size_t i = 0; i < ishp.ndim; ++i) {
1114
        if (ishp.shape[i] != oshp.shape[i]) {
M
Megvii Engine Team 已提交
1115 1116
            mgb_assert(
                    oshp.shape[i] == 1,
1117 1118 1119 1120 1121 1122
                    "input and output shape mismatch for reduction: "
                    "ishp=%s oshp=%s",
                    ishp.to_string().c_str(), oshp.to_string().c_str());
        }
    }

M
Megvii Engine Team 已提交
1123
    auto remove_axis = [](TensorShape& shp, size_t ax) {
1124
        mgb_assert(shp.ndim > 1);
M
Megvii Engine Team 已提交
1125
        for (auto i = ax + 1; i < shp.ndim; ++i)
1126
            shp.shape[i - 1] = shp.shape[i];
M
Megvii Engine Team 已提交
1127
        --shp.ndim;
1128 1129 1130
    };

    // collapse consecutive shape-1 axes in oshp
M
Megvii Engine Team 已提交
1131
    for (size_t i = 0; i < oshp.ndim; ++i) {
1132 1133
        auto start = i;
        while (i < oshp.ndim && oshp.shape[i] == 1)
M
Megvii Engine Team 已提交
1134
            ++i;
1135 1136

        if (start + 1 < i) {
M
Megvii Engine Team 已提交
1137
            for (auto j = start + 1; j < i; ++j)
1138 1139
                ishp.shape[start] *= ishp.shape[j];

M
Megvii Engine Team 已提交
1140
            for (auto j = start + 1; j < i; ++j) {
1141 1142 1143 1144 1145 1146 1147 1148
                remove_axis(ishp, start + 1);
                remove_axis(oshp, start + 1);
            }

            i = start;
        }
    }

M
Megvii Engine Team 已提交
1149
    for (uint32_t i = 0; i < ishp.ndim; ++i) {
1150 1151 1152 1153 1154 1155
        if (ishp.shape[i] != oshp.shape[i]) {
            mgb_assert(oshp.shape[i] == 1);
            m_kern_param.push_back({mode, static_cast<int32_t>(i)});
        }
    }
    // sort according to reduction size, so workspace can be smaller
M
Megvii Engine Team 已提交
1156 1157 1158
    small_sort(
            m_kern_param.begin(), m_kern_param.end(),
            [&](const KernParam& a, const KernParam& b) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
                return ishp.shape[a.kparam.axis] > ishp.shape[b.kparam.axis];
            });

    // init kparam input/output layout
    setup_kern_params_layout_and_mode(mode, inp_dtype, ishp, data_type);

    // init workspace size
    memset(m_workspace_spec, 0, sizeof(m_workspace_spec));

    for (auto&& i : m_kern_param) {
        opr->param() = i.kparam;
M
Megvii Engine Team 已提交
1170
        i.workspace.size = opr->get_workspace_in_bytes(i.input.layout, i.output.layout);
1171 1172 1173 1174 1175 1176
        update_max(m_workspace_spec[2].size, i.workspace.size);
    }

    mgb_assert(ishp.eq_shape(oshp));

    if (m_kern_param.size() >= 2) {
M
Megvii Engine Team 已提交
1177
        m_workspace_spec[0].size = m_kern_param[1].input.layout.span().high_byte;
1178 1179
    }
    if (m_kern_param.size() >= 3) {
M
Megvii Engine Team 已提交
1180
        m_workspace_spec[1].size = m_kern_param[2].input.layout.span().high_byte;
1181 1182 1183
    }

    auto align = comp_node.get_mem_addr_alignment();
M
Megvii Engine Team 已提交
1184 1185 1186
    for (int i = 0; i < 2; ++i) {
        m_workspace_spec[i + 1].offset =
                get_aligned_power2(m_workspace_spec[i].end(), align);
1187 1188 1189 1190 1191 1192 1193 1194
    }

    update_kparam_for_elemwise_side_effect(comp_node, mode, data_type);

    m_shape_computed = true;
}

void Reduce::KernScheduler::update_kparam_for_elemwise_side_effect(
M
Megvii Engine Team 已提交
1195
        CompNode comp_node, Mode mode, const Param::DataType data_type) {
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    m_apply_side_effect = nullptr;
    m_elemwise_trans_opr.reset();
    m_typecvt_opr.reset();
    if (!m_kern_param.empty()) {
        // no need to set m_apply_side_effect
        return;
    } /* else */
    // case A: input.layout == output.layout
    // case B: input.total_nr_elems == 1 and output is a scalar

    if (mode == Mode::SUM_SQR) {
M
Megvii Engine Team 已提交
1207 1208
        m_elemwise_trans_opr =
                intl::get_megdnn_handle(comp_node)->create_operator<megdnn::Elemwise>();
1209 1210 1211 1212
        m_elemwise_trans_opr->param() = {Elemwise::Mode::MUL};
    }
    if (data_type != Param::DataType::DEFAULT) {
        m_side_affect_wkspc = DeviceTensorND{comp_node, dtype::Float32()};
M
Megvii Engine Team 已提交
1213 1214
        m_typecvt_opr =
                intl::get_megdnn_handle(comp_node)->create_operator<megdnn::TypeCvt>();
1215 1216 1217 1218
    }
    if (!m_typecvt_opr && !m_elemwise_trans_opr)
        return;

M
Megvii Engine Team 已提交
1219
    m_apply_side_effect = [this](const DeviceTensorND& in, const DeviceTensorND& out) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        if (m_typecvt_opr) {
            m_side_affect_wkspc.resize(in.shape());
        }
        if (!m_elemwise_trans_opr) {
            mgb_assert(m_typecvt_opr);
            m_typecvt_opr->exec(in.as_megdnn(), out.as_megdnn());
            return;
        }
        auto im = in.as_megdnn();
        megdnn::TensorND wm;
        if (m_typecvt_opr && in.dtype() != m_side_affect_wkspc.dtype()) {
            m_side_affect_wkspc.resize(in.shape());
            wm = m_side_affect_wkspc.as_megdnn();
            m_typecvt_opr->exec(im, wm);
        } else {
            wm = im;
        }
        if (m_typecvt_opr && wm.layout.dtype != out.dtype()) {
            m_elemwise_trans_opr->exec({wm, wm}, wm);
            m_typecvt_opr->exec(wm, out.as_megdnn());
        } else {
M
Megvii Engine Team 已提交
1241
            auto&& wshp = wm.layout;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
            if (wshp.ndim != out.layout().ndim) {
                // to ensure that wkspc.ndim equals out.ndim in the case:
                // wkspc.shape=(1, 1, ..., 1) and out.shape=(1), otherwise it
                // may lead the 'TensorShape Dimension' assertion failed in
                // the following broadcast operator
                mgb_assert(wshp.total_nr_elems() == 1 && out.layout().ndim == 1);
                wshp.ndim = 1;
            }
            m_elemwise_trans_opr->exec({wm, wm}, out.as_megdnn());
        }
    };
}

void Reduce::KernScheduler::update_ptr(
M
Megvii Engine Team 已提交
1256 1257
        const DeviceTensorND& input, const DeviceTensorND& dest,
        const DeviceTensorND& workspace) {
1258 1259 1260 1261 1262
    auto dtype = dest.layout().dtype;
    mgb_assert(dtype.valid());
    mgb_assert(m_shape_computed);

    if (workspace_size()) {
M
Megvii Engine Team 已提交
1263 1264
        mgb_assert(
                workspace.layout().dtype == dtype::Byte() &&
1265 1266 1267 1268 1269 1270 1271
                workspace.layout().ndim == 1 &&
                workspace.shape()[0] >= workspace_size());
    }

    if (m_kern_param.empty())
        return;

M
Megvii Engine Team 已提交
1272 1273
    mgb_assert(
            input.layout().total_nr_elems() ==
1274
            m_kern_param[0].input.layout.total_nr_elems());
M
Megvii Engine Team 已提交
1275 1276
    mgb_assert(
            dest.shape().total_nr_elems() ==
1277
            m_kern_param.back().output.layout.total_nr_elems());
1278 1279 1280
    auto in_tensor = input.as_megdnn();
    in_tensor.layout = m_kern_param[0].input.layout;
    m_kern_param[0].input = in_tensor;
1281

M
Megvii Engine Team 已提交
1282 1283 1284 1285 1286 1287 1288 1289
    dt_byte *workspace_begin = workspace_size()
                                     ? const_cast<dt_byte*>(workspace.raw_ptr())
                                     : nullptr,
            *tmp_reduce_ptr[2] =
                    {workspace_begin + m_workspace_spec[0].offset,
                     workspace_begin + m_workspace_spec[1].offset},
            *kern_workspace = workspace_begin + m_workspace_spec[2].offset;
    for (size_t i = 0; i < m_kern_param.size() - 1; ++i) {
1290
        auto optr = tmp_reduce_ptr[i % 2];
1291 1292
        m_kern_param[i].output.reset_ptr(optr);
        m_kern_param[i + 1].input.reset_ptr(optr);
1293
    }
M
Megvii Engine Team 已提交
1294
    for (auto&& i : m_kern_param)
1295
        i.workspace.raw_ptr = kern_workspace;
1296 1297 1298
    auto out_tensor = dest.as_megdnn();
    out_tensor.layout = m_kern_param.back().output.layout;
    m_kern_param.back().output = out_tensor;
1299 1300 1301
}

void Reduce::KernScheduler::execute(
M
Megvii Engine Team 已提交
1302
        megdnn::Reduce* opr, const DeviceTensorND& input, const DeviceTensorND& dest) {
1303 1304 1305 1306 1307 1308 1309
    if (m_apply_side_effect) {
        mgb_assert(m_kern_param.empty());
        m_apply_side_effect(input, dest);
        return;
    }

    mgb_assert(!m_kern_param.empty());
1310 1311 1312 1313 1314

    // empty input
    if (input.shape_valid() && input.empty()) {
        auto mode = m_kern_param[0].kparam.mode;
        if (!m_fill_opr) {
M
Megvii Engine Team 已提交
1315 1316
            m_fill_opr = intl::get_megdnn_handle(dest.comp_node())
                                 ->create_operator<megdnn::Fill>();
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
        }
        std::string err_msg;
        switch (mode) {
            case Reduce::Mode::SUM:
                if (!dest.empty()) {
                    m_fill_opr->param() = 0;
                    m_fill_opr->exec(dest.as_megdnn(), {});
                }
                break;
            case Reduce::Mode::PRODUCT:
                if (!dest.empty()) {
                    m_fill_opr->param() = 1;
                    m_fill_opr->exec(dest.as_megdnn(), {});
                }
                break;
            case Reduce::Mode::MEAN:
M
Megvii Engine Team 已提交
1333 1334
                err_msg = "mean";
                break;
1335
            case Reduce::Mode::MIN:
M
Megvii Engine Team 已提交
1336 1337
                err_msg = "min";
                break;
1338
            case Reduce::Mode::MAX:
M
Megvii Engine Team 已提交
1339 1340
                err_msg = "max";
                break;
1341
            case Reduce::Mode::SUM_SQR:
M
Megvii Engine Team 已提交
1342 1343
                err_msg = "sum_sqr";
                break;
1344 1345 1346 1347 1348
            default:
                mgb_throw(MegBrainError, "bad reduce mode");
        }
        if (!err_msg.empty()) {
            mgb_throw(
M
Megvii Engine Team 已提交
1349 1350
                    MegBrainError, "empty input is not allowed for reduce mode: %s",
                    err_msg.c_str());
1351 1352 1353
        }
        return;
    }
M
Megvii Engine Team 已提交
1354 1355
    mgb_assert(
            input.layout().is_contiguous() &&
1356 1357
            input.raw_ptr() == m_kern_param[0].input.raw_ptr() &&
            dest.raw_ptr() == m_kern_param.back().output.raw_ptr());
M
Megvii Engine Team 已提交
1358
    for (auto&& i : m_kern_param) {
1359 1360 1361 1362 1363 1364 1365 1366 1367
        opr->param() = i.KernParam::kparam;
        opr->exec(i.input, i.output, i.workspace);
    }
}

class Reduce::OutTensorShapeExtender {
public:
    OutTensorShapeExtender(const TensorShape& ishp, const TensorShape& oshp)
            : m_oshp(oshp) {
M
Megvii Engine Team 已提交
1368 1369 1370 1371 1372 1373
        mgb_assert(
                oshp.ndim <= ishp.ndim,
                "output ndim should be less and equal than input ndim for "
                "reduction: "
                "ishp=%s oshp=%s",
                ishp.to_string().c_str(), oshp.to_string().c_str());
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        // Ex. ishp = (a, b, c, d), oshp = (c, d)
        if (!oshp.is_scalar() && ishp.ndim != oshp.ndim) {
            size_t ndim_diff = ishp.ndim - oshp.ndim;
            auto&& canonized_oshp = m_canonized_oshp_storage.emplace(oshp);
            for (size_t i = 0; i < ishp.ndim; ++i)
                if (i < ndim_diff)
                    canonized_oshp[i] = 1;
                else
                    canonized_oshp[i] = oshp[i - ndim_diff];
            canonized_oshp.ndim = ishp.ndim;
        }
    }

    const TensorShape& get() const {
        return m_canonized_oshp_storage.valid() ? m_canonized_oshp_storage.val()
                                                : m_oshp;
    }

private:
    Maybe<TensorShape> m_canonized_oshp_storage;
    const TensorShape& m_oshp;
};

MGB_DYN_TYPE_OBJ_FINAL_IMPL(Reduce);
M
Megvii Engine Team 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406
Reduce::Reduce(
        VarNode* inp, VarNode* target_shape, const Param& param,
        const OperatorNodeConfig& config)
        : Super{inp->owner_graph(),
                config,
                ssprintf("reduce%d", static_cast<int>(param.mode)),
                {inp}},
          m_param{param},
          m_kern_scheduler{std::make_unique<KernScheduler>()} {
1407 1408 1409 1410
    add_input({inp});

    if (inp->dtype().enumv() == DTypeEnum::Quantized8Asymm &&
        inp->dtype().category() == DTypeCategory::QUANTIZED) {
M
Megvii Engine Team 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419
        mgb_assert(
                param.mode != Param::Mode::PRODUCT,
                "Reduce does not support PRODUCT mode on quantized input");
        mgb_assert(
                param.mode != Param::Mode::SUM_SQR,
                "Reduce does not support SUM_SQR mode on quantized input");
        mgb_assert(
                param.mode != Param::Mode::SUM,
                "Reduce does not support SUM mode on quantized input");
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    }

    DType out_dtype;
    switch (param.data_type) {
        case Param::DataType::DEFAULT:
            out_dtype = inp->dtype();
            break;
#if !MEGDNN_DISABLE_FLOAT16
        case Param::DataType::FLOAT_O16xC32:
            out_dtype = dtype::Float16();
            break;
        case Param::DataType::FLOAT_IO16xC32:
            mgb_assert(false);
#endif
        case Param::DataType::FLOAT_O32xC32:
            out_dtype = dtype::Float32();
            break;
        case Param::DataType::QUINT_I8xO32:
            out_dtype = dtype::QuantizedS32(
                    inp->dtype().param<dtype::Quantized8Asymm>().scale);
            break;
        case Param::DataType::QINT_I8xO32:
M
Megvii Engine Team 已提交
1442 1443
            out_dtype =
                    dtype::QuantizedS32(inp->dtype().param<dtype::QuantizedS8>().scale);
1444 1445
            break;
        default:
M
Megvii Engine Team 已提交
1446
            mgb_throw(GraphError, "invalid param data_type: %d", int(param.data_type));
1447
    }
M
Megvii Engine Team 已提交
1448
    add_output(None)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE).dtype(out_dtype);
1449 1450 1451 1452 1453
    cg::add_workspace_output(this);

    add_equivalence_component<PODHash<Param>>(&m_param);

    if (param.axis >= -MEGDNN_MAX_NDIM && param.axis < MEGDNN_MAX_NDIM) {
M
Megvii Engine Team 已提交
1454 1455
        mgb_throw_if(
                target_shape, GraphError,
1456 1457 1458
                "could not specify both axis and target shape");
        m_is_symtshp = false;
    } else {
M
Megvii Engine Team 已提交
1459 1460
        mgb_throw_if(
                !target_shape, GraphError, "neither axis or target_shape specified");
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
        add_input({target_shape});
        m_is_symtshp = true;

        outshape_by_symvar_enable(0, 1);
    }
}

Reduce::~Reduce() = default;

SymbolVar Reduce::make(
        SymbolVar src, Param param, SymbolVar target_shape,
M
Megvii Engine Team 已提交
1472
        const OperatorNodeConfig& config) {
1473
    if (param.data_type == Param::DataType::FLOAT_IO16xC32) {
M
Megvii Engine Team 已提交
1474 1475
        mgb_log_warn(
                "DataType FLOAT_IO16xC32 has been deprecated "
1476 1477 1478 1479
                "use FLOAT_O16xC32 instead");
        param.data_type = Param::DataType::FLOAT_O16xC32;
    }

M
Megvii Engine Team 已提交
1480
    if (param.mode == Mode::SUM && src.node()->owner_opr()->same_type<Elemwise>()) {
1481
        // replace sum(x^2) by sum_sqr(x)
M
Megvii Engine Team 已提交
1482
        auto&& opr = src.node()->owner_opr()->cast_final<Elemwise>();
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        if (opr.param().mode == Elemwise::Mode::POW) {
            mgb_assert(opr.input().size() == 2);
            auto pow = SymbolVar{opr.input(1)}.as_immutable_scalar();
            if (pow.valid() && pow->get_cast<float>() == 2) {
                src = opr.input(0);
                param.mode = Mode::SUM_SQR;
            }
        }
    }
    return src.insert_single_output_opr<Reduce>(
            src.node(), target_shape.node(), param, config);
}

void Reduce::outshape_by_symvar_do_get_output_shape(
M
Megvii Engine Team 已提交
1497
        TensorShape& dest, const ShapeInferInfo& shpinfo) {
1498 1499 1500 1501 1502
    cg::copy_tensor_value_to_shape(dest, *shpinfo.shpval_inp_val.at(0));
}

void Reduce::init_output_static_infer_desc() {
    using namespace cg::static_infer;
M
Megvii Engine Team 已提交
1503
    auto&& mgr = owner_graph()->static_infer_manager();
1504 1505 1506 1507 1508 1509 1510

    // infer output shape
    if (m_is_symtshp) {
        // reduce to target shape
        Super::init_output_static_infer_desc();
    } else {
        // reduce along axis
M
Megvii Engine Team 已提交
1511
        auto infer_shape = [this](TensorShape& dest, const InpVal& inp) {
1512
            dest = inp.val.at(0).shape();
M
Megvii Engine Team 已提交
1513 1514 1515 1516 1517
            mgb_assert(
                    m_param.axis < static_cast<int>(dest.ndim) &&
                            m_param.axis >= -static_cast<int>(dest.ndim),
                    "invalid axis for reduction: shape=%s axis=%d",
                    dest.to_string().c_str(), m_param.axis);
1518 1519 1520 1521 1522 1523 1524
            int real_axis = m_param.axis;
            if (real_axis < 0)
                real_axis += dest.ndim;
            dest.shape[real_axis] = 1;
            return true;
        };
        mgr.register_shape_infer(
M
Megvii Engine Team 已提交
1525 1526
                output(0),
                {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape});
1527 1528 1529
    }

    // infer workspace
M
Megvii Engine Team 已提交
1530
    auto infer_workspace = [this](TensorShape& dest, const InpVal& inp) {
1531 1532 1533 1534 1535
        init_kern_sched_shape(inp.val[0].shape(), inp.val[1].shape());
        dest.ndim = 1;
        dest.shape[0] = m_kern_scheduler->workspace_size();
        return true;
    };
M
Megvii Engine Team 已提交
1536 1537 1538 1539
    mgr.register_shape_infer(
            output(1), {SourceType::DEP,
                        {{input(0), DepType::SHAPE}, {output(0), DepType::SHAPE}},
                        infer_workspace});
1540 1541 1542 1543

    // infer value

    static StaticInferOpr<megdnn::Reduce> static_infer_opr;
M
Megvii Engine Team 已提交
1544
    auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
1545 1546
        DeviceTensorND workspace;
        auto sopr = static_infer_opr.lock();
M
Megvii Engine Team 已提交
1547 1548
        perform(m_param.mode, dest, workspace, inp.val[0].value(), output(0)->dtype(),
                inp.val.at(1).shape(), sopr(), m_param.data_type);
1549 1550 1551
        return true;
    };

M
Megvii Engine Team 已提交
1552 1553 1554 1555
    mgr.register_value_infer(
            output(0), {SourceType::DEP,
                        {{input(0), DepType::VALUE}, {output(0), DepType::SHAPE}},
                        infer_value});
1556 1557
}

M
Megvii Engine Team 已提交
1558
void Reduce::init_kern_sched_shape(const TensorShape& ishp, const TensorShape& oshp) {
1559 1560
    OutTensorShapeExtender extender(ishp, oshp);
    auto&& canonized_oshp = extender.get();
M
Megvii Engine Team 已提交
1561 1562 1563
    m_kern_scheduler->init_shapes(
            static_cast<megdnn::Reduce*>(megdnn_opr()), comp_node(), input(0)->dtype(),
            m_param.mode, ishp, canonized_oshp, m_param.data_type);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
}

cg::OperatorNodeBase::OprEventCallback Reduce::get_opr_event_callback() {
    auto on_mem_status_changed = [this]() {
        auto&& ishp = input(0)->shape();
        auto&& oshp = output(0)->shape();
        OutTensorShapeExtender extender(ishp, oshp);
        auto&& canonized_oshp = extender.get();
        m_kern_scheduler->check_shapes(input(0)->shape(), canonized_oshp);
        m_kern_scheduler->update_ptr(
                input(0)->dev_tensor(), output(0)->dev_tensor(),
M
Megvii Engine Team 已提交
1575
                output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
    };
    return {on_mem_status_changed};
}

void Reduce::mem_plan_fwd_in2out_readonly() {
    init_kern_sched_shape(input(0)->shape(), output(0)->shape());

    if (!m_kern_scheduler->has_actual_computing()) {
        // forward memory if no actual computing needed

        if (!output(0)->mem_plan().valid()) {
            // output(0) is dynamic but current is staic alloc phase (for
            // workspace)
            return;
        }
        auto&& ily = input(0)->layout();
        auto&& oly = output(0)->layout();
        const TensorLayout* fwd_spec = nullptr;
        Maybe<TensorLayout> ily_modified_storage;

        if (!ily.eq_shape(oly)) {
            auto&& ily_modified = ily_modified_storage.emplace(ily);
            mgb_assert(ily.ndim > oly.ndim);
            for (size_t i = 0; i < ily.ndim - oly.ndim; ++i)
                mgb_assert(ily.shape[i] == 1);
            ily_modified = ily_modified.reshape(oly);
            fwd_spec = &ily_modified;
        } else {
            fwd_spec = &ily;
        }
        m_mem_fwd_success = output(0)->set_fwd_in2out_readonly(
                input(0), SubTensorSpec::make_from_layout(*fwd_spec));
    }
}

void Reduce::add_input_layout_constraint() {
    if (!cg::is_static_var_shape(output(0))) {
        // output shape can not be inferred; require contiguous to be safe
        input(0)->add_layout_constraint_contiguous();
    } else {
M
Megvii Engine Team 已提交
1616 1617
        auto check = [this](const TensorLayout& ily) {
            auto&& mgr = owner_graph()->static_infer_manager();
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
            auto oshp = mgr.infer_shape(output(0));
            init_kern_sched_shape(ily, oshp);
            if (m_kern_scheduler->has_actual_computing())
                return ily.is_contiguous();
            return true;
        };
        input(0)->add_layout_constraint(check);
    }
}

void Reduce::scn_do_execute() {
    auto&& inp = input(0)->dev_tensor();
    auto&& out = output(0)->dev_tensor();
    auto&& ishp = input(0)->shape();
    auto&& oshp = output(0)->shape();
    const DeviceTensorND* out_ptr;
    Maybe<DeviceTensorND> canonized_storage;
    OutTensorShapeExtender extender(ishp, oshp);
    auto&& canonized_oshp = extender.get();
    if (canonized_oshp.ndim != out.shape().ndim) {
        auto&& canonized_out = canonized_storage.emplace(out);
        canonized_out.reset(
                canonized_out.storage(),
                canonized_out.layout().reshape(canonized_oshp));
        out_ptr = &canonized_out;
    } else {
        out_ptr = &out;
    }
    // shape initialized either in deducing workspace,
    // mem_plan_fwd_in2out_readonly, or check input layout
    m_kern_scheduler->check_shapes(inp.shape(), out_ptr->shape());

    if (m_kern_scheduler->has_actual_computing()) {
1651 1652 1653
        m_kern_scheduler->update_ptr(
                inp, *out_ptr,
                output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
M
Megvii Engine Team 已提交
1654 1655
        m_kern_scheduler->execute(
                static_cast<megdnn::Reduce*>(megdnn_opr()), inp, *out_ptr);
1656 1657 1658
    } else {
        // no reduction needed, just forward
        if (m_mem_fwd_success) {
M
Megvii Engine Team 已提交
1659 1660 1661 1662
            mgb_assert(
                    inp.raw_ptr() == out_ptr->raw_ptr() &&
                    out_ptr->layout().total_nr_elems() ==
                            inp.layout().total_nr_elems());
1663 1664
        } else {
            if (!out_ptr->shape().eq_shape(inp.shape())) {
M
Megvii Engine Team 已提交
1665 1666 1667
                mgb_assert(
                        out_ptr->shape().is_scalar() &&
                        inp.shape().total_nr_elems() == 1);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
                out_ptr->sub(SubTensorSpec::make_from_layout(inp.layout()))
                        .copy_from_fixlayout(inp);
            } else {
                out_ptr->copy_from_fixlayout(inp);
            }
        }
    }
}

void Reduce::perform(
M
Megvii Engine Team 已提交
1678 1679 1680 1681 1682 1683
        Mode mode, DeviceTensorND& dest, DeviceTensorND& workspace,
        const DeviceTensorND& input, const DType& target_dtype,
        const TensorShape& target_shape, intl::UniqPtrWithCN<megdnn::Reduce>& opr,
        const Param::DataType data_type) {
    mgb_assert(
            !dest.storage().comp_node_valid() || opr.comp_node() == dest.comp_node());
1684
    KernScheduler ksched;
1685 1686
    OutTensorShapeExtender extender(input.shape(), target_shape);
    auto&& canonized_oshp = extender.get();
M
Megvii Engine Team 已提交
1687 1688 1689
    ksched.init_shapes(
            opr.get(), opr.comp_node(), input.layout().dtype, mode, input.shape(),
            canonized_oshp, data_type);
1690 1691

    if (!ksched.has_actual_computing()) {
M
Megvii Engine Team 已提交
1692
        mgb_assert(target_shape.total_nr_elems() == input.layout().total_nr_elems());
1693 1694 1695 1696 1697
        dest.copy_from(input);
        dest.reset(dest.storage(), {target_shape, dest.dtype()});
        return;
    }

M
Megvii Engine Team 已提交
1698
    workspace.comp_node(opr.comp_node()).dtype(dtype::Byte());
1699 1700
    size_t workspace_size = ksched.workspace_size();
    DeviceTensorND input_contig_storage;
M
Megvii Engine Team 已提交
1701
    const DeviceTensorND* input_contig = &input;
1702 1703 1704
    if (!input.layout().is_contiguous()) {
        auto offset = get_aligned_power2(
                workspace_size, opr.comp_node().get_mem_addr_alignment());
M
Megvii Engine Team 已提交
1705
        workspace_size = offset + input.dtype().size(input.shape().total_nr_elems());
1706 1707

        workspace.resize({workspace_size});
M
Megvii Engine Team 已提交
1708 1709 1710
        input_contig_storage
                .reset(workspace.storage().sub(offset), {input.shape(), input.dtype()})
                .copy_from(input);
1711 1712 1713 1714 1715 1716
        input_contig = &input_contig_storage;
    } else {
        workspace.resize({workspace_size});
    }

    opr.comp_node().activate();
1717
    dest.comp_node(opr.comp_node()).dtype(target_dtype).resize(target_shape);
1718 1719 1720 1721
    ksched.update_ptr(*input_contig, dest, workspace);
    ksched.execute(opr.get(), *input_contig, dest);
}

1722 1723
Reduce::NodeProp* Reduce::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
M
Megvii Engine Team 已提交
1724
    ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
1725 1726 1727
    return ret;
}

1728
void Reduce::create_megdnn_opr() {
M
Megvii Engine Team 已提交
1729 1730
    set_megdnn_opr(
            intl::get_megdnn_handle(comp_node())->create_operator<megdnn::Reduce>());
1731 1732
}

1733
#if MGB_ENABLE_GRAD
1734
MGB_IMPL_OPR_GRAD(Reduce) {
M
Megvii Engine Team 已提交
1735
    for (size_t i = 1; i < opr.output().size(); ++i)
1736
        mgb_assert(!out_grad[i]);
1737
    if (wrt_idx || opr.input(0)->dtype().category() != DTypeCategory::FLOAT)
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
        return InvalidGrad::make(opr, wrt_idx);
    SymbolVar og{out_grad[0]}, iv{opr.input(0)}, ov{opr.output(0)};
    constexpr auto cmv = Elemwise::Mode::COND_LEQ_MOV;
    using Mode = Reduce::Mode;
    SymbolVar grad = [&]() {
        switch (opr.param().mode) {
            case Mode::SUM:
                return Broadcast::make(og, GetVarShape::make(iv));
            case Mode::SUM_SQR:
                return (og * og.make_scalar_dt(2) * iv);
            case Mode::PRODUCT:
                return ((og * ov) / iv);
            case Mode::MIN:
                return Elemwise::make({iv, ov, og}, cmv);
            case Mode::MAX:
                return Elemwise::make({ov, iv, og}, cmv);
            case Mode::MEAN: {
                auto og_shape = opr::GetVarShape::make(og),
M
Megvii Engine Team 已提交
1756 1757 1758 1759
                     iv_shape = opr::GetVarShape::make(iv),
                     scale =
                             div(opr::reduce_prod(og_shape, og_shape.make_scalar(1)),
                                 opr::reduce_prod(iv_shape, iv_shape.make_scalar(1)));
1760 1761 1762 1763 1764 1765 1766 1767 1768
                return scale * Broadcast::make(og, GetVarShape::make(iv));
            }
            default:
                mgb_throw(MegBrainError, "bad reduce mode");
        }
    }();
    grad = TypeCvt::make(grad, iv.dtype());
    return grad.node();
}
1769
#endif
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

void Reduce::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
    m_kern_scheduler->record_execute_deps(deps);
}

/* =========================== PowC =========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(PowC);

M
Megvii Engine Team 已提交
1780 1781 1782
PowC::PowC(VarNode* i0, const Param& param, const OperatorNodeConfig& config)
        : Super(OperatorNodeBaseCtorParam{
                  i0->owner_graph(), config, ssprintf("powc_%g", param.exp), {i0}}) {
1783 1784 1785 1786 1787
    init_megdnn_opr(*this, param);
    add_input({i0});
    output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    intl::MegDNNOprInitPostCtor<PowC>::apply(*this);
}
1788

M
Megvii Engine Team 已提交
1789 1790
SymbolVar PowC::make(
        SymbolVar x, const Param& param, const OperatorNodeConfig& config) {
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
    if (almost_equal(param.exp, 1.f)) {
        return x;
    }
    if (almost_equal(param.exp, 0.f)) {
        return x.make_scalar_dt(1).broadcast(x.symshape());
    }
    return x.insert_single_output_opr<PowC>(x.node(), param, config);
}

void PowC::add_input_layout_constraint() {
    input(0)->add_layout_constraint_monotone();
}

void PowC::mem_plan_fwd_in2out_writable() {
    output(0)->set_fwd_in2out_writable(input(0));
}

void PowC::init_output_static_infer_desc() {
    Super::init_output_static_infer_desc();
    static StaticInferOpr<megdnn::PowC> static_infer_opr;
    using namespace cg::static_infer;

    auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
        auto infer_opr_lock = static_infer_opr.lock();
        auto&& infer_opr = infer_opr_lock();
        infer_opr->param() = this->param();
        auto&& ival = inp.val[0].value().as_megdnn();
        infer_opr->exec(ival, dest.resize(ival.layout).as_megdnn());
        return true;
    };
    owner_graph()->static_infer_manager().register_value_infer(
M
Megvii Engine Team 已提交
1822
            output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
void PowC::scn_do_execute() {
    if (input(0)->dev_tensor().empty()) {
        mgb_assert(output(0)->dev_tensor().empty());
        return;
    }
    mgb_assert(!output(0)->dev_tensor().empty());
    Super::scn_do_execute();
}

PowC::NodeProp* PowC::do_make_node_prop() const {
    auto ret = Super::do_make_node_prop();
M
Megvii Engine Team 已提交
1836
    ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
1837 1838 1839
    return ret;
}

1840
#if MGB_ENABLE_GRAD
1841 1842 1843 1844 1845 1846
MGB_IMPL_OPR_GRAD(PowC) {
    auto exp = opr.param().exp;
    return (exp * SymbolVar{out_grad[0]} *
            PowC::make(opr.input(0), exp - 1, opr.config()))
            .node();
}
1847
#endif
1848 1849

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}