opr_param_defs.py 42.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
pdef('Empty')

pdef('Axis').add_fields('int32', 'axis', 0)

(pdef('Convolution', version=0, is_legacy=True).
 add_enum('Mode', 'CROSS_CORRELATION', 'CONVOLUTION').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1
 ).
 add_enum('DataType',
          Doc('FLOAT', 'input/output both float32/float16'),
          'INT8x8x16',
          'INT8x8x32',
          Doc('FLOAT_IO16xC32', 'input/output both float16, the internal '
              'compute is float32'),
          Doc('QUINT8x8x32', 'input QuantizedAsymm8, output QuantizedS32'),
          Doc('INT8x8xX', 'input int8, output specified by tensor DType'),
          Doc('QUINT4x4x32', 'input QuantizedAsymm4, output QuantizedS32'),
          name_field='data_type').
 add_enum('Sparse',
          Doc('DENSE', 'dense convolution: filter shape should be '
              '[oc, ic, spatial...] if format is NCHW, '
              '[oc, spatial..., ic] if format is NHWC'),
          Doc('GROUP', 'group convolution: filter shape should be '
              '[group, oc_per_group, ic_per_group, spatial...] if format is NCHW, '
              '[group, oc_per_group, spatial..., ic_per_group] if format is NHWC')
          ).
 add_enum(Doc('Format', 'convolution data/filter/output format; see '
              ':class:`RelayoutFormat` for more details'),
38 39
          'NCHW', 'NHWC', 'NHWCD4', 'NCHW4', 'NCHW8', 'NCHW32', 'NCHW88',
          'NCHW44','NCHW44_DOT',
40 41
          Doc('NCHW_WINOGRAD', 'NCHW layout with weights tranformed by winograd'),
          Doc('NCHW88_WINOGRAD', 'NCHW88 layout with weights tranformed by winograd'),
42 43 44 45
          Doc('NCHW44_WINOGRAD', 'NCHW44 layout with weights tranformed by winograd'), 
          Doc('NCHW4_NCHW32', 'NCHW4_NCHW32 means input tensors are nchw4 layout, output tensor is nchw32 layout'), 
          Doc('NCHW32_NCHW4', 'NCHW32_NCHW4 means input tensors are nchw32 layout, output tensor is nchw4 layout'), 
          Doc('NCHW4_NCHW', 'NCHW4_NCHW means input tensors are nchw4 layout, output tensor is nchw layout'), 
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
          Doc('CHWN4', 'CHWN4 is currently only used on Nvidia platform for fast implementation '
              'of convolution using CUDA/SASS. The channels are splitted to groups of 4 channels.'))
 )

(pdef('Convolution', version=1).
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_enum(Doc('ComputeMode', 'Specifies special computation modes, e.g. '
                             'different combinations of intermediate result '
                             'data types.'),
          Doc('DEFAULT', 'No special requirements on the precision of '
                         'intermediate results.'),
          Doc('FLOAT32', 'Use Float32 accumulator and intermediate result. '
                         'Only supported when input and output is Float16.'),
          name_field='compute_mode')
 )

(pdef('MaskPropagate').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('kernel_h', 'kernel height'), 1,
     Doc('kernel_w', 'kernel width'), 1,
     Doc('dilate_h', 'dilate height'), 1,
     Doc('dilate_w', 'dilate width'), 1)
 )

(pdef('ConvPooling').
 add_enum('Method', 'WITH_TEXTURE_OBJ', 'WITH_SHARED_MEM').
 add_enum_alias('ConvMode', 'ConvolutionV0', 'Mode').
 add_enum('PoolMode', 'AVERAGE', 'MAX').
 add_enum('NonlineMode', 'IDENTITY', 'RELU', 'SIGMOID').
 add_fields('uint32', 'pool_shape_h', 1, 'pool_shape_w', 1, 'pool_stride_h', 1, 'pool_stride_w', 1, \
  'pool_pad_h', 0, 'pool_pad_w', 0, 'conv_stride_h', 1, 'conv_stride_w', 1, 'conv_pad_h', 0, 'conv_pad_w', 0))

(pdef('ConvBias', 'legacy conv_bias', version=0, is_legacy=True).
 add_enum('NonlineMode', 'IDENTITY', 'RELU', 'SIGMOID', 'H_SWISH').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1))

(pdef('ConvBias', 'active(conv(x, w) + bias)', version=1, is_legacy=True).
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_enum_alias('DataType', 'ConvolutionV0', name_field='data_type').
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1)
 )

(pdef('ConvBias', 'active(conv(x, w) + bias)', version=2, is_legacy=True).
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1).
 add_enum_alias('ComputeMode', 'Convolution', name_field='compute_mode')
 )

(pdef('ConvBias', 'active(conv(x, w) + bias)', version=3).
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('output_block_size', 'detail meaning \see winograd in conv bias'), 0).
 add_enum_alias('ComputeMode', 'Convolution', name_field='compute_mode')
 )

(pdef('SeparableConv').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_enum('BorderMode', 'BORDER_REPLICATE', 'BORDER_REFLECT',
          'BORDER_REFLECT_101','BORDER_WRAP',
          'BORDER_CONSTANT', 'BORDER_TRANSPARENT','BORDER_ISOLATED').
 add_fields('bool', 'is_symm_kernel', 'true').
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1,
            'ksize_h', 3, 'ksize_w', 3, 'anchor_h', 1, 'anchor_w', 1))

(pdef('Images2Neibs').
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1,
            'window_h', 3, 'window_w', 3))

(pdef('Pooling').
 add_enum(
     'Mode',
     Doc('MAX', 'maximum value inside pooling window'),
     Doc('AVERAGE',
         'arithmetic mean of all values inside pooling window. Padding values '
         'are taken into account and are viewed as zero'),
     Doc('AVERAGE_COUNT_EXCLUDE_PADDING',
         'arithmetic mean of all values inside pooling window. No padding is'
         'used.')
 ).
 add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 2, 'stride_w', 2,
            'window_h', 2, 'window_w', 2).
 add_enum_alias('Format', 'ConvolutionV0')
 )

185 186 187 188 189
(pdef('AdaptivePooling').
 add_enum_alias('Mode', 'Pooling').
 add_enum_alias('Format', 'ConvolutionV0')
 )

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
(pdef('LRN',
      'see ImageNet Classification with Deep Convolutional Neural Networks for'
      ' meaning of the fields').
 add_fields('uint32', Doc('n', 'must be odd'), 5).
 add_fields('float32', 'k', '2.f', 'alpha', '1e-4f', 'beta', '0.75f')
)

(pdef('BN').
 add_enum(
     'ParamDim',
     Doc('DIM_11HW', 'Dim of params (Sigma, Mu) is 1 x 1 x H x W'),
     Doc('DIM_1CHW', 'Dim of params (Sigma, Mu) is 1 x C x H x W'),
     Doc('DIM_1C11', 'Dim of params (Sigma, Mu) is 1 x C x 1 x 1'),
     name_field='param_dim'
 ).
 add_enum(
     'FwdMode',
     Doc('TRAINING', 'Training phase.'),
     Doc('INFERENCE', 'Inference phase.'),
     name_field='fwd_mode'
 ).
 add_fields('float64', 'epsilon', '1e-4f').
 add_fields('float64', 'avg_factor', '1.f').
 add_fields('float32', 'scale', '1.f').
 add_fields('float32', 'bias', '0.f')
)

(pdef('ROIPooling').
 add_enum(
     'Mode',
     Doc('MAX', 'maximum value inside pooling window; pooling result would '
         'be 0 if pooling window is empty'),
     Doc('AVERAGE',
         'arithmetic mean of all values inside pooling window; pooling result '
         'would be 0 if pooling window is empty')
 ).
 add_fields('float32', 'scale', '1.f'))

INTERP_MODES = ['NEAREST', 'LINEAR', 'AREA', 'CUBIC', 'LANCZOS4']
BORDER_MODES = [Doc('REPLICATE', 'aaaaaa|abcdefgh|hhhhhhh'),
                Doc('REFLECT', 'fedcba|abcdefgh|hgfedcb'),
                Doc('REFLECT_101', 'gfedcb|abcdefgh|gfedcba'),
                Doc('WRAP', 'cdefgh|abcdefgh|abcdefg'),
                Doc('CONSTANT', 'iiiiii|abcdefgh|iiiiiii'),
                Doc('TRANSPARENT', ''),
                Doc('ISOLATED', '')]
(pdef('WarpPerspective', version=1).
 add_enum('InterpolationMode', *INTERP_MODES,
          name_field='imode', default=1,
          member_alias=[(i, 'INTER_{}'.format(i)) for i in INTERP_MODES]
          ).
 add_enum('BorderMode', *BORDER_MODES,
          name_field='bmode',
          member_alias=[(i, 'BORDER_{}'.format(i)) for i in BORDER_MODES]
          ).
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f'))

pdef('SpatialTfGridGenerator').add_enum('Mode', 'AFFINE')
pdef('SpatialTfSampler').add_enum('Mode', 'BILINEAR')

pdef('AddUpdate').add_fields(
    'float32', 'alpha', '1.f', 'beta', '1.f', 'bias', '0.f')

pdef('Elemwise').add_enum(
    'Mode',
    Doc('RELU', 'unary: max(x, 0)'),
    Doc('ABS', 'unary: abs(x)'),
    Doc('ACOS', 'unary: acos(x)'),
    Doc('ASIN', 'unary: asin(x)'),
    Doc('CEIL', 'unary: ceil(x)'),
    Doc('COS', 'unary: cos(x)'),
    Doc('EXP', 'unary: exp(x)'),
    Doc('EXPM1', 'unary: numerically stable exp(x)-1'),
    Doc('FLOOR', 'unary: floor(x)'),
    Doc('LOG', 'unary: natural logarithm, log(x)'),
    Doc('LOG1P', 'unary: numerically stable log(x+1)'),
    Doc('NEGATE', 'unary: -x'),
    Doc('SIGMOID', 'unary: 1/(1+exp(-x))'),
    Doc('SIN', 'unary: sin(x)'),
    Doc('TANH', 'unary: tanh(x)'),

    Doc('ABS_GRAD', 'binary: x > 0 ? y : -y'),
    Doc('ADD', 'binary: x + y'),
    Doc('FLOOR_DIV', 'binary: floor(x / y)'),
    Doc('MAX', 'binary: max(x, y)'),
    Doc('MIN', 'binary: min(x, y)'),
    Doc('MOD', 'binary: x % y or fmodf(x, y)'),
    Doc('MUL', 'binary: x * y'),
    Doc('POW', 'binary: pow(x, y)'),
    Doc('SIGMOID_GRAD', 'binary: x * (1 - x) * y'),
    Doc('SUB', 'binary: x - y'),
    Doc('SWITCH_GT0', 'binary: (x > 0) * y'),
    Doc('TANH_GRAD', 'binary: (1 - x * x) * y'),
    Doc('TRUE_DIV', 'binary: x / y'),
    Doc('LOG_SUM_EXP', 'binary: numerically stable log(exp(x) + exp(y))'),

    Doc('LT', 'binary: x < y'),
    Doc('LEQ', 'binary: x <= y'),
    Doc('EQ', 'binary: x == y'),

    Doc('SHL', 'bitwise binary: x << y. '
        'Note that result is undefined if y < 0 or y >= bitwidth. Logical '
        'shift is performed for unsigned intergers, and arithmetic shift for '
        'signed ones.'),
    Doc('SHR', 'bitwise binary: x >> y; see SHL mode for more details'),

    Doc('COND_LEQ_MOV', 'ternary: x <= y ? z : 0'),
    Doc('FUSE_MUL_ADD3',
        'compute ``a * b + c`` where c must either have same layout as '
        'a or b, or be a scalar'),

    Doc('FUSE_MUL_ADD4',
        'compute ``a * A + b * B`` where a and b must have equal layout, '
        'and A and B must have equal layout. In the inputs ``b`` and ``B`` '
        'can be swapped'),

    Doc('FUSE_ADD_RELU', 'binary: max(x+y, 0)'),
    Doc('FUSE_ADD_SIGMOID', 'binary: 1/(1+exp(-(x+y)))'),
    Doc('FUSE_ADD_TANH', 'binary: tanh(x+y)'),
    Doc('FAST_TANH', 'unary: rational approximation of tanh(x)'),
    Doc('FAST_TANH_GRAD', 'binary: grad of the rational approximation of tanh(x)'),

    Doc('ROUND', 'unary: round(x), the nearest integer value to x, rounding '
                 'halfway cases away from zero. Float only.'),
    Doc('RMULH', 'binary: rounded higher l bits of x * y, where l is the bit '
                'length of x.'),

    Doc('ATAN2','binary: atan2(y,x)'),
    Doc('ERF', 'unary: erf(x)'),
    Doc('ERFINV', 'unary: inverse function of erf(x)'),
    Doc('ERFC', 'unary: erfc(x)'),
    Doc('ERFCINV', 'unary: inverse function of erfc(x)'),
    Doc('H_SWISH', 'unary: x * clip(x + 3, 0, 6) / 6'),
    Doc('H_SWISH_GRAD', 'binary: x < -3 ? 0 : (x > 3 ? y : (2 * x + 3) / 6 * y)'),
M
Megvii Engine Team 已提交
325 326 327 328 329 330
    Doc('FUSE_ADD_H_SWISH', 'binary: hswish(x+y)'),

    Doc('NOT', 'unary: !x'),
    Doc('AND', 'binary: x && y'),
    Doc('OR', 'binary: x || y'),
    Doc('XOR', 'binary: x ^ y')
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
)

pdef('ElemwiseMultiType').add_enum(
    'Mode',
    Doc('FUSE_MUL_ADD3_INT16x32x32x32',
        'compute ``a * b + c`` requiring that ``a`` be int16 and ``b`` and '
        '``c``  int32, and the result is int32. This mode is optimized for '
        'the channel-broadacsted case, i.e. ``a`` has shape (A, B, C) and '
        '``b`` and ``c`` have shape (1, C, 1)'),
    Doc('FUSE_MUL_ADD3_IXxF32xF32xI8',
        'compuate ``a * b + c`` where the inputs ``a`` is an integer type '
        '``b`` and ``c`` are both ``float32``, the result is '
        '``int8``. This is currently only optimized for ``(1, x)`` '
        'broadcast for ``b`` and ``c``. Computation is carried in floating '
        'points and results are rounded towards zero with saturated cast to '
        'int.'),
    Doc('ROUND_SHR_SATURATE_IXxI8xI8',
        'Compute ``a >> b``, round the result according to lower ``b`` bits '
        'of ``a``` and make a saturating conversion to int8. Where ``a`` should'
        ' be an integer tensor and ``b`` should be an int8 scalar.'),
    Doc('FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT16x16x16x8',
        'Fused operation of an int16 elemwise add, an int16 rounding multiply '
        'high and an int16 to int8 rounding right shift with saturation.'),
    Doc('FUSE_ADD_RMULH_ROUND_SHR_SATURATE_INT32x32x32x8',
        'Fused operation of an int32 elemwise add, an int32 rounding multiply '
        'high and an int32 to int8 rounding right shift with saturation.'),
    Doc('ROUND_SHR_SATURATE_IXxI8xI16',
        'Compute ``a >> b``, round the result according to lower ``b`` bits of '
        '``a``` and make a saturating conversion to int16. Where ``a`` should'
        ' be an integer tensor and ``b`` should be an int8 scalar.'),
    Doc('QADD', 'Fused elemwise add two quantized int8 with specified'
        'output quantized dtype'),
    Doc('QFUSE_ADD_RELU', 'Fused elemwise add two quantized int8 followed'
         ' by ReLU and typecvt to specified dtype'),
    Doc('QMUL', 'Fused elemwise multiply two quantized int8 with specified'
        'output quantized dtype'),
    Doc('QMIN', 'Fused elemwise min two quantized int8 with specified'
        'output quantized dtype'),
    Doc('QMAX', 'quantized: max(x, y), with specified output quantized dtype'),
    Doc('QSUB', 'quantized: x - y'),
    Doc('QTRUE_DIV', 'quantized: x / y'),
    Doc('QFUSE_ADD_SIGMOID', 'quantized: sigmoid(x + y)'),
    Doc('QFUSE_ADD_TANH', 'quantized: tanh(x + y)'),
    Doc('QRELU', 'quantized: x > 0 ? x : 0'),
    Doc('QABS', 'quantized: x > 0 ? x : -x'),
    Doc('QSIGMOID', 'quantized: sigmoid(x)'),
    Doc('QEXP', 'quantized: exp(x)'),
    Doc('QTANH', 'quantized: tanh(x)'),
    Doc('QFUSE_MUL_ADD3', 'quantized: x * y + z'),
    Doc('QFAST_TANH', 'quantized: fast_tanh(x)'),
    Doc('QNEGATE', 'quantized: -x'),
    Doc('QACOS', 'quantized: acos(x)'),
    Doc('QASIN', 'quantized: asin(x)'),
    Doc('QCEIL', 'quantized: ceil(x)'),
    Doc('QCOS', 'quantized: cos(x)'),
    Doc('QEXPM1', 'quantized: expm1(x)'),
    Doc('QFLOOR', 'quantized: floor(x)'),
    Doc('QLOG', 'quantized: log(x)'),
    Doc('QLOG1P', 'quantized: log1p(x)'),
    Doc('QSIN', 'quantized: sin(x)'),
    Doc('QROUND', 'quantized: round(x)'),
    Doc('QERF', 'quantized: erf(x)'),
    Doc('QERFINV', 'quantized: erfinv(x)'),
    Doc('QERFC', 'quantized: erfc(x)'),
    Doc('QERFCINV', 'quantized: erfcinv(x)'),
    Doc('QABS_GRAD', 'quantized: abs_grad'),
    Doc('QFLOOR_DIV', 'quantized floor_div'),
    Doc('QMOD', 'quantized mod'),
    Doc('QSIGMOID_GRAD', 'quantized sigmoid_grad'),
    Doc('QSWITCH_GT0', 'quantized switch_gt0'),
    Doc('QTANH_GRAD', 'quantized tanh_grad'),
    Doc('QLT', 'quantized lt'),
    Doc('QLEQ', 'quantized leq'),
    Doc('QEQ', 'quantized eq'),
    Doc('QPOW', 'quantized pow'),
    Doc('QLOG_SUM_EXP', 'quantized log_sum_exp'),
    Doc('QFAST_TANH_GRAD', 'quantized fast_tanh_grad'),
    Doc('QATAN2', 'quantized atan2'),
    Doc('QCOND_LEQ_MOV', 'quantized cond_leq_mov'),
    Doc('QH_SWISH', 'quantized h_swish'),
    Doc('QFUSE_ADD_H_SWISH', 'quantized h_swish(x+y)'),
    Doc('QH_SWISH_GRAD', 'quantized h_swish_grad')
)

pdef('PowC', 'power with constant exponent').add_fields('float32', 'exp', 0)

417 418 419
(pdef('DctChannelSelect', '2d discrete cosine transform').add_enum_alias('Format', 'ConvolutionV0').
 add_enum('FastImpl', 'NONE', 'FIX_32_MASK').add_fields('int32', 'dct_block_size', 8))

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
(pdef('MatrixMul', version=0, is_legacy=True).
 add_fields('bool', 'transposeA', 'false', 'transposeB', 'false').
 add_enum('DataType',
     Doc('FLOAT', 'input/output both float32/float16'),
     'INT8x8x16',
     'INT8x8x32',
     Doc('FLOAT_IO16xC32', 'input/output both float16, the internal compute is '
         'float32'),
     Doc('QUINT8x8x32', 'input QuantizedAsymm8, output QuantizedS32'),
     Doc('QUINT4x4x32', 'input QuantizedAsymm4, output QuantizedS32'),
     name_field='data_type'))

(pdef('MatrixMul', version=1, is_legacy=True).
 add_fields('bool', 'transposeA', 'false', 'transposeB', 'false').
 add_enum(Doc('ComputeMode', 'Specifies special computation modes, e.g. '
                             'different combinations of intermediate result '
                             'data types.'),
          Doc('DEFAULT', 'No special requirements on the precision of '
                         'intermediate results.'),
          Doc('FLOAT32', 'Use Float32 accumulator and intermediate result. '
                         'Only supported when input and output is Float16.'),
          name_field='compute_mode'))

(pdef('MatrixMul', version=2).
 add_fields('bool', 'transposeA', 'false', 'transposeB', 'false').
 add_enum_alias('ComputeMode', 'MatrixMulV1', name_field='compute_mode').
 add_enum('Format',
          Doc('DEFAULT', 'Normal matrix mul: (M, K) x (K, N) = (M, N)'),
          Doc('MK4', 'Split 4 from M and K, better for neon compute:'
              '(M/4, K/4, 4(k), 4(m)) x (K/4, N, 4(k)). if transposeA the '
              'layout is (K/4, M/4, 4(k), 4(m)) x (K/4, N, 4(k))'),
          Doc('MK8', 'Split 8 from M and K, better for neon compute:'
              '(M/8, K/8, 8(k), 8(m)) x (K/8, N, 8(k)). if transposeA the '
453
              'layout is (K/8, M/8, 8(k), 8(m)) x (K/8, N, 8(k))'),
454 455 456
          Doc('MK4_DOT', 'Split 4 from M and K, better for neon dotprod:'
              'M/4, K/4, 4(m), 4(k)) x (K/4, N, 4(k)). if transposeA the '
              'layout is (K/4, M/4, 4(m), 4(k)) x (K/4, N, 4(k))'))
457 458 459 460 461 462 463
 )

(pdef('Winograd', 'winograd param used in convbias').
  add_fields(
      'uint32',
      Doc('output_block_size', 'output block size, detail meaning see winograd '
          'in convbias, equals to the meaning of m in F(m, r)'), 0).
464 465
  add_enum_alias('Format', 'MatrixMul').
  add_enum_alias('ComputeMode', 'Convolution', name_field='compute_mode')
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
 )

(pdef('SVD').
 add_fields('bool',
            Doc('full_matrices',
                'Whether to compute the full-sized u and v or only the leading'
                ' min(m, n) singular vectors. Ignored if compute_uv is '
                'false.'),
            'false',
            Doc('compute_uv',
                'Whether the left (u) and right (v) singular vectors will be '
                'computed and outputted.'),
            'true'))

(pdef('Reduce', 'legacy reduce', version=0, is_legacy=True).
 add_enum('Mode',
          'SUM',
          Doc('SUM_SQR', 'sum of x * x for each element x'),
          'PRODUCT', 'MIN', 'MAX').
 add_fields('int32',
            Doc('axis',
                'axis along which reduction is performed; if -1 is given, '
                'reduce to given target shape (only used in megbrain)'),
            -1))

(pdef('Reduce', 'reduce along given axis', version=1, is_legacy=True).
 add_enum('Mode',
          'SUM',
          Doc('SUM_SQR', 'sum of x * x for each element x'),
          'PRODUCT', 'MIN', 'MAX', 'MEAN').
 add_fields('int32',
            Doc('axis',
                'axis along which reduction is performed; if -1 is given, '
                'reduce to given target shape (only used in megbrain)'),
            -1).
 add_enum('DataType',
          Doc('DEFAULT',
'''
input/output are the same data type, and the internal computation type would be chosen by the input/output dtypes and the reduction mode.
Currently, ```DEFAULT``` mode means:

+--------------------+-----------------------------------+-------------------+
| Input/Output DType | Mode                              | Computation DType |
+====================+===================================+===================+
| FLOAT32            | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | FLOAT32           |
+--------------------+-----------------------------------+-------------------+
| FLOAT16            | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | FLOAT16           |
+--------------------+-----------------------------------+-------------------+
| INT32              | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | INT32             |
+--------------------+-----------------------------------+-------------------+
| INT8               | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | INT8              |
+--------------------+-----------------------------------+-------------------+
| QuantizedS8        | MIN/MAX                           | QuantizedS8       |
+--------------------+-----------------------------------+-------------------+
| QuantizedS8        | MEAN/SUM                          | QuantizedS32      |
+--------------------+-----------------------------------+-------------------+
| Quantized8Asymm    | MIN/MAX                           | Quantized8Asymm   |
+--------------------+-----------------------------------+-------------------+
| Quantized8Asymm    | MEAN/SUM                          | QuantizedS32      |
+--------------------+-----------------------------------+-------------------+

'''
),
          Doc('FLOAT_IO16xC32', 'Deprecated. This was replaced by '
              'FLOAT_O16xC32, and input\'s dtype decided by actual input tensor.'),
          Doc('FLOAT_O32xC32', 'compute/output both are float32'),
          Doc('FLOAT_O16xC32', 'compute are float32, output float16'),
          Doc('QUINT_I8xO32', 'input quint8, compute and output are qint32'),
          Doc('QINT_I8xO32', 'input qint8, compute and output are qint32'),
     name_field='data_type'))

(pdef('Reduce', 'reduce along given axis', version=2).
 add_enum('Mode',
          'SUM',
          Doc('SUM_SQR', 'sum of x * x for each element x'),
          'PRODUCT', 'MIN', 'MAX', 'MEAN').
 add_fields('int32',
            Doc('axis',
                'axis along which reduction is performed; if INT_MAX is given, '
                'reduce to given target shape (only used in megbrain)'),
            (1<<31)-1).
 add_enum('DataType',
          Doc('DEFAULT',
'''
input/output are the same data type, and the internal computation type would be chosen by the input/output dtypes and the reduction mode.
Currently, ```DEFAULT``` mode means:

+--------------------+-----------------------------------+-------------------+
| Input/Output DType | Mode                              | Computation DType |
+====================+===================================+===================+
| FLOAT32            | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | FLOAT32           |
+--------------------+-----------------------------------+-------------------+
| FLOAT16            | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | FLOAT16           |
+--------------------+-----------------------------------+-------------------+
| INT32              | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | INT32             |
+--------------------+-----------------------------------+-------------------+
| INT8               | MIN/MAX/MEAN/SUM/SUM_SQR/PRODUCT  | INT8              |
+--------------------+-----------------------------------+-------------------+
| QuantizedS8        | MIN/MAX                           | QuantizedS8       |
+--------------------+-----------------------------------+-------------------+
| QuantizedS8        | MEAN/SUM                          | QuantizedS32      |
+--------------------+-----------------------------------+-------------------+
| Quantized8Asymm    | MIN/MAX                           | Quantized8Asymm   |
+--------------------+-----------------------------------+-------------------+
| Quantized8Asymm    | MEAN/SUM                          | QuantizedS32      |
+--------------------+-----------------------------------+-------------------+

'''
),
          Doc('FLOAT_IO16xC32', 'Deprecated. This was replaced by '
              'FLOAT_O16xC32, and input\'s dtype decided by actual input tensor.'),
          Doc('FLOAT_O32xC32', 'compute/output both are float32'),
          Doc('FLOAT_O16xC32', 'compute are float32, output float16'),
          Doc('QUINT_I8xO32', 'input quint8, compute and output are qint32'),
          Doc('QINT_I8xO32', 'input qint8, compute and output are qint32'),
     name_field='data_type'))

(pdef('Cumsum', 'calculate accumulated sum along given axis', version=0, is_legacy=True).
 add_fields('int32',
          Doc('axis',
              'axis along which cumsum is performed'),
          -1).
 add_fields('bool',
          Doc('exclusive',
              'whether the current element is taken into account'),
          'true').
 add_fields('bool',
          Doc('reverse',
              'whether the cumsum is forward or backward'),
          'false'))

(pdef('Cumsum', 'calculate accumulated sum along given axis', version=1).
 add_fields('int32',
          Doc('axis',
              'axis along which cumsum is performed, default with INT_MAX'),
          (1<<31)-1).
 add_fields('bool',
          Doc('exclusive',
              'whether the current element is taken into account'),
          'true').
 add_fields('bool',
          Doc('reverse',
              'whether the cumsum is forward or backward'),
          'false'))

(pdef('CondTake').
 add_enum('Mode',
          Doc('EQ', 'take if ``abs(data-val)<eps``'),
          Doc('NEQ', 'take if ``abs(data-val)>=eps``'),
          Doc('LT', 'take if ``data<val``'),
          Doc('LEQ', 'take if ``data<=val``'),
          Doc('GT', 'take if ``data>val``'),
          Doc('GEQ', 'take if ``data>=val``')).
 add_fields('float32',
            Doc('val', 'the value to be compared with; note that for integer '
                'data, val is also converted to int'), 0).
 add_fields('float32', Doc('eps', 'used for float equality comparison'),
            1e-6))


pdef('Argsort').add_enum('Order', 'ASCENDING', 'DESCENDING')

(pdef('IndexingRemap').
 add_fields('bool',
            Doc('is_non_overlapping',
                'Whether no two dst element maps to the same src element. '
                'Enabling this option can accelerate gradient operator since'
                ' atomic adding operations could be avoided.'),
            'false'))

pdef('Sleep').add_fields('float32', Doc('time', 'time to sleep in seconds'), 0)

(pdef('Linspace').
 add_fields('bool',
            Doc('endpoint',
                'Whether stop is included in the generated tensor'),
            'true'))

(pdef('LinspaceFull').
 add_fields('float64',
            Doc('start', 'The first val.'),
            0).
 add_fields('float64',
            Doc('stop', 'The last val.'),
            1).
 add_fields('bool',
            Doc('endpoint',
                'Whether stop is included in the generated tensor'),
            'true'))

(pdef('Eye').
 add_fields(
     'int32',
     Doc('k', 'Index of the diagonal: 0 (the default) refers to the main '
         'diagonal, a positive value refers to an upper diagonal, and a '
         'negative value to a lower diagonal.'),
     0).
 add_fields(
     'dtype', Doc('dtype', 'data type of output value'),
     'DTypeEnum::Float32'))

pdef('UniformRNG').add_fields('uint64', 'seed', 0)

(pdef('GaussianRNG').
 add_fields('uint64', 'seed', 0).
 add_fields('float32', 'mean', 0, 'std', 1))

(pdef('Flip').
 add_fields('bool', 'vertical', 'false', 'horizontal', 'false'))

(pdef('Rotate')
 .add_fields('bool', 'clockwise', 'true'))

(pdef('ROICopy')
 .add_fields('uint32', 'row_from', 0, 'row_to', 0, 'col_from', 0, 'col_to', 0))

(pdef('CvtColor')
 .add_enum('Mode', 'RGB2GRAY', 'RGB2YUV', 'YUV2RGB', 'GRAY2RGB', 'RGBA2RGB',
    'RGBA2BGR', 'RGBA2GRAY', 'RGB2BGR', 'BGR2GRAY', 'BGR2RGB',
    Doc('YUV2GRAY_NV21', 'For historical reasons, referred to as YCC by opencv'),
    'YUV2RGB_NV21', 'YUV2BGR_NV21', 'YUV2GRAY_NV12', 'YUV2RGB_NV12',
    'YUV2BGR_NV12', 'YUV2GRAY_YV12', 'YUV2RGB_YV12', 'YUV2BGR_YV12',
    'YUV2GRAY_YU12', 'YUV2RGB_YU12', 'YUV2BGR_YU12',
    'YCrCb2RGB', 'YCrCb2BGR',
    Doc('BT601_YUV2RGB_NV21', 'BT601 yuv format, referred to as YUV by opencv'),
    'BT601_YUV2BGR_NV21', 'BT601_YUV2RGB_NV12', 'BT601_YUV2BGR_NV12',
    'BT601_YUV2RGB_YV12', 'BT601_YUV2BGR_YV12', 'BT601_YUV2RGB_YU12',
    'BT601_YUV2BGR_YU12',
    member_alias=[('YUV2GRAY_NV21', 'BT601_YUV2GRAY_NV21'),
                  ('YUV2GRAY_NV12', 'BT601_YUV2GRAY_NV12'),
                  ('YUV2GRAY_YV12', 'BT601_YUV2GRAY_YV12'),
                  ('YUV2GRAY_YU12', 'BT601_YUV2GRAY_YU12')],
    name_field = 'mode'))

(pdef('WarpAffine', version=0, is_legacy=True)
 .add_enum_alias('InterpolationMode', 'WarpPerspective', name_field='imode')
 .add_enum_alias('BorderMode', 'WarpPerspective', name_field='border_mode')
 .add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f'))

(pdef('WarpAffine', version=1)
 .add_enum_alias('InterpolationMode', 'WarpPerspective', name_field='imode')
 .add_enum_alias('BorderMode', 'WarpPerspective', name_field='border_mode')
 .add_fields('float32', Doc('border_val', 'used for CONSTANT bmode'), '.0f')
 .add_enum_alias('Format', 'ConvolutionV0', default=1))

(pdef('GaussianBlur')
 .add_enum_alias('BorderMode', 'WarpPerspective', name_field='border_mode')
 .add_fields('uint32', 'kernel_height', 0, 'kernel_width', 0)
 .add_fields('float32','sigma_x', '0.f', 'sigma_y', '0.f'))

(pdef('Resize', version=0, is_legacy=True)
 .add_enum_alias('InterpolationMode', 'WarpPerspective', name_field='imode'))

(pdef('Resize', version=1)
 .add_enum_alias('InterpolationMode', 'WarpPerspective', name_field='imode')
 .add_enum_alias('Format', 'ConvolutionV0', default=1))

723 724 725 726 727 728
(pdef('Remap', version=0)
 .add_enum_alias('InterpolationMode', 'WarpPerspective', name_field='imode')
 .add_enum_alias('BorderMode', 'WarpPerspective', name_field='border_type')
 .add_enum_alias('Format', 'ConvolutionV0', default=1)
 .add_fields('float32', 'scalar', '0.f'))

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
(pdef('Convolution3D').
 add_enum('Mode', 'CROSS_CORRELATION', 'CONVOLUTION').
 add_fields(
     'uint32',
     Doc('pad_d', 'padding on one side on the first dimension'), 0,
     Doc('pad_h', 'padding on one side on the second dimension'), 0,
     Doc('pad_w', 'padding on one side on the third dimension'), 0,
     Doc('stride_d', 'kernel stride on the first dimension'), 1,
     Doc('stride_h', 'kernel stride on the second dimension'), 1,
     Doc('stride_w', 'kernel stride on the third dimension'), 1,
     Doc('dilate_d', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the first dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the third dimension'), 1
 ).
 add_enum('Sparse',
          Doc('DENSE', 'dense convolution: filter shape should be '
              '[oc, ic, spatial...] if format is NCDHW, '
              '[oc, spatial..., ic] if format is NDHWC'),
          Doc('GROUP', 'group convolution: filter shape should be '
              '[group, oc_per_group, ic_per_group, spatial...] if format is NCDHW, '
              '[group, oc_per_group, spatial..., ic_per_group] if format is NDHWC')
          ).
 add_enum('DataType',
          Doc('FLOAT', 'input/output both float32/float16'),
          Doc('FLOAT_IO16xC32', 'input/output both float16, the internal '
              'compute is float32'),
          name_field='data_type').
 add_enum('Format', 'NCDHW', 'NDHWC')
 )

(pdef('Conv3DBias').
 add_enum('NonlineMode', 'IDENTITY', 'RELU', 'SIGMOID').
 add_enum_alias('Mode', 'Convolution3D').
 add_fields('uint32', 'pad_d', 0, 'pad_h', 0, 'pad_w', 0,
                'stride_d', 1, 'stride_h', 1, 'stride_w', 0))

(pdef('SeparableConv3D').
 add_enum_alias('Mode', 'Convolution3D').
 add_enum('BorderMode', 'BORDER_REPLICATE', 'BORDER_REFLECT',
          'BORDER_REFLECT_101','BORDER_WRAP',
          'BORDER_CONSTANT', 'BORDER_TRANSPARENT','BORDER_ISOLATED').
 add_fields('bool', 'is_symm_kernel', 'true').
 add_fields('uint32', 'pad_d', 0, 'pad_h', 0, 'pad_w', 0,
            'stride_d', 0, 'stride_h', 1, 'stride_w', 1,
            'ksize_d', 0, 'ksize_h', 3, 'ksize_w', 3,
            'anchor_d', 0, 'anchor_h', 1, 'anchor_w', 1))

(pdef('TopK').
 add_enum(
     'Mode',
     Doc('KTH_ONLY', "only the value of the k'th element would be computed"),
     Doc('VALUE_IDX_NOSORT',
         'all the top-k values and corresponding indices would be computed; '
         'no order is guaranteed'),
     Doc('VALUE_IDX_SORTED',
         'all the top-k values and corresponding indices sorted'))
 )

RELAYOUT_FORMAT_MODE_DOC = """
Relayout mode.

**Naming conventions**

1. ``A_B`` means change from layout format ``A`` to ``B``.
2. ``INTER_WEIGHT_xx`` means relayout the weight for faster processing by
   :attr:`Convolution.Format.NHWCD4` convolutions.
3. A suffix of ``I`` means ``Image2DPack4TensorFormat`` tensor format is used
   for faster processing on GPUs.

**Layout definitions**

* ``NCHW`` layout: ``{N, C, H, W}``
* ``NHWC`` layout: ``{N, H, W, C}``
* ``NHWCD4`` layout: ``{N, H, (C + 3) / 4, W, 4}``
* ``NHWCD4I`` layout: with ``align_axis = 2``
* ``NCHW4`` layout: ``{N, C/4, H, W, 4}``
* ``NCHW88`` layout: ``{N, C/8, H, W, 8}``
* ``CHWN4`` layout: ``{C/4, H, W, N, 4}``

**Float weight transformation definitions**

+---------------+---------------------------------+--------------------+--------------------------------------+------+
| Sparsity Type | Input Layout                    | Input Req          | Output Layout                        | Axis |
+===============+=================================+====================+======================================+======+
| DENSE         | ``{OC, IC, FH, FW}``            | ``OC % 4 == 0``    | ``{OC/4, FH, FW, IC, 4}``            | 3    |
+---------------+---------------------------------+--------------------+--------------------------------------+------+
| GROUP         | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 4 == 0``  | ``{GROUP, OCPG/4, FH, FW, ICPG, 4}`` | 4    |
|               |                                 | ``ICPG % 4 == 0``  |                                      |      |
+---------------+---------------------------------+--------------------+--------------------------------------+------+
| CHAN          | ``{GROUP, 1, 1, FH, FW}``       | ``GROUP % 4 == 0`` | ``{GROUP / 4, 1, FH ,FW, 4}``        | 1    |
+---------------+---------------------------------+--------------------+--------------------------------------+------+

**Float weight transformation nchw88 definitions**

+---------------+---------------------------------+--------------------+--------------------------------------+
| Sparsity Type | Input Layout                    | Input Req          | Output Layout                        |
+===============+=================================+====================+======================================+
| DENSE         | ``{OC, IC, FH, FW}``            | ``OC % 8 == 0``    |``{OC/8, IC/8 ,FH, FW, 8(IC), 8(OC)}``|
|               |                                 | ``IC % 8 == 0``    |                                      |
+---------------+---------------------------------+--------------------+--------------------------------------+
| GROUP         | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 8 == 0``  | ``{GROUP, OCPG/8, ICPG/8 FH, FW,     |
|               |                                 | ``ICPG % 8 == 0``  |  8(ICPG), 8(OCPG)} ``                |
+---------------+---------------------------------+--------------------+--------------------------------------+
| CHAN          | ``{GROUP, 1, 1, FH, FW}``       | ``GROUP % 8 == 0`` | ``{GROUP / 8, 1, FH ,FW, 8}``        |
+---------------+---------------------------------+--------------------+--------------------------------------+

**Int8(DOT) weight transformation definitions**

+---------------+---------------------------------+--------------------+------------------------------------------+------+
| Sparsity Type | Input Layout                    | Input Req          | Output Layout                            | Axis |
+===============+=================================+====================+==========================================+======+
| DENSE         | ``{OC, IC, FH, FW}``            | ``OC % 4 == 0``    | ``{OC/4, FH, FW, IC/4, 4, 4}`            | 3    |
+---------------+---------------------------------+--------------------+------------------------------------------+------+
| GROUP         | ``{GROUP, OCPG, ICPG, FH, FW}`` | ``OCPG % 4 == 0``  | ``{GROUP, OCPG/4, FH, FW, ICPG/4, 4, 4}``| 4    |
|               |                                 | ``ICPG % 4 == 0``  |                                          |      |
+---------------+---------------------------------+--------------------+------------------------------------------+------+

Note: the axis column means the corresponding ``align_axis`` for image format
when the ``I`` suffix is present.

"""
(pdef('RelayoutFormat', 'Change the tensor layout format').
 add_enum(
     Doc('Mode', RELAYOUT_FORMAT_MODE_DOC),
     'NHWC_NHWCD4',
     'NHWCD4_NHWC',
     'NHWC_NHWCD4I',
     'NCHW_NHWCD4',
     'NCHW_NHWCD4I',
     'NHWCD4I_NCHW',
     'NHWCD4_NCHW',
     'INTER_WEIGHT_DENSE',
     'INTER_WEIGHT_DENSEI',
     'INTER_WEIGHT_GROUP',
     'INTER_WEIGHT_GROUPI',
     'INTER_WEIGHT_CHAN',
     'INTER_WEIGHT_CHANI',
     'INTER_WEIGHT_DENSEI_DOT',
870 871
     'INTER_WEIGHT_GROUPI_DOT',
     'NCHW4_CHWN4',
872 873 874 875 876
     'CHWN4_NCHW4',
     'NCHW_NCHW88_CONV_DENSE_WEIGHT',
     'NCHW_NCHW88_CONV_CHAN_WEIGHT',
     'NCHW_NCHW88_CONV_GROUP_WEIGHT',
     'NCHW_NCHW88',
877 878 879
     'NCHW88_NCHW',
     'NCHW_NCHW4_IC_SMALL',
     'NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT',
880
     'NCHW_NCHW4',
881
     )
882
 )
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

(pdef('SeparableFilter').
 add_enum_alias('Format', 'ConvolutionV0').
 add_enum_alias('BorderMode', 'WarpPerspective').
 add_fields('bool', 'is_symm_kernel', 'true').
 add_fields('uint32', 'ksize_h', 3, 'ksize_w', 3, 'anchor_h', 1, 'anchor_w', 1))

(pdef('LocalShare', 'Local share convolution').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('spatial_groups_h', 'spatial groups on the first dimension'), 1,
     Doc('spatial_groups_w', 'spatial groups on the second dimension'), 1
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_enum_alias('ComputeMode', 'Convolution')
 )

(pdef('ROIAlign').
 add_enum('Mode', 'MAX', 'AVERAGE', name_field='mode').
 add_enum_alias('Format', 'ConvolutionV0').
 add_fields('float32', 'spatial_scale', '1.0').
 add_fields('float32', 'offset', '0.0').
916 917
 add_fields('uint32',
            'pooled_height', '1',
918
            'pooled_width', '1',
919
            'sample_height', '2',
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
            'sample_width', '2')
 )
(pdef('DeformablePSROIPooling').
 add_fields('bool', 'no_trans', 'true').
 add_fields('float32', 'spatial_scale', 1,
     'trans_std', 1).
 add_fields('uint32',
    Doc('pooled_h', 'height of pooling output'), 1,
    Doc('pooled_w', 'width of pooling output'), 1,
    Doc('part_size', 'size of each deformable part'), 1,
    Doc('sample_per_part', 'sample count of each bbox'), 1))

(pdef('BatchConvBias', 'Batch convolution (unshare weights on the batch dimension)').
 add_enum_alias('NonlineMode', 'ConvBiasV0').
 add_enum_alias('Mode', 'ConvolutionV0').
 add_fields(
     'uint32',
     Doc('pad_h', 'padding on one side on the first dimension'), 0,
     Doc('pad_w', 'padding on one side on the second dimension'), 0,
     Doc('stride_h', 'kernel stride on the first dimension'), 1,
     Doc('stride_w', 'kernel stride on the second dimension'), 1,
     Doc('dilate_h', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
     Doc('dilate_w', 'dilation (i.e. size of each zero-padded kernel block) '
         'on the second dimension'), 1,
 ).
 add_enum_alias('Sparse', 'ConvolutionV0').
 add_enum_alias('Format', 'ConvolutionV0').
 add_enum_alias('ComputeMode', 'Convolution', name_field="compute_mode")
 )
950 951 952 953
(pdef('FakeQuant').
 add_fields('int32','qmin','-2147483648').
 add_fields('int32','qmax','2147483647')
 )
954 955