pooling_multi_thread.cpp 22.9 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/arm_common/pooling_multi_thread.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
11 12
#include <vector>
#include "megdnn/dtype.h"
13
#include "megdnn/opr_param_defs.h"
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "test/arm_common/fixture.h"

#include "test/common/pooling.h"
#include "test/common/checker.h"
#include "test/common/benchmarker.h"
#include "test/common/rng.h"

namespace megdnn {
namespace test {

/*********************** mutli threads *********************************/
TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
    using Param = param::Pooling;
    for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
    for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
    for (size_t p: {1, 2})
    {
        Param param;
        param.mode = Param::Mode::MAX;
        param.window_h = param.window_w = 3;
        param.stride_h = param.stride_w = 2;
        param.pad_h = param.pad_w = p;
        Checker<Pooling> checker(handle());
        checker.set_param(param).exec({{2, 3, ih, iw}, {}});

        param.mode = Param::Mode::AVERAGE;
        param.window_h = param.window_w = 3;
        param.stride_h = param.stride_w = 2;
        param.pad_h = param.pad_w = p;
        checker.set_param(param).exec({{2, 3, ih, iw}, {}});

        param.mode = Param::Mode::MAX;
        param.window_h = param.window_w = 4;
        param.stride_h = param.stride_w = 2;
        param.pad_h = param.pad_w = p;
        checker.set_param(param).exec({{2, 3, ih, iw}, {}});

        param.mode = Param::Mode::MAX;
        param.window_h = param.window_w = 5;
        param.stride_h = param.stride_w = 2;
        param.pad_h = param.pad_w = p;
        if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
            checker.set_param(param).exec({{2, 3, ih, iw}, {}});
    }
}

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
std::vector<std::pair<param::Pooling, TensorShapeArray>> get_nchw44_pool_args(
        size_t filter, size_t stride) {
    constexpr size_t ic_step = 4;
    std::vector<std::pair<param::Pooling, TensorShapeArray>> args;

    for (size_t n : {1, 2})
        for (size_t c : {4, 8})
            for (size_t ih : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
                for (size_t iw : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
                    for (size_t ph : {0, 1, 2})
                        for (size_t pw : {0, 1, 2})
                            for (auto mode : {param::Pooling::Mode::MAX,
                                              param::Pooling::Mode::AVERAGE})
                                if (ih + 2 * ph >= filter &&
                                    iw + 2 * pw >= filter && filter > ph &&
                                    filter > pw) {
                                    param::Pooling param;
                                    param.mode = mode;
                                    param.format =
                                            param::Pooling::Format::NCHW44;
                                    param.pad_h = ph;
                                    param.pad_w = pw;
                                    param.stride_h = param.stride_w = stride;
                                    param.window_h = param.window_w = filter;
                                    args.emplace_back(std::make_pair(
                                            param,
                                            TensorShapeArray{{n, c / ic_step,
                                                              ih, iw, ic_step},
                                                             {}}));
                                }
    return args;
}

void run_pooling_check(
        Handle* handle,
        std::vector<std::pair<param::Pooling, TensorShapeArray>> args,
        bool is_int8) {
    Checker<Pooling> checker(handle);
    UniformIntRNG rng_int8{INT8_MIN >> 1, INT8_MAX >> 1};
    UniformIntRNG rng_fp32{-10, 10};
    if (is_int8) {
        checker.set_dtype(0, dtype::QuantizedS8(1.1f));
        checker.set_rng(0, &rng_int8);
    } else {
        checker.set_rng(0, &rng_fp32);
    }
    for (auto arg : args) {
        checker.set_param(arg.first).exec(arg.second);
    }
}

TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_NCHW44_FP32) {
    for (auto filter : {2, 3, 4, 5})
        for (auto stride : {1, 2}) {
            run_pooling_check(handle(), get_nchw44_pool_args(filter, stride),
                              false);
        }
}

119
TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W3x3_NCHW44)
120
{
121 122 123
    UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
    Checker<Pooling> checker(handle());
    checker.set_rng(0, &rng);
124 125 126
    // clang-format off
    for (size_t ih: {3, 5, 10})
    for (size_t iw: {3, 5, 7, 9, 15, 20})
127 128
    for (size_t ph: {0, 1, 2})
    for (size_t pw: {0, 1, 2})
129
    for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
130
    for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
131 132
    if (ih+2*ph >= 3 && iw+2*pw >= 3)
    {
133
        checker.set_dtype(0, data_type);
134 135

        param::Pooling param;
136
        param.mode = mode;
137 138 139 140 141 142
        param.format = param::Pooling::Format::NCHW44;
        param.pad_h = ph;
        param.pad_w = pw;
        param.stride_h = param.stride_w = 1;
        param.window_h = param.window_w = 3;
        checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
143 144 145 146

        param.stride_h = param.stride_w = 2;
        checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});

147 148 149 150
    }
    // clang-format on
}

151
TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W2x2_NCHW44)
152
{
153 154 155
    UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
    Checker<Pooling> checker(handle());
    checker.set_rng(0, &rng);
156
    // clang-format off
157 158 159 160
   for (size_t ih: {2, 5, 10, 17})
   for (size_t iw: {2, 6, 8, 16, 26})
   for (size_t ph: {0, 1})
   for (size_t pw: {0, 1})
161 162
   for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
   for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
163
    if (ih+2*ph >= 2 && iw+2*pw >= 2)
164
    {
165 166
        checker.set_dtype(0, data_type);
        checker.set_dtype(1, data_type);
167 168

        param::Pooling param;
169
        param.mode = mode;
170 171 172 173 174 175 176 177 178 179 180 181
        param.format = param::Pooling::Format::NCHW44;
        param.pad_h = ph;
        param.pad_w = pw;
        param.stride_h = param.stride_w = 1;
        param.window_h = param.window_w = 2;
        checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});

        param.stride_h = param.stride_w = 2;
        checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
    }
    // clang-format on
}
182

183
TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W4x4_NCHW44)
184
{
185 186 187
    UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
    Checker<Pooling> checker(handle());
    checker.set_rng(0, &rng);
188
    // clang-format off
189 190 191 192
    for (size_t ih: {4, 10, 18, 25, 30})
    for (size_t iw: {4, 12, 17, 20, 25})
    for (size_t ph: {0, 1, 2})
    for (size_t pw: {0, 1, 2})
193
    for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
194
    for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
195 196
    if (ih+2*ph >= 4 && iw+2*pw >= 4)
    {
197
        checker.set_dtype(0, data_type);
198 199

        param::Pooling param;
200
        param.mode = mode;
201 202 203 204 205 206 207 208 209 210 211 212
        param.format = param::Pooling::Format::NCHW44;
        param.pad_h = ph;
        param.pad_w = pw;
        param.stride_h = param.stride_w = 1;
        param.window_h = param.window_w = 4;
        checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});

        param.stride_h = param.stride_w = 2;
        checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
    }
    // clang-format on
}
213
TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W5x5_NCHW44)
214
{
215 216 217
    UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
    Checker<Pooling> checker(handle());
    checker.set_rng(0, &rng);
218 219 220
    // clang-format off
    for (size_t ih: {5, 9, 19, 20, 39})
    for (size_t iw: {5, 12, 23, 27, 39})
221 222
    for (size_t ph: {0, 1, 2})
    for (size_t pw: {0, 1, 2})
223
    for(auto data_type: SmallVector<DType>{dtype::QuantizedS8(1.1f), dtype::Int8()})
224
    for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
225 226
    if (ih+2*ph >= 5 && iw+2*pw >= 5)
    {
227
        checker.set_dtype(0, data_type);
228 229

        param::Pooling param;
230
        param.mode = mode;
231 232 233 234 235 236 237 238 239
        param.format = param::Pooling::Format::NCHW44;
        param.pad_h = ph;
        param.pad_w = pw;
        param.stride_h = param.stride_w = 1;
        param.window_h = param.window_w = 5;
        checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});

        param.stride_h = param.stride_w = 2;
        checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
240

241 242 243
    }
    // clang-format on
}
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2)
{
    for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
    for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
    for (size_t ph: {0, 1, 2})
    for (size_t pw: {0, 1, 2})
    if (ih+2*ph >= 3 && iw+2*pw >= 3)
    {
        Checker<Pooling> checker(handle());
        checker.set_dtype(0, dtype::Int8());
        param::Pooling param;
        param.mode = param::Pooling::Mode::MAX;
        param.pad_h = ph;
        param.pad_w = pw;
        param.stride_h = param.stride_w = 2;
        param.window_h = param.window_w = 3;
        checker.set_param(param).exec(TensorShapeArray{
                {2, 3, ih, iw}, {}});
    }
}

TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2)
{
    for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
    for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
    for (size_t ph: {0, 1})
    for (size_t pw: {0, 1})
    if (ih+2*ph >= 3 && iw+2*pw >= 3)
    {
        Checker<Pooling> checker(handle());
        checker.set_dtype(0, dtype::Int8());
        param::Pooling param;
        param.mode = param::Pooling::Mode::MAX;
        param.pad_h = ph;
        param.pad_w = pw;
        param.stride_h = param.stride_w = 2;
        param.window_h = param.window_w = 2;
        checker.set_param(param).exec(TensorShapeArray{
                {2, 3, ih, iw}, {}});
    }
}

#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
    Checker<Pooling> checker(handle());
    checker.set_dtype(0, dtype::Float16{})
            .set_dtype(1, dtype::Float16{})
            .set_epsilon(3e-3);

    using Param = param::Pooling;
    for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
        for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
            for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
                for (size_t window : {2, 3}) {
                    Param param;
                    param.mode = mode;
                    param.window_h = param.window_w = window;
                    param.stride_h = param.stride_w = 1;
                    param.pad_h = param.pad_w = window / 2;
                    //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
                    //! == 3)
                    checker.set_param(param).exec({{2, 3, ih, iw}, {}});

                    //! test for SH = SW = 2 && FH = FW = 2
                    param.stride_h = param.stride_w = 2;
                    checker.set_param(param).exec({{2, 3, ih, iw}, {}});
                }
            }

    //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
    for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
        for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
            for (size_t ph : {0, 1, 2})
                for (size_t pw : {0, 1, 2})
                    if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
                        param::Pooling param;
                        param.mode = param::Pooling::Mode::MAX;
                        param.pad_h = ph;
                        param.pad_w = pw;
                        param.stride_h = param.stride_w = 2;
                        param.window_h = param.window_w = 3;
                        checker.set_param(param).exec(
                                TensorShapeArray{{2, 3, ih, iw}, {}});
                    }

    //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
    for (size_t ih :
         {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
        for (size_t iw :
             {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
            for (size_t p : {1, 2}) {
                Param param;
                param.mode = Param::Mode::MAX;
                param.window_h = param.window_w = 4;
                param.stride_h = param.stride_w = 2;
                param.pad_h = param.pad_w = p;
                checker.set_param(param).exec({{2, 3, ih, iw}, {}});
            }

    //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
    for (size_t ih :
         {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
        for (size_t iw :
             {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
            for (size_t p : {1, 2}) {
                Param param;
                param.mode = Param::Mode::MAX;
                param.window_h = param.window_w = 5;
                param.stride_h = param.stride_w = 2;
                param.pad_h = param.pad_w = p;
                checker.set_param(param).exec({{2, 3, ih, iw}, {}});
            }
}
#endif

TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
    Checker<Pooling> checker(handle());
    UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
    UniformIntRNG rng2{0, UINT8_MAX >> 1};

    using Param = param::Pooling;

    for (auto type : std::vector<DType>{
                 dtype::QuantizedS8(1.1f),
                 dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
        if (type.enumv() == DTypeEnum::QuantizedS8) {
            checker.set_rng(0, &rng1);
        } else {
            megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
            checker.set_rng(0, &rng2);
        }
        for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
            for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
                for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
                    for (size_t window : {2, 3}) {
                        Param param;
                        param.mode = mode;
                        param.window_h = param.window_w = window;
                        param.stride_h = param.stride_w = 1;
                        param.pad_h = param.pad_w = window / 2;
                        //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
                        //! FH
                        //! == 3)
                        checker.set_param(param).exec({{2, 3, ih, iw}, {}});

                        //! test for SH = SW = 2 && FH = FW = 2
                        param.stride_h = param.stride_w = 2;
                        checker.set_param(param).exec({{2, 3, ih, iw}, {}});
                    }
                }

        //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
        for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
            for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
                for (size_t ph : {0, 1, 2})
                    for (size_t pw : {0, 1, 2})
                        if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
                            param::Pooling param;
                            param.mode = param::Pooling::Mode::MAX;
                            param.pad_h = ph;
                            param.pad_w = pw;
                            param.window_h = param.window_w = 3;
                            param.stride_h = param.stride_w = 2;
                            checker.set_param(param).exec(
                                    TensorShapeArray{{2, 3, ih, iw}, {}});
                        }

        //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
        for (size_t ih :
             {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
            for (size_t iw :
                 {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
                for (size_t p : {1, 2}) {
                    Param param;
                    param.mode = Param::Mode::MAX;
                    param.window_h = param.window_w = 4;
                    param.stride_h = param.stride_w = 2;
                    param.pad_h = param.pad_w = p;
                    checker.set_param(param).exec({{2, 3, ih, iw}, {}});
                }

        //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
        for (size_t ih :
             {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
            for (size_t iw :
                 {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
                for (size_t p : {1, 2}) {
                    Param param;
                    param.mode = Param::Mode::MAX;
                    param.window_h = param.window_w = 5;
                    param.stride_h = param.stride_w = 2;
                    param.pad_h = param.pad_w = p;
                    checker.set_param(param).exec({{2, 3, ih, iw}, {}});
                }
    }
}
TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
    using Param = param::Pooling;
    for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
    for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
    for (size_t p: {1, 2})
    {
        Param param;
        param.mode = Param::Mode::MAX;
        param.window_h = param.window_w = 3;
        param.stride_h = param.stride_w = 2;
        param.pad_h = param.pad_w = p;
        Checker<Pooling> checker(handle());
        checker.set_param(param).exec({{2, 3, ih, iw}, {}});
    }
}

#if MEGDNN_WITH_BENCHMARK
namespace {
template <typename Opr>
void benchmark_impl(const typename Opr::Param& param,
                    std::vector<SmallVector<TensorShape>> shapes, size_t RUNS,
                    TaskExecutorConfig&& multi_thread_config,
463 464
                    TaskExecutorConfig&& single_thread_config,
                    DType data_type) {
465 466 467 468 469 470
    std::vector<float> multi_thread_times, single_thread_times;
    {
        auto multi_thread_hanle =
                create_cpu_handle(0, true, &multi_thread_config);
        auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
        benchmarker.set_times(RUNS).set_display(false).set_param(param);
471
        benchmarker.set_dtype(0, data_type);
472 473 474 475 476 477 478 479 480
        for (auto shape : shapes) {
            multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
        }
    }
    {
        auto single_thread_handle =
                create_cpu_handle(0, true, &single_thread_config);
        auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
        benchmarker.set_times(RUNS).set_display(false).set_param(param);
481
        benchmarker.set_dtype(0, data_type);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        for (auto shape : shapes) {
            single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
        }
    }
    printf("Benchmark : Multi threads  %zu, ", multi_thread_config.nr_thread);
    printf("core_ids:");
    for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
        printf("%zu ", multi_thread_config.affinity_core_set[i]);
    }
    printf(", Single thread core_id %zu\n",
           single_thread_config.affinity_core_set[0]);
    for (size_t i = 0; i < shapes.size(); i++) {
        auto shape = shapes[i];
        printf("Case: ");
        for (auto sh : shape)
            printf("%s ", sh.to_string().c_str());
        printf("%zu threads time: %f,\n single thread time: "
               "%f. spead up = %f, speedup/cores=%f\n",
               multi_thread_config.nr_thread, multi_thread_times[i],
               single_thread_times[i],
               single_thread_times[i] / multi_thread_times[i],
               single_thread_times[i] / multi_thread_times[i] /
                       multi_thread_config.nr_thread);
    }
}
}  // namespace

TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
    constexpr size_t RUNS = 50;

    using Param = param::Pooling;
    Param param;
    param.window_h = param.window_w = 3;
    param.stride_h = param.stride_w = 2;
    param.pad_h = param.pad_w = 1;

    std::vector<SmallVector<TensorShape>> shapes;

    shapes.push_back({{32, 32, 215, 215}, {}});
    shapes.push_back({{32, 32, 128, 128}, {}});
    shapes.push_back({{8, 256, 100, 100}, {}});
    shapes.push_back({{1, 256, 100, 100}, {}});
    shapes.push_back({{1, 32, 100, 100}, {}});
    shapes.push_back({{1, 256, 80, 80}, {}});
    shapes.push_back({{1, 256, 60, 60}, {}});
    shapes.push_back({{1, 256, 30, 30}, {}});

    param.window_h = param.window_w = 3;
    param.stride_h = param.stride_w = 2;
    param.pad_h = param.pad_w = 1;
    printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
           param.window_w, param.stride_h, static_cast<int>(param.mode));
    benchmark_impl<Pooling>(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}}, dtype::Float32());
    benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::Float32());
    benchmark_impl<Pooling>(param, shapes, RUNS, {2, {0, 1}}, {1, {0}}, dtype::Float32());
}

TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING_NCHW44) {
    constexpr size_t RUNS = 50;

    using Param = param::Pooling;
    Param param;
    param.pad_h = param.pad_w = 0;
    param.mode = Param::Mode::MAX;
    std::vector<SmallVector<TensorShape>> shapes;
    std::vector<std::vector<size_t>> filter_and_stride = {
            {2, 1}, {2, 2}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}};
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

    for (auto mode :
         {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) {
        for (auto filter : filter_and_stride) {
            shapes.push_back({{1, 32 * 4, 215, 215}, {}});
            shapes.push_back({{1, 32 * 4, 128, 128}, {}});
            shapes.push_back({{1, 16 * 4, 56, 56}, {}});

            param.mode = mode;
            param.window_h = param.window_w = filter[0];
            param.stride_h = param.stride_w = filter[1];
            param.format = Param::Format::NCHW;
            printf("NCHW Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
                   param.window_h, param.window_h, param.stride_h,
                   static_cast<int>(param.mode));
            benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}},
                                    {1, {4}}, dtype::QuantizedS8(1.1f));
            shapes.clear();
            shapes.push_back({{1, 32, 215, 215, 4}, {}});
            shapes.push_back({{1, 32, 128, 128, 4}, {}});
            shapes.push_back({{1, 16, 56, 56, 4}, {}});

            param.format = Param::Format::NCHW44;
            printf("NCHW44 Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
                   param.window_h, param.window_w, param.stride_h,
                   static_cast<int>(param.mode));
            benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}},
                                    {1, {4}}, dtype::QuantizedS8(1.1f));
            shapes.clear();
        }
    }
580 581 582 583 584 585
}
#endif

}  // namespace test
}  // namespace megdnn
   // vim: syntax=cpp.doxygen