test_op.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8
import numpy as np
import pytest

import megengine as mge
import megengine.functional as F
from megengine.core.tensor import dtype
from megengine.distributed.helper import get_device_count_by_fork
from megengine.functional.elemwise import _elemwise_multi_type, _elwise
9
from megengine.quantization import QuantMode, create_qparams
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29


def quant(x, scale):
    x_dtype = dtype.qint8(scale)
    return x.astype(x_dtype)


def fake_quant(x, scale):
    x = x / scale
    x = F.round(x)
    x = F.clip(x, -128, 127)
    x = x * scale
    return x


@pytest.mark.parametrize("kind", ["ABS", "SIN", "SUB", "MUL", "FUSE_ADD_TANH"])
def test_elemwise(kind):
    x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
    x1_scale = np.float32(np.random.rand() + 1)
    x1 = fake_quant(x1, x1_scale)
30
    x1.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", x1_scale))
31 32 33 34 35
    x1_int8 = quant(x1, x1_scale)

    x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))
    x2_scale = np.float32(np.random.rand() + 1)
    x2 = fake_quant(x2, x2_scale)
36
    x2.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", x2_scale))
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    x2_int8 = quant(x2, x2_scale)

    output_scale = np.float32(np.random.rand() + 1)
    output_dtype = dtype.qint8(output_scale)

    quantized_kind = "Q" + kind
    if kind in ("ABS", "SIN"):
        desired_out = fake_quant(_elwise(x1, mode=kind), output_scale)
        actual_out = (
            _elemwise_multi_type(
                x1_int8, mode=quantized_kind, dtype=output_dtype
            ).numpy()
            * output_scale
        )
    else:
        desired_out = fake_quant(_elwise(x1, x2, mode=kind), output_scale)
        actual_out = (
            _elemwise_multi_type(
                x1_int8, x2_int8, mode=quantized_kind, dtype=output_dtype
            ).numpy()
            * output_scale
        )
    np.testing.assert_allclose(actual_out, desired_out.numpy())


@pytest.mark.skipif(
    get_device_count_by_fork("gpu") > 0, reason="cuda does not support nchw int8"
)
def test_conv_bias():
    inp_scale = np.float32(np.random.rand() + 1)
    w_scale = np.float32(np.random.rand() + 1)
    outp_scale = np.float32(np.random.rand() + 1)
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
        nonlinear_mode="IDENTITY",
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(OC, IC, KH, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = mge.tensor(inpv, dtype=inp_dtype)
        w_int8 = mge.Parameter(wv, dtype=w_dtype)
        b_int32 = mge.Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
            var = F.transpose(var, (0, 1, 3, 4, 2))
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
            if nonlinear_mode == "RELU":
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else mge.Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
            return F.quantized.conv_bias_activation(
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if mge.is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
            result = F.transpose(result, (0, 1, 4, 2, 3))
        expected = F.flatten(expected)
        result = F.flatten(result)
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "RELU")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "RELU")