utility.cpp 17.8 KB
Newer Older
1 2 3 4
/**
 * \file imperative/src/impl/ops/utility.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
 #include <queue>

14
#include "megbrain/imperative/ops/autogen.h"
15 16
#include "megbrain/imperative/ops/utility.h"
#include "megbrain/imperative/ops/opr_attr.h"
17 18 19
#include "megbrain/imperative/graph_cache.h"
#include "megbrain/imperative/subgraph_detail.h"
#include "megbrain/imperative/opr_utility.h"
20
#include "megbrain/opr/utility.h"
21 22 23
#include "megbrain/opr/tensor_gen.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/io.h"
24 25 26 27 28
#include "../op_trait.h"

namespace mgb::imperative {

MGB_DYN_TYPE_OBJ_FINAL_IMPL(GenericPyOp);
29
OP_TRAIT_REG(GenericPyOp, GenericPyOp).fallback();
30

31 32 33 34 35 36 37 38 39 40 41 42
namespace { namespace fastpathcopy {
    auto apply_on_var_node(
            const OpDef& def,
            const VarNodeArray& inputs) {
        return inputs;
    }

OP_TRAIT_REG(FastpathCopy,FastpathCopy)
    .apply_on_var_node(apply_on_var_node)
    .fallback();
}} // fastpathcopy

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
namespace  { namespace shape_infer {
auto apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
    auto& op = def.cast_final_safe<ShapeInfer>();
    size_t nr_inputs = inputs.size();
    mgb_assert(nr_inputs > 0, "no inputs for ShapeInfer");
    SmallVector<LogicalTensorDesc> input_descs;
    for (size_t i = 0; i < nr_inputs; ++i) {
        auto input = inputs[i]->get_value();
        TensorLayout layout;
        layout.ndim = input.shape(0);
        for (size_t i = 0; i < layout.ndim; ++i) {
            layout[i] = input.ptr<int32_t>()[i];
        }
        layout.dtype = op.dtypes[i];
        layout.init_contiguous_stride();
        input_descs.push_back({layout, op.devices[i]});
    }
    auto [output_descs, valid] = OpDef::infer_output_attrs_fallible(*op.op, input_descs);
    mgb_assert(valid, "shape inference incomplete");
    SmallVector<TensorPtr> outputs;
    for (auto&& output_desc: output_descs) {
        HostTensorND shape_tensor{output_desc.comp_node, {output_desc.layout.ndim}, dtype::Int32()};
        for (size_t i = 0; i < output_desc.layout.ndim; ++i) {
            shape_tensor.ptr<int32_t>()[i] = output_desc.layout[i];
        }
        auto output = Tensor::make(shape_tensor);
        outputs.push_back(output);
    }
    return outputs;
}
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto& op = def.cast_final_safe<ShapeInfer>();
    size_t nr_inputs = inputs.size();
    VarNodeArray input_values, outputs;
    mgb_assert(nr_inputs > 0, "no inputs for ShapeInfer");
    for (size_t i = 0; i < nr_inputs; ++i) {
        auto input_value = opr::Alloc::make(SymbolVar(inputs[i]), op.dtypes[i], {op.devices[i]});
        input_values.push_back(input_value.node());
    }
    auto output_values = OpDef::apply_on_var_node(*op.op, input_values);
    for (auto&& output_value: output_values) {
        outputs.push_back(opr::GetVarShape::make(output_value).node());
    }
    return outputs;
}

auto infer_output_attrs_fallible(
        const OpDef& def,
        const SmallVector<LogicalTensorDesc>& input_descs) {
    auto& op = def.cast_final_safe<ShapeInfer>();
    SmallVector<LogicalTensorDesc> input_shape_descs;
    size_t nr_inputs = op.devices.size();
    mgb_assert(op.dtypes.size() == nr_inputs, "number of input devices and dtypes mismatch");
    for (size_t i = 0; i < nr_inputs; ++i) {
        LogicalTensorDesc input_shape_desc;
        input_shape_desc.comp_node = op.devices[i];
        input_shape_desc.layout.ndim = 0;
        input_shape_desc.layout.dtype = op.dtypes[i];
        input_shape_descs.push_back(input_shape_desc);
    }
    auto [output_shape_descs, _] = OpDef::infer_output_attrs_fallible(*op.op, input_shape_descs);
    SmallVector<LogicalTensorDesc> output_descs;
    for (auto&& output_shape_desc: output_shape_descs) {
        LogicalTensorDesc output_desc;
        output_desc.comp_node = output_shape_desc.comp_node;
        output_desc.layout.ndim = 1;
        output_desc.layout.dtype = dtype::Int32();
        output_descs.push_back(output_desc);
    }
    return std::make_tuple(output_descs, false);
}

auto props(const OpDef& def) {
    auto& op = def.cast_final_safe<ShapeInfer>();
    return OpDef::props(*op.op);
}

auto make_name(const OpDef& def) {
    auto& op = def.cast_final_safe<ShapeInfer>();
    MGB_MARK_USED_VAR(op);
    return ssprintf("ShapeInfer[%s]", op.op->make_name().c_str());
}

auto hash(const OpDef& def) {
    auto& op = def.cast_final_safe<ShapeInfer>();
    return op.op->hash();
}

auto is_same_st(const OpDef& def, const OpDef& another) {
    if (!another.same_type<ShapeInfer>()) {
        return false;
    }
    auto& lhs = def.cast_final_safe<ShapeInfer>();
    auto& rhs = another.cast_final_safe<ShapeInfer>();
    if (!lhs.op->is_same(*rhs.op)) {
        return false;
    }
    return std::tie(lhs.devices, lhs.dtypes) ==
           std::tie(rhs.devices, rhs.dtypes);
}

OP_TRAIT_REG(ShapeInfer,ShapeInfer)
    .apply_on_var_node(apply_on_var_node)
    .apply_on_physical_tensor(apply_on_physical_tensor)
    .infer_output_attrs_fallible(infer_output_attrs_fallible)
    .make_name(make_name)
    .props(props)
    .hash(hash)
    .is_same_st(is_same_st)
    .fallback();
}}


MGB_DYN_TYPE_OBJ_FINAL_IMPL(ShapeInfer);

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
namespace { namespace identity {
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    auto&& op = def.cast_final_safe<Identity>();
    mgb_assert(inputs.size() == 1);
    OperatorNodeConfig config{op.make_name()};
    return opr::Identity::make(inputs[0], config);
}

auto apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
    return SmallVector<TensorPtr>{inputs[0]};
}
OP_TRAIT_REG(Identity, Identity)
    .apply_on_var_node(apply_on_var_node)
    .apply_on_physical_tensor(apply_on_physical_tensor)
    .fallback();
}} // identity

183 184 185
namespace { namespace subgraph {

EncodedSubraph make_forward_graph(const OpDef& def, SmallVector<LogicalTensorDesc> inputs) {
186
    return EncodedSubraph::make(*def.cast_final_safe<SubgraphOp>().graph);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
}

EncodedSubraph make_backward_graph(
        const OpDef& def, 
        const SmallVector<LogicalTensorDesc>& inputs,
        const SmallVector<bool>& input_requires_grad,
        SmallVector<bool> output_has_grad) {
    auto& op = def.cast_final_safe<SubgraphOp>();
    mgb_assert(output_has_grad.size() == op.output_grad_mask.size());
    for (size_t i = 0; i < output_has_grad.size(); ++i) {
        if (!op.output_grad_mask[i]) {
            output_has_grad[i] = false;
        }
    }
    auto bgraph = subgraph_detail::make_backward_graph(def, inputs, input_requires_grad, output_has_grad);
202 203 204 205
    return EncodedSubraph::make_single(
            SubgraphOp::make(op.name + "Grad",
                             std::make_shared<Subgraph>(bgraph.graph)),
            bgraph.input_mask, bgraph.output_mask);
206 207 208 209 210 211
}

std::vector<std::pair<const char*, std::string>> props(const OpDef& def) {
    auto& op = def.cast_final_safe<SubgraphOp>();
    return {
        {"name", op.name},
212 213 214
        {"inputs", mgb::imperative::to_string(op.graph->inputs)},
        {"exprs", mgb::imperative::to_string(op.graph->exprs)},
        {"outputs", mgb::imperative::to_string(op.graph->outputs)},
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    };
}

std::string make_name(const OpDef& def) {
    auto& op = def.cast_final_safe<SubgraphOp>();
    if (op.name.empty()) {
        return "SubgraphOp";
    } else {
        return op.name;
    }
}

auto hash(const OpDef& def) {
    auto& op = def.cast_final_safe<SubgraphOp>();
    if (!op.graph_key) {
230
        return (size_t)reinterpret_cast<uintptr_t>(op.graph.get());
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    }
    return op.graph_key->hash();
}

auto is_same_st(const OpDef& def, const OpDef& another) {
    if (!another.same_type<SubgraphOp>()) {
        return false;
    }
    auto& lhs = def.cast_final_safe<SubgraphOp>();
    auto& rhs = another.cast_final_safe<SubgraphOp>();
    auto has_graph_key = bool(lhs.graph_key);
    bool graph_same = false;
    if (has_graph_key) {
        graph_same = rhs.graph_key && lhs.graph_key->is_same(*rhs.graph_key);
    } else {
246
        graph_same = !rhs.graph_key && lhs.graph.get() == rhs.graph.get();
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    }
    return graph_same;
}

OP_TRAIT_REG(SubgraphOp, SubgraphOp)
    .make_forward_graph(make_forward_graph)
    .make_backward_graph(make_backward_graph)
    .props(props)
    .make_name(make_name)
    .hash(hash)
    .is_same_st(is_same_st)
    .fallback();

}}

namespace { namespace compiled_op {

struct DeviceMemoryAllocatorImpl: cg::DeviceMemoryAllocator {
    std::shared_ptr<OpDef> current_op;
    void alloc_static(ComputingGraph* graph, DeviceTensorStorage& dest, size_t size) override {
        mgb_assert(0, "alloc_static is not allowed in CompiledOp");
    }
    void alloc_dynamic(VarNode* var, DeviceTensorStorage& dest, size_t size) override {
        auto comp_node = var->comp_node();
        auto storage = current_op->allocate(comp_node, size);
        dest.reset(comp_node, size, storage);
    }
};

struct ComputingGraphHolder {
    std::shared_ptr<ComputingGraph> graph;
    std::unique_ptr<cg::AsyncExecutable> executable;
    SmallVector<std::shared_ptr<DeviceTensorND>> inputs;
    SmallVector<std::shared_ptr<DeviceTensorND>> outputs;
    std::shared_ptr<DeviceMemoryAllocatorImpl> allocator;
282
    SmallVector<std::unique_ptr<CompNode::Event>> events;
283 284 285
};

ComputingGraphHolder& get_computing_graph(std::shared_ptr<OpDef> compiled_op, SmallVector<LogicalTensorDesc> descs) {
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    using ComputingGraphHolderCache = OpMethResultCache<std::queue<std::unique_ptr<ComputingGraphHolder>>>;
    thread_local ComputingGraphHolderCache cache;
    thread_local size_t nr_cg_holders = 0;
    ComputingGraphHolderCache::key_t cache_key = {compiled_op, descs};
    auto& cg_holder_queue = cache[cache_key];
    std::unique_ptr<ComputingGraphHolder> holder;
    if(!cg_holder_queue.empty()) {
        // pick one
        std::swap(cg_holder_queue.front(), holder);
        // check all events finished
        for (auto&& event: holder->events) {
            if (!event->finished()) {
                bool queue_limited = event->comp_node().contain_flag(CompNode::Flag::QUEUE_LIMITED);
                bool many_graph = cg_holder_queue.size() > 10;
                if (queue_limited || !many_graph) {
                    std::swap(cg_holder_queue.front(), holder);
                    break;
                } else {
                    // graph limit
                    mgb_log_debug("computing graph limit for compiled op exceeded, waiting for prev graph");
                    event->host_wait();
                }
            }
        }
        if (holder) {
            cg_holder_queue.pop();
        }
    }
    if (!holder) {
        // create new computing graph
        holder = std::make_unique<ComputingGraphHolder>();
        auto& cg_holder = *holder;
318 319 320 321 322 323
        cg_holder.allocator = std::make_shared<DeviceMemoryAllocatorImpl>();
        cg_holder.graph = ComputingGraph::make();
        cg_holder.graph->options().force_dynamic_alloc = true;
        cg_holder.graph->options().async_exec_level = 0;
        cg_holder.graph->options().graph_opt_level = compiled_op->cast_final_safe<CompiledOp>().gopt_level;
        cg_holder.graph->options().enable_var_mem_defragment = false;
324
        cg_holder.graph->options().comp_seq_sync_device = false;
325
        // set allocator for DTR support
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        cg_holder.graph->set_device_memory_allocator(cg_holder.allocator);
        VarNodeArray input_vars;
        for (auto&& desc: descs) {
            auto input_device_nd = std::make_shared<DeviceTensorND>();
            input_device_nd->dtype(desc.layout.dtype);
            input_device_nd->comp_node(desc.comp_node);
            input_device_nd->resize(desc.layout);
            cg_holder.inputs.push_back(input_device_nd);
            auto callback = [input_device_nd]{
                return *input_device_nd;
            };
            auto* input_var = opr::InputCallback::make(*cg_holder.graph, callback, desc.comp_node, desc.layout.dtype, TensorShape())[0].node();
            input_vars.push_back(input_var);
        }
        // forward to inner op
        auto output_vars = OpDef::apply_on_var_node(*compiled_op, input_vars);
        ComputingGraph::OutputSpec output_spec;
        size_t nr_outputs = output_vars.size();
        for (size_t i = 0; i < nr_outputs; ++i) {
            auto* output_var = output_vars[i];
            auto output_ptr = std::make_shared<DeviceTensorND>();
            auto callback = [output_ptr](DeviceTensorND output){
                output_ptr->reset(output.storage(), output.layout());
            };
            output_spec.push_back({output_var, callback});
            cg_holder.outputs.push_back(output_ptr);
        }
        cg_holder.executable = cg_holder.graph->compile(output_spec);
354 355 356 357 358 359 360 361 362 363
        CompNode::UnorderedSet comp_nodes;
        for (auto&& output_var: output_vars) {
            comp_nodes.insert(output_var->comp_node());
        }
        for (auto&& comp_node: comp_nodes) {
            cg_holder.events.push_back(comp_node.create_event());
            cg_holder.events.back()->record();
        }
        nr_cg_holders++;
        mgb_log_debug("add new computing graph for compiled op, now %zu graphs", nr_cg_holders);
364
    }
365 366
    cg_holder_queue.push(std::move(holder));
    return *cg_holder_queue.back();
367 368 369 370 371 372 373 374 375 376 377 378
}

auto apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
    SmallVector<LogicalTensorDesc> input_descs;
    for (auto&& input: inputs) {
        input_descs.push_back({input->layout(), input->comp_node()});
    }
    size_t nr_inputs = inputs.size();
    auto shared_def = const_cast<OpDef&>(def).shared_from_this();
    auto& cg_holder = get_computing_graph(shared_def, input_descs);
379 380
    // wait for last execution
    cg_holder.executable->wait();
381 382 383 384 385 386
    for (size_t i = 0; i < nr_inputs; ++i) {
        auto input_dev_tensor = inputs[i]->dev_tensor();
        cg_holder.inputs[i]->reset(input_dev_tensor.storage(), input_dev_tensor.layout());
    }
    cg_holder.allocator->current_op = shared_def;
    cg_holder.executable->execute();
387 388 389
    for (auto&& event: cg_holder.events) {
        event->record();
    }
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    SmallVector<TensorPtr> outputs;
    for (auto input_nd: cg_holder.inputs) {
        *input_nd = {};
    }
    for (auto output_nd: cg_holder.outputs) {
        outputs.push_back(Tensor::make(*output_nd));
        *output_nd = {};
    }
    cg_holder.executable->clear_device_memory();
    cg_holder.allocator->current_op = nullptr;
    return outputs;
}
auto apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
405 406 407
    auto& op = def.cast_final_safe<CompiledOp>();
    op.op->set_scope(op.scope());
    return OpDef::apply_on_var_node(*op.op, inputs);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
}

auto infer_output_attrs_fallible(
        const OpDef& def,
        const SmallVector<LogicalTensorDesc>& input_descs) {
    return OpDef::infer_output_attrs_fallible(*def.cast_final_safe<CompiledOp>().op, input_descs);
}

auto props(const OpDef& def) {
    return OpDef::props(*def.cast_final_safe<CompiledOp>().op);
}

auto make_name(const OpDef& def) {
    auto& op = def.cast_final_safe<CompiledOp>();
    MGB_MARK_USED_VAR(op);
    return ssprintf("CompiledOp[%s]", op.op->make_name().c_str());
}

std::tuple<SmallVector<MemoryDesc>, SmallVector<MemoryDesc>> infer_output_mem_desc(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs_tensors,
        const SmallVector<MemoryDesc>& inputs_mems) {
    return {};
}

EncodedSubraph make_backward_graph(
        const OpDef& def, 
        const SmallVector<LogicalTensorDesc>& inputs,
        const SmallVector<bool>& input_requires_grad,
        const SmallVector<bool>& output_has_grad) {
    auto& op = def.cast_final_safe<CompiledOp>();
    auto backward_graph = OpDef::make_backward_graph(*op.op, inputs, input_requires_grad, output_has_grad);
    auto name = def.trait()->make_name(def);
    auto key = std::make_shared<BackwardOpKey>();
    key->op = op.op;
    key->inputs = inputs;
    key->extras = {input_requires_grad, output_has_grad};
    SmallVector<bool> grad_outputs_has_grad(backward_graph.graph.outputs.size(), true);
    std::shared_ptr<OpDef> bgraph_op;
    if (backward_graph.graph.is_single()) {
        bgraph_op = backward_graph.graph.as_single();
    } else {
450 451 452
        bgraph_op = SubgraphOp::make(
                name + "Grad", std::make_shared<Subgraph>(backward_graph.graph),
                grad_outputs_has_grad, key);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    }
    auto compiled_op = CompiledOp::make(bgraph_op, op.gopt_level);
    auto encoded_graph = EncodedSubraph::make_single(compiled_op, backward_graph.input_mask, backward_graph.output_mask);
    return encoded_graph;
}

auto hash(const OpDef& def) {
    auto& op = def.cast_final_safe<CompiledOp>();
    return mgb::hash_pair_combine(op.op->hash(), op.gopt_level);
}

auto is_same_st(const OpDef& def, const OpDef& another) {
    if (!another.same_type<CompiledOp>()) {
        return false;
    }
    auto& lhs = def.cast_final_safe<CompiledOp>();
    auto& rhs = another.cast_final_safe<CompiledOp>();
    return lhs.op->is_same(*rhs.op) && lhs.gopt_level == rhs.gopt_level;
}

OP_TRAIT_REG(CompiledOp, CompiledOp)
    .apply_on_var_node(apply_on_var_node)
    .apply_on_physical_tensor(apply_on_physical_tensor)
    .infer_output_attrs_fallible(infer_output_attrs_fallible)
    .make_backward_graph(make_backward_graph)
    .make_name(make_name)
    .infer_output_mem_desc(infer_output_mem_desc)
    .props(props)
    .hash(hash)
    .is_same_st(is_same_st)
    .fallback();
}}

486 487
MGB_DYN_TYPE_OBJ_FINAL_IMPL(UniqueKey);

488 489 490 491 492 493
MGB_DYN_TYPE_OBJ_FINAL_IMPL(SubgraphOp);

MGB_DYN_TYPE_OBJ_FINAL_IMPL(BackwardOpKey);

MGB_DYN_TYPE_OBJ_FINAL_IMPL(CompiledOp);

494
} // namespace mgb::imperative