algos.h 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/**
 * \file dnn/src/x86/conv_bias/f32/algos.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#pragma once
#include "src/x86/conv_bias/opr_impl.h"

using namespace megdnn;
using namespace x86;

/* ===================== direct algo ===================== */
class ConvBiasImpl::AlgoDirect final : public AlgoBase {
    SmallVector<NCBKern> get_kimpls(const NCBKernSizeParam& param) const;
    WorkspaceBundle get_bundle(const NCBKernSizeParam& param) const;

    static void copy_padding_kern(WorkspaceBundle bundle,
                                  const NCBKernParam& kern_param,
25 26
                                  const NCBKernIndex& ncb_index,
                                  const CpuNDRange& workspace_ids);
27 28
    static void do_conv_kern(WorkspaceBundle bundle,
                             const NCBKernParam& kern_param,
29 30
                             const NCBKernIndex& ncb_index,
                             const CpuNDRange& workspace_ids);
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    bool m_large_group;

public:
    AlgoDirect(bool large_group) : m_large_group(large_group) {}
    bool is_reproducible() const override { return true; }
    const char* name() const override {
        return m_large_group ? "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP"
                             : "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP";
    }
    bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
                AlgoSelectionStrategy algo_selection_strategy) const override;

    size_t get_workspace(FallbackConvBiasImpl* opr,
                         const NCBKernSizeParam& param) const override;

    virtual SmallVector<NCBKern> dispatch_kerns(
            fallback::ConvBiasImpl*,
            const NCBKernSizeParam& param) const override {
        return get_kimpls(param);
    }

    void* type() const override;
};

/* ===================== direct-stride2 algo ===================== */
class ConvBiasImpl::AlgoDirectStride2 final : public AlgoBase {
    SmallVector<NCBKern> get_kimpls(const NCBKernSizeParam& param) const;
    WorkspaceBundle get_bundle(const NCBKernSizeParam& param) const;

    static void copy_padding_kern(WorkspaceBundle bundle,
                                  const NCBKernParam& kern_param,
62 63
                                  const NCBKernIndex& ncb_index,
                             const CpuNDRange& workspace_ids);
64 65
    static void do_conv_kern(WorkspaceBundle bundle,
                             const NCBKernParam& kern_param,
66 67
                             const NCBKernIndex& ncb_index,
                             const CpuNDRange& workspace_ids);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    bool m_large_group;

public:
    AlgoDirectStride2(bool large_group) : m_large_group(large_group) {}
    bool is_reproducible() const override { return true; }
    const char* name() const override {
        return m_large_group ? "X86_CONV_BIAS_DIRECT_STRIDE2_LARGE_GROUP"
                             : "X86_CONV_BIAS_DIRECT_STRIDE2_SMALL_GROUP";
    }
    bool usable(FallbackConvBiasImpl* opr, const NCBKernSizeParam& param,
                AlgoSelectionStrategy algo_selection_strategy) const override;

    size_t get_workspace(FallbackConvBiasImpl* opr,
                         const NCBKernSizeParam& param) const override;

    virtual SmallVector<NCBKern> dispatch_kerns(
            fallback::ConvBiasImpl*,
            const NCBKernSizeParam& param) const override {
        return get_kimpls(param);
    }

    void* type() const override;
};
/* =========================== winograd ======================== */
class ConvBiasImpl::AlgoFP32WinogradF63_8x8 final : public AlgoBase {
public:
    AlgoFP32WinogradF63_8x8(fallback::MatrixMulImpl::AlgoBase* matmul_algo,
                            uint32_t tile_size)
            : m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {}
    bool is_reproducible() const override { return true; }
    const char* name() const override {
        if (m_name.empty()) {
            m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>(
                    m_matmul_algo->name(), {8, 6, m_tile_size});
        }
        return m_name.c_str();
    }
    bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
                AlgoSelectionStrategy algo_selection_strategy) const override;
    size_t get_workspace(fallback::ConvBiasImpl*,
                         const NCBKernSizeParam& param) const override;
    virtual SmallVector<NCBKern> dispatch_kerns(
            fallback::ConvBiasImpl* opr,
            const NCBKernSizeParam& param) const override;
    void* type() const override;

private:
    fallback::MatrixMulImpl::AlgoBase* m_matmul_algo;
    mutable std::string m_name;
    uint32_t m_tile_size;
};

class ConvBiasImpl::AlgoFP32WinogradF23_8x8 final : public AlgoBase {
public:
    AlgoFP32WinogradF23_8x8(fallback::MatrixMulImpl::AlgoBase* matmul_algo,
                            uint32_t tile_size)
            : m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {}
    bool is_reproducible() const override { return true; }
    const char* name() const override {
        if (m_name.empty()) {
            m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>(
                    m_matmul_algo->name(), {8, 2, m_tile_size});
        }
        return m_name.c_str();
    }
    bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
                AlgoSelectionStrategy algo_selection_strategy) const override;
    size_t get_workspace(fallback::ConvBiasImpl*,
                         const NCBKernSizeParam& param) const override;
    virtual SmallVector<NCBKern> dispatch_kerns(
            fallback::ConvBiasImpl* opr,
            const NCBKernSizeParam& param) const override;
    void* type() const override;

private:
    fallback::MatrixMulImpl::AlgoBase* m_matmul_algo;
    mutable std::string m_name;
    uint32_t m_tile_size;
};

/* ===================== matmul algo ===================== */
class ConvBiasImpl::AlgoMatrixMul final : public AlgoBase {
    static MatrixMul* get_matmul_opr();
    static WorkspaceBundle get_bundle(const NCBKernSizeParam& param);
    static void kimpl(const NCBKernParam& param, const NCBKernIndex&);

public:
    bool is_reproducible() const override { return true; }
    const char* name() const override { return "X86_CONV_BIAS_MATMUL"; }

    bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param,
                AlgoSelectionStrategy) const override {
        auto&& fm = param.filter_meta;
        return fm.format == Param::Format::NCHW && fm.spatial_ndim == 2 &&
               param.src_type.enumv() == DTypeEnum::Float32 &&
               param.filter_type.enumv() == DTypeEnum::Float32 &&
               param.dst_type.enumv() == DTypeEnum::Float32 &&
               fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
               //! The matmul opr is only used in single thread
               //! TODO:support the no pack matmul algo in fallback im2col +
               //! matmul
               param.nr_threads == 1_z;
    }

    bool is_preferred(FallbackConvBiasImpl*,
                      const NCBKernSizeParam&) const override;

    size_t get_workspace(FallbackConvBiasImpl*,
                         const NCBKernSizeParam& param) const override {
        return get_bundle(param).total_size_in_bytes();
    }
    SmallVector<NCBKern> dispatch_kerns(
            FallbackConvBiasImpl* /*opr*/,
            const NCBKernSizeParam& param) const override {
        size_t group = param.filter_meta.group;
        return {{kimpl, {group, 1_z, 1_z}}};
    }

    void* type() const override;
};

189
#if MEGDNN_X86_WITH_MKL_DNN
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
class ConvBiasImpl::AlgoMkldnnConv final : public AlgoBase {
    static void kern_mkldnn_fp32(const NCBKernParam& param,
                                 const NCBKernIndex&);

public:
    AlgoMkldnnConv() {}
    bool is_reproducible() const override { return true; }
    const char* name() const override { return "MKLDNN_CONV_FP32"; }
    bool usable(FallbackConvBiasImpl*, const NCBKernSizeParam& param,
                AlgoSelectionStrategy) const override {
        auto&& fm = param.filter_meta;

        bool ok = (fm.format == param::ConvBias::Format::NCHW88) &&
                  fm.spatial_ndim == 2 &&
                  param.src_type.enumv() == DTypeEnum::Float32 &&
                  param.filter_type.enumv() == DTypeEnum::Float32 &&
                  param.dst_type.enumv() == DTypeEnum::Float32 &&
                  fm.dilation[0] == 1 && fm.dilation[1] == 1;
        return ok;
    };

    size_t get_workspace(FallbackConvBiasImpl* /*opr*/,
                         const NCBKernSizeParam&) const override {
        return 0;
    }

    SmallVector<NCBKern> dispatch_kerns(
            FallbackConvBiasImpl* /*opr*/,
            const NCBKernSizeParam& /*param*/) const override {
        auto kern = [](const NCBKernParam& param,
                       const NCBKernIndex& ncb_index) {
            kern_mkldnn_fp32(param, ncb_index);
        };
        return {{kern, {1_z, 1_z, 1_z}}};
    }
    void* type() const override;
};
#endif
// vim: syntax=cpp.doxygen