matrix_mul.cpp 16.8 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/common/matrix_mul.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14
 */
#include "src/common/utils.h"
#include "test/common/benchmarker.h"
#include "test/common/checker.h"
15
#include "test/common/matrix_mul.h"
16 17 18 19

using namespace megdnn;
using namespace test;

20 21
constexpr size_t matrix_mul::TestArg::UNSET_STRIDE_VAL;

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_no_mask() {
    std::vector<TestArg> args;

    for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 32})
        for (size_t n : {1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13,
                         14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32})
            for (size_t k : {1, 2, 4, 8, 11, 12, 15, 16, 31, 32, 37})
                args.emplace_back(m, n, k, 0);

    for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17})
        args.emplace_back(m, m + 1, m + 2, 0);
    for (size_t mbase : {11})
        for (size_t test_case_offset : {64, 256, 512}) {
            size_t mnk = mbase + test_case_offset;
            args.emplace_back(mnk, mnk, mnk, 0);
            return args;
        }
    return args;
}

std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_mk_packed_args(
        size_t nbase) {
    std::vector<TestArg> args;
45
    for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11})
46
        for (size_t n : {1, 2, 3, 4, 5, 8, 12, 16, 24})
47
            for (size_t k : {1, 2, 3, 4, 5, 9, 10, 11})
48 49 50 51 52 53 54 55 56 57 58 59 60 61
                args.emplace_back(m, n * nbase, k, 0);
    return args;
}

std::vector<matrix_mul::TestArg>
matrix_mul::get_batched_matmul_args_cublaslt() {
    std::vector<TestArg> args;
    for (size_t m : {4, 6, 8, 16}) {
        for (size_t n : {4, 6, 8, 16}) {
            //[TODO]: the following test case are disabled due to the
            // cublasLt(version: 10020) produce wrong result when k in [65, 97],
            // so please uncomment it if the bug is fixed

            for (size_t k : {32, 64}) {
62 63 64
                args.emplace_back(m, n, k, 0, TestArg::UNSET_STRIDE_VAL,
                                  TestArg::UNSET_STRIDE_VAL,
                                  TestArg::UNSET_STRIDE_VAL, 2);
65 66 67 68 69 70 71 72 73 74 75 76
            }
        }
    }
    return args;
}

std::vector<matrix_mul::TestArg>
matrix_mul::get_batched_matmul_args_int8x8x32() {
    std::vector<TestArg> args;
    for (size_t m : {1, 2, 3, 4, 5, 8, 64}) {
        for (size_t n : {1, 2, 3, 4, 5, 8, 64}) {
            for (size_t k : {1, 2, 3, 4, 5, 8, 64}) {
77 78 79
                args.emplace_back(m, n, k, 0, TestArg::UNSET_STRIDE_VAL,
                                  TestArg::UNSET_STRIDE_VAL,
                                  TestArg::UNSET_STRIDE_VAL, 2);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
            }
        }
    }
    return args;
}

std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_mask(
        uint8_t mask) {
    std::vector<TestArg> args;

    std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_no_mask();
    for (auto arg : args_temp) {
        arg.mask = mask;
        args.emplace_back(arg);
    }

    // non-contiguous case
    for (size_t m : {110})
        for (size_t n : {119})
            for (size_t k : {120}) {
                // A: (m, k)
                size_t Astride = mask & 1 ? m + 2 : k + 2;
                // B: (k, n)
                size_t Bstride = mask & 2 ? k + 2 : n + 2;
104
                size_t Cstride = n * 2 + 2;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
                args.emplace_back(m, n, k, mask, Astride, Bstride, Cstride);
            }
    return args;
}

std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args() {
    std::vector<TestArg> args;
    for (size_t mask = 0; mask < 4; ++mask) {
        std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_mask(mask);
        for (auto arg : args_temp)
            args.emplace_back(arg);
    }
    return args;
}

120 121 122 123 124 125 126 127 128 129 130 131
std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_split_k() {
    std::vector<TestArg> args = get_matmul_args();
    for (auto iter = args.begin(); iter < args.end();) {
        if (iter->k <= iter->n) {
            iter = args.erase(iter);
        } else {
            iter++;
        }
    }
    return args;
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_mask(
        uint8_t mask) {
    std::vector<TestArg> args;
    for (size_t b : {1, 2, 3}) {
        std::vector<TestArg> args_temp =
                megdnn::test::matrix_mul::get_matmul_args_mask(mask);
        for (auto arg : args_temp) {
            arg.b = b;
            args.emplace_back(arg);
        }
    }
    return args;
}

std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args() {
    std::vector<TestArg> args;
    for (size_t mask = 0; mask < 4; ++mask) {
        std::vector<TestArg> args_temp =
                matrix_mul::get_batched_matmul_args_mask(mask);
        for (auto arg : args_temp)
            args.emplace_back(arg);
    }
    return args;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
std::vector<matrix_mul::TestArg>
matrix_mul::get_batched_matmul_broadcast_args() {
    std::vector<TestArg> args;
    for (size_t mask = 0; mask < 4; ++mask) {
        std::vector<TestArg> args_temp =
                matrix_mul::get_batched_matmul_broadcast_args_mask(mask);
        for (auto arg : args_temp)
            args.emplace_back(arg);
    }
    return args;
}

std::vector<matrix_mul::TestArg>
matrix_mul::get_batched_matmul_broadcast_args_mask(uint8_t mask) {
    std::vector<TestArg> args;
    std::vector<TestArg> args_temp =
            matrix_mul::get_batched_matmul_args_mask(mask);
    for (auto arg : args_temp) {
        args.emplace_back(arg);
        args.back().A_batch_stride = 0;
    }
    return args;
}

181 182
template <typename Opr>
void matrix_mul::check_matrix_mul(DType A_dtype, DType B_dtype, DType C_dtype,
183 184
                                  Handle* handle,
                                  const ExecutionPolicyAlgoName& algo,
185
                                  param::MatrixMul::Format format, size_t nbase,
186 187
                                  float eps, std::vector<TestArg>&& user_args,
                                  bool force_deduce_dst) {
188 189
    megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
    Checker<Opr> checker(handle);
190
    checker.set_force_deduce_dst(force_deduce_dst);
191
    if (!algo.name.empty()) {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        checker.set_before_exec_callback(AlgoChecker<Opr>(algo));
    }
    std::unique_ptr<RNG> rng;
    checker.set_epsilon(eps);
    if (A_dtype.enumv() == DTypeEnum::Int8 ||
        A_dtype.enumv() == DTypeEnum::QuantizedS8) {
        //! use larger rng to check the overflow
        rng = std::make_unique<UniformIntRNG>(-127, 127);
    } else if (A_dtype.enumv() == DTypeEnum::Uint8 ||
               A_dtype.enumv() == DTypeEnum::Quantized8Asymm) {
        rng = std::make_unique<NormalRNG>(128.f);
    } else if (A_dtype.enumv() == DTypeEnum::Int16) {
        rng = std::make_unique<UniformIntRNG>(-32767, 32767);
    } else if (A_dtype.enumv() == DTypeEnum::Float16) {
        rng = std::make_unique<NormalRNG>(2.f);
        //! if fp16 not set eps, default 1e-3, we just set it to 1e-2
        if (eps < 1e-2) {
            checker.set_epsilon(1e-2);
        }
    }

    if (rng) {
        checker.set_rng(0, rng.get()).set_rng(1, rng.get());
    }

217
    //! return expect if stride == -1, stride otherwise
218
    auto stride_val = [](size_t stride, size_t expect) -> size_t {
219
        if (stride == TestArg::UNSET_STRIDE_VAL) {
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            return expect;
        } else {
            return stride;
        }
    };

    constexpr static bool batched =
            std::is_same<Opr, megdnn::BatchedMatrixMul>::value;
    using Param = MatrixMul::Param;
    std::vector<TestArg> args;
    if (user_args.empty()) {
        if (format == param::MatrixMul::Format::DEFAULT) {
            if (batched) {
                args = matrix_mul::get_batched_matmul_args();
            } else {
                args = matrix_mul::get_matmul_args();
            }

        } else {
            megdnn_assert(!batched,
                          "BatchedMatrixMul does not support MK4/MK8");
            args = matrix_mul::get_matmul_mk_packed_args(nbase);
        }
    } else {
        args = user_args;
    }
    size_t pack_size = MatrixMulForward::pack_size(format);
    for (auto& arg : args) {
        size_t m = arg.m, n = arg.n, k = arg.k;

250 251 252 253 254 255 256 257 258
        if (handle->type() == Handle::HandleType::CUDA) {
            //! NOTE: cublas can only process 4B aligned 8-bit input matrix;
            bool is_dt_8bit = A_dtype.enumv() == DTypeEnum::Int8 ||
                              A_dtype.enumv() == DTypeEnum::QuantizedS8 ||
                              A_dtype.enumv() == DTypeEnum::Uint8 ||
                              A_dtype.enumv() == DTypeEnum::Quantized8Asymm;
            if (is_dt_8bit && ((m % 4 != 0) || (n % 4 != 0))) {
                continue;
            }
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        }

        Param param;
        param.transposeA = arg.mask & 0x1;
        param.transposeB = arg.mask & 0x2;
        param.format = format;
        checker.set_dtype(0, A_dtype)
                .set_dtype(1, B_dtype)
                .set_dtype(2, C_dtype);
        size_t A0 = m, A1 = k, B0 = k, B1 = n;
        TensorShape A, B;
        if (param.transposeA) {
            std::swap(A0, A1);
        }
        if (param.transposeB) {
            std::swap(B0, B1);
        }
        ptrdiff_t A_stride = arg.A_stride, B_stride = arg.B_stride,
                  C_stride = arg.C_stride, A_batch_stride = arg.A_batch_stride,
                  B_batch_stride = arg.B_batch_stride,
                  C_batch_stride = arg.C_batch_stride;
        A_stride = stride_val(A_stride, A1);
        B_stride = stride_val(B_stride, B1);
        C_stride = stride_val(C_stride, n);
        A_batch_stride = stride_val(A_batch_stride, A0 * A_stride);
        B_batch_stride = stride_val(B_batch_stride, B0 * B_stride);
        C_batch_stride = stride_val(C_batch_stride, m * C_stride);

        checker.set_param(param);
        if (format == param::MatrixMul::Format::DEFAULT) {
            if (batched) {
                checker.execl({TensorLayout{{arg.b, A0, A1},
                                            {A_batch_stride, A_stride, 1},
                                            A_dtype},
                               TensorLayout{{arg.b, B0, B1},
                                            {B_batch_stride, B_stride, 1},
                                            B_dtype},
                               TensorLayout{{arg.b, m, n},
                                            {C_batch_stride, C_stride, 1},
                                            C_dtype}});
            } else {
                checker.execl({TensorLayout{{A0, A1}, {A_stride, 1}, A_dtype},
                               TensorLayout{{B0, B1}, {B_stride, 1}, B_dtype},
                               TensorLayout{{m, n}, {C_stride, 1}, C_dtype}});
            }
        } else {
            //! ignore non-contiguous, only DEFAULT format support
            //! non-contiguous input
            checker.execs(
                    {{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}});
        }
    }
}

void matrix_mul::check_batched_matrix_mul(DType A_dtype, DType B_dtype,
                                          DType C_dtype, Handle* handle,
315 316
                                          const ExecutionPolicyAlgoName& algo,
                                          float eps,
317 318
                                          std::vector<TestArg>&& args,
                                          bool force_deduce_dst) {
319 320 321
    check_matrix_mul<megdnn::BatchedMatrixMul>(
            A_dtype, B_dtype, C_dtype, handle, algo,
            param::MatrixMul::Format::DEFAULT, 8, eps,
322
            std::forward<decltype(args)>(args), force_deduce_dst);
323 324 325
}

void matrix_mul::check_matrix_mul(DType A_dtype, DType B_dtype, DType C_dtype,
326 327
                                  Handle* handle,
                                  const ExecutionPolicyAlgoName& algo,
328
                                  param::MatrixMul::Format format, size_t nbase,
329
                                  float eps, bool force_deduce_dst) {
330
    check_matrix_mul<megdnn::MatrixMul>(A_dtype, B_dtype, C_dtype, handle, algo,
331 332
                                        format, nbase, eps, {},
                                        force_deduce_dst);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
}

#if MEGDNN_WITH_BENCHMARK
std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_args() {
    std::vector<matrix_mul::TestArg> args;
    args.emplace_back(256, 12 * 24, 256, 0);

    //////////////////////// gemv //////////////////////////
    for (size_t M : {8, 64, 112, 256}) {
        for (size_t K : {8, 64, 112, 256}) {
            args.emplace_back(M, 1, K, 0);
        }
    }

    //////////////////////// gemm //////////////////////////
    for (size_t M : {8, 64, 112, 256}) {
        for (size_t K : {8, 16, 32, 64, 112, 256}) {
            for (size_t N : {8, 64, 112, 256}) {
                args.emplace_back(M, N, K, 0);
            }
        }
    }
    return args;
}

std::vector<matrix_mul::TestArg>
matrix_mul::get_benchmark_matmul_mk_packed_args(size_t nbase) {
    std::vector<TestArg> args;
    for (size_t m : {2, 4, 8, 16, 24, 32, 64})
        for (size_t n : {1, 2, 3, 4, 8, 16, 32, 64})
            for (size_t k : {2, 4, 8, 16, 24, 32, 64})
                args.emplace_back(m, n * nbase, k, 0);
    return args;
}

void matrix_mul::benchmark_with_contrast(
        Handle* handle, const std::vector<TestArg>& args, DType A_dtype,
        DType B_dtype, DType C_dtype, const char* algo,
        param::MatrixMul::Format format, DType contrast_A_dtype,
        DType contrast_B_dtype, DType contrast_C_dtype,
        const char* contrast_algo, param::MatrixMul::Format contrast_format) {
    using Param = MatrixMul::Param;

    megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
    megdnn_assert(contrast_A_dtype.enumv() == contrast_B_dtype.enumv());
    Benchmarker<MatrixMul> benchmark_contrast(handle);
    Benchmarker<MatrixMul> benchmark(handle);
    constexpr size_t RUNS = 50;
    if (algo) {
        benchmark.set_before_exec_callback(AlgoChecker<MatrixMul>(algo));
    }
    if (contrast_algo) {
        benchmark_contrast.set_before_exec_callback(
                AlgoChecker<MatrixMul>(contrast_algo));
    }
    benchmark.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
    benchmark.set_times(RUNS);
    benchmark_contrast.set_dtype(0, contrast_A_dtype)
            .set_dtype(1, contrast_B_dtype)
            .set_dtype(2, contrast_C_dtype);
    benchmark_contrast.set_times(RUNS);

    auto bench = [](Benchmarker<MatrixMul>& benchmark, Param param,
                    param::MatrixMul::Format format, size_t m, size_t n,
                    size_t k, size_t pack_size) -> float {
        param.format = format;
        benchmark.set_param(param);
        float used_algo = 1.0;
        if (format == param::MatrixMul::Format::DEFAULT) {
            size_t A0 = m * pack_size, A1 = k * pack_size, B0 = k * pack_size,
                   B1 = n;
            TensorShape A, B;
            if (param.transposeA) {
                std::swap(A0, A1);
            }
            if (param.transposeB) {
                std::swap(B0, B1);
            }
            used_algo = benchmark.execs({{A0, A1}, {B0, B1}, {}}) / RUNS;
        } else {
            size_t A0 = m, A1 = k, B0 = k, B1 = n;
            if (param.transposeA) {
                std::swap(A0, A1);
            }
            if (param.transposeB) {
                std::swap(B0, B1);
            }

            used_algo = benchmark.execs({{A0, A1, pack_size, pack_size},
                                         {B0, B1, pack_size},
                                         {}}) /
                        RUNS;
        }
        return used_algo;
    };

    size_t mk_size = MatrixMulForward::pack_size(format);
    size_t mk_size_contrast = MatrixMulForward::pack_size(contrast_format);
    size_t pack_size = std::max(mk_size, mk_size_contrast);
    for (auto& arg : args) {
        Param param;
        param.transposeA = arg.mask & 0x1;
        param.transposeB = arg.mask & 0x2;

        auto used_contrast = bench(benchmark_contrast, param, contrast_format,
                                   arg.m, arg.n, arg.k, pack_size);
        auto used_algo =
                bench(benchmark, param, format, arg.m, arg.n, arg.k, pack_size);

        float computations =
                2.f * arg.m * pack_size * arg.k * pack_size * arg.n * 1e-6;
        printf("run: {(%zu, %zu) x (%zu, %zu)} contrast: %f ms %f Gflops %s: "
               "%f "
               "ms "
               "%f Gflops "
               "speedup: %f \n",
               arg.m * pack_size, arg.k * pack_size, arg.k * pack_size, arg.n,
               used_contrast, computations / used_contrast, algo, used_algo,
               computations / used_algo, used_contrast / used_algo);
    }
}

#endif

// vim: syntax=cpp.doxygen