forward.cpp 6.9 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/cuda/resize/forward.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#include "src/common/cv/common.h"
#include "src/cuda/handle.h"
#include "src/cuda/resize/common.h"
#include "src/cuda/resize/helper.h"
#include "src/cuda/resize/opr_impl.h"
#include "src/cuda/resize/resize_cv.cuh"
#include "src/cuda/utils.h"

using namespace megdnn;
using namespace cuda;

namespace {

void resize_cv_proxy(_megdnn_tensor_in src, _megdnn_tensor_out dst,
                     InterpolationMode imode, void* workspace,
                     cudaStream_t stream) {
    using namespace megcv;
    for (size_t i = 0; i < src.layout.shape[0]; ++i) {
        if (dst.layout.dtype == dtype::Float32()) {
            Mat<float> src_mat = TensorND2Mat<float>(src, i);
            Mat<float> dst_mat = TensorND2Mat<float>(dst, i);
            resize::resize_cv<float>(
                    src_mat.ptr(), dst_mat.ptr(), src_mat.rows(),
                    src_mat.cols(), dst_mat.rows(), dst_mat.cols(),
                    src_mat.step(), dst_mat.step(), src_mat.channels(), imode,
                    workspace, stream);
        } else if (dst.layout.dtype == dtype::Uint8()) {
            Mat<uchar> src_mat = TensorND2Mat<uchar>(src, i);
            Mat<uchar> dst_mat = TensorND2Mat<uchar>(dst, i);
            resize::resize_cv<uchar>(
                    src_mat.ptr(), dst_mat.ptr(), src_mat.rows(),
                    src_mat.cols(), dst_mat.rows(), dst_mat.cols(),
                    src_mat.step(), dst_mat.step(), src_mat.channels(), imode,
                    workspace, stream);
        } else {
            megdnn_throw(
                    megdnn_mangle("Unsupported datatype of WarpAffine optr."));
        }
    }
}

}  // anonymous namespace

size_t ResizeImpl::get_workspace_in_bytes(const TensorLayout& src,
                                          const TensorLayout& dst) {
    InterpolationMode imode = param().imode;
    if (param().format == Param::Format::NCHW ||
        (imode != Param::InterpolationMode::CUBIC &&
         imode != Param::InterpolationMode::LANCZOS4)) {
        return 0;
    }

    size_t src_rows = src.shape[1];
    size_t dst_rows = dst.shape[1];
    size_t src_cols = src.shape[2];
    size_t dst_cols = dst.shape[2];
    size_t ch = src.shape[3];

    size_t dst_area_size = dst_rows * dst_cols;
    size_t src_area_size = src_rows * src_cols;

    bool enlarge = dst_area_size > src_area_size;
    bool shrink = dst_area_size <= src_area_size;
    bool U8 = src.dtype == dtype::Uint8();
    megdnn_assert(src.dtype == dtype::Uint8() || src.dtype == dtype::Float32());
    bool F32_1 = !U8 && ch == 1;
    bool F32_3 = !U8 && ch == 3;

    bool use_vector = (enlarge && (dst_area_size <= 500 * 500)) ||
                      (shrink && (F32_3 || (U8 && dst_area_size <= 500 * 500) ||
                                  (F32_1 && dst_area_size <= 1000 * 1000)));

    if (!use_vector) {
        int coef_size = 0;
        if (imode == Param::InterpolationMode::CUBIC) {
            coef_size = 4;
        } else {
            coef_size = 8;
            megdnn_assert(imode == Param::InterpolationMode::LANCZOS4);
        }
        if (U8) {
            return dst_rows * coef_size * sizeof(short) +  //! dev_coef_row
                   dst_rows * sizeof(int) +                //! dev_sr
                   dst_cols * coef_size * sizeof(short) +  //! dev_coef_col
                   dst_cols * sizeof(int);                 //! dev_sc
        } else {
            return dst_rows * coef_size * sizeof(float) +  //! dev_coef_row
                   dst_rows * sizeof(int) +                //! dev_sr
                   dst_cols * coef_size * sizeof(float) +  //! dev_coef_col
                   dst_cols * sizeof(int);                 //! dev_sc
        }
    }

    return 0;
}

void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst,
                      _megdnn_workspace workspace) {
    check_exec(src.layout, dst.layout, workspace.size);
    auto stream = cuda_stream(this->handle());
    bool is_nhwc = param().format == param::Resize::Format::NHWC;
    size_t C, IH, IW, OH, OW;
    ptrdiff_t S_IN = 0, S_IC = 0, S_IH = 0, S_IW = 0;
    if (is_nhwc) {
        if (param().imode != Param::InterpolationMode::LINEAR &&
            is_nhwc_contig_wc(src.layout)) {
            resize_cv_proxy(src, dst, resize::get_imode(param().imode),
                            workspace.raw_ptr, stream);
            return;
        }
        C = src.layout.shape[3];
        IH = src.layout.shape[1];
        IW = src.layout.shape[2];
        OH = dst.layout.shape[1];
        OW = dst.layout.shape[2];
    } else if (param().format == param::Resize::Format::NCHW) {
        C = src.layout.shape[1];
        IH = src.layout.shape[2];
        IW = src.layout.shape[3];
        OH = dst.layout.shape[2];
        OW = dst.layout.shape[3];
        S_IN = src.layout.stride[0];
        S_IC = src.layout.stride[1];
        S_IH = src.layout.stride[2];
        S_IW = src.layout.stride[3];
    } else {
        megdnn_assert(param().format == param::Resize::Format::NCHW4,
                      "invalid resize format");
        megdnn_assert(src.layout.dtype.enumv() == DTypeEnum::QuantizedS8);
        C = src.layout.shape[1] * 4;
        IH = src.layout.shape[2];
        IW = src.layout.shape[3];
        OH = dst.layout.shape[2];
        OW = dst.layout.shape[3];
        resize::forward_proxy_nchw4(src.compatible_ptr<int8_t>(),
                                    dst.compatible_ptr<int8_t>(), src.layout[0],
                                    C, IH, IW, OH, OW, stream);
        return;
    }
    megdnn_assert(param().imode == Param::InterpolationMode::LINEAR,
                  "unsupported interpolation mode for NCHW format");

    if (src.layout.dtype == dtype::Float32{}) {
        resize::forward_proxy(is_nhwc, src.ptr<dt_float32>(),
                              dst.ptr<dt_float32>(), src.layout[0], C, IH, IW,
                              OH, OW, S_IN, S_IC, S_IH, S_IW, stream);
    } else if (src.layout.dtype == dtype::Uint8()) {
        resize::forward_proxy(is_nhwc, src.ptr<dt_uint8>(), dst.ptr<dt_uint8>(),
                              src.layout[0], C, IH, IW, OH, OW, S_IN, S_IC,
                              S_IH, S_IW, stream);
    } else if (src.layout.dtype == dtype::Int8()) {
        resize::forward_proxy(is_nhwc, src.ptr<dt_int8>(), dst.ptr<dt_int8>(),
                              src.layout[0], C, IH, IW, OH, OW, S_IN, S_IC,
                              S_IH, S_IW, stream);
    } else {
        megdnn_throw(
                ssprintf("unsupported dtype: %s", src.layout.dtype.name()));
    }
}

// vim: syntax=cpp.doxygen