tensor_format.cpp 22.0 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/common/tensor_format.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megdnn/tensor_format.h"
#include "megdnn/basic_types.h"
#include "src/common/utils.h"

#include <unordered_map>

using namespace megdnn;
using namespace megdnn::detail;

namespace {
DefaultTensorFormat* default_tensor_format_obj;
}

/* ===================== TensorFormat ===================== */

TensorFormat TensorFormat::deserialize(const std::string& bin,
                                       const Handle* handle) {
    using Type = TensorFormat::Type;
    auto type = reinterpret_cast<const Type*>(bin.data());
    switch (*type) {
        case Type::DEFAULT:
            return DefaultTensorFormat::deserialize(handle, type + 1,
                                                    bin.size() - sizeof(Type));
        case Type::IMAGE2D_PACK4:
            return Image2DPack4TensorFormat::deserialize(
                    handle, type + 1, bin.size() - sizeof(Type));
38 39 40
        case Type::FOURBITS_ALIGNED_TO_BYTE:
            return FourBitsAlignedToBytesTensorFormat::deserialize(
                    handle, type + 1, bin.size() - sizeof(Type));
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        default:
            megdnn_throw("invalid tensor format type in deserialize");
    }
}

TensorFormat::Format() : m_impl{DefaultTensorFormat::make().m_impl} {}

std::string TensorFormat::to_string() const {
    return m_impl->to_string();
}

std::string TensorFormat::serialize() const {
    std::string ret;
    ret.reserve(32);
    ret.assign(sizeof(Type), '\0');
    *reinterpret_cast<Type*>(&ret[0]) = type();
    m_impl->serialize_append(ret);
    return ret;
}

void TensorFormat::on_bad_cvt(Type dst_type) const {
    MEGDNN_MARK_USED_VAR(dst_type);
    megdnn_throw(ssprintf("can not convert tensor format %s to %d",
                          impl()->to_string().c_str(),
                          static_cast<int>(dst_type)));
}

bool TensorFormat::is_default() const {
    return m_impl == default_tensor_format_obj;
}

/* ===================== DefaultFormat ===================== */
73 74 75 76 77 78 79
void DefaultTensorFormat::assert_valid(const TensorLayout& layout) const {
    megdnn_assert(
            !layout.dtype.valid() || !layout.dtype.is_low_bit(),
            "DefaultTensorFormat does not support low-bits tensor(dtype:%s)",
            layout.dtype.name());
}

80
size_t DefaultTensorFormat::init_contiguous_stride(TensorLayout& layout) const {
81
    assert_valid(layout);
82 83 84 85 86 87 88 89 90 91 92 93 94
    if (!layout.ndim)
        return 0;
    megdnn_assert(layout.ndim <= TensorLayout::MAX_NDIM);
    size_t accum = 1;
    SafeMultiplies<size_t> mul;
    for (size_t i = layout.ndim; i; --i) {
        layout.stride[i - 1] = accum;
        accum = mul(accum, layout.shape[i - 1]);
    }
    return accum;
}

bool DefaultTensorFormat::is_contiguous_spec(const TensorLayout& layout) const {
95
    assert_valid(layout);
96 97 98 99 100
    return layout.is_physical_contiguous();
}

TensorLayout DefaultTensorFormat::collapse_contiguous_spec(
        const TensorLayout& layout) const {
101
    assert_valid(layout);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    megdnn_assert(layout.ndim);
    TensorLayout res{layout};

    // remove all dims with shape 1
    for (int i = static_cast<int>(res.ndim) - 1; i >= 0 && res.ndim >= 2; --i) {
        if (!res.shape[i]) {
            // empty tensor
            res.ndim = 1;
            res.shape[0] = 0;
            res.stride[0] = 1;
            return res;
        }
        if (res.shape[i] == 1)
            res.remove_axis_inplace(i);
    }

    if (res.ndim == 1) {
        if (res.shape[0] <= 1) {
            // make it the "most canonical" contiguous layout for scalars or
            // empty tensors
            res.stride[0] = 1;
        }
        return res;
    }

    megdnn_assert(res.ndim && res.shape[res.ndim - 1]);
    for (int i = static_cast<int>(res.ndim) - 2; i >= 0; --i) {
        megdnn_assert(res.shape[i]);
        if (res.stride[i] ==
            res.stride[i + 1] * static_cast<ptrdiff_t>(res.shape[i + 1])) {
            res.shape[i] *= res.shape[i + 1];
            res.stride[i] = res.stride[i + 1];
            res.remove_axis_inplace(i + 1);
        }
    }
    return res;
}

TensorLayout::Span DefaultTensorFormat::span_spec(
        const TensorLayout& layout) const {
142
    assert_valid(layout);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    if (layout.ndim == 0)
        return {0, 0, 0, 0};

    ptrdiff_t low_elem = 0;
    size_t high_elem = 0;
    for (size_t i = 0; i < layout.ndim; ++i) {
        auto shape_val = layout.shape[i];
        if (!shape_val) {
            return {0, 0, 0, 0};
        }
        auto stride_val = layout.stride[i];
        if (stride_val > 0) {
            high_elem += (shape_val - 1) * stride_val;
        } else {
            low_elem += (shape_val - 1) * stride_val;
        }
    }
    ++high_elem;
    ptrdiff_t low_byte;
    if (low_elem < 0) {
        low_byte = low_elem * layout.dtype.size();
    } else {
        low_byte = 0;
    }
    size_t high_byte = layout.dtype.size(high_elem);
    return TensorLayout::Span(low_elem, low_byte, high_elem, high_byte);
}

std::string DefaultTensorFormat::to_string() const {
    return "default{}";
}

void DefaultTensorFormat::serialize_append(std::string&) const {}

TensorFormat DefaultTensorFormat::deserialize(const Handle* handle,
                                              const void* buf, size_t size) {
    MEGDNN_MARK_USED_VAR(handle);
    MEGDNN_MARK_USED_VAR(buf);
    megdnn_assert(!size);
    return make();
}

TensorFormat DefaultTensorFormat::make() {
    // use static storage so the object is accessible in global destructing
    // phase
    static std::aligned_storage_t<sizeof(DefaultTensorFormat),
                                  alignof(DefaultTensorFormat)>
            storage;
    static DefaultTensorFormat* obj = default_tensor_format_obj =
            new (&storage) DefaultTensorFormat{};
    return impl_to_tensor_format(obj);
}

/* ===================== Image2DTensorFormatBase ===================== */

Image2DTensorFormatBase::Image2DTensorFormatBase(Type type, size_t align_axis,
199 200 201 202 203 204 205
                                                 size_t align_size_in_elements)
        : ImplBase(type), m_align_axis(align_axis) {
    megdnn_assert(align_size_in_elements && align_axis);
    m_align_size_in_elements_log2 = __builtin_ctz(align_size_in_elements);
    megdnn_assert(
            (1u << m_align_size_in_elements_log2) == align_size_in_elements,
            "align size not power of 2: %zu", align_size_in_elements);
206 207
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
void Image2DTensorFormatBase::serialize_append(std::string& result) const {
    SerializePack pack;
    pack.align_axis = m_align_axis;
    megdnn_assert(pack.align_axis == m_align_axis);  // detect overflow
    result.append(reinterpret_cast<char*>(&pack), sizeof(pack));
}

size_t Image2DTensorFormatBase::image_height(const TensorLayout& layout) const {
    size_t accum = 1;
    for (int i = m_align_axis - 1; i >= 0; --i) {
        if (layout.stride[i] == 0) {
            // this dimension is broadcasted
        } else {
            accum *= layout.shape[i];
        }
    }
    return accum;
}

size_t Image2DTensorFormatBase::image_width_elems(
        const TensorLayout& layout) const {
    size_t high_elem = 0;
    for (size_t i = m_align_axis; i < layout.ndim; ++i) {
        high_elem += (layout.shape[i] - 1) * layout.stride[i];
    }
    return high_elem + 1;
}

std::string Image2DTensorFormatBase::to_string() const {
    return ssprintf("I2D{%zu,%d}", m_align_axis,
                    1 << m_align_size_in_elements_log2);
}

/* ===================== Image2DPackedTensorFormatBase ===================== */

template <size_t PIXEL_SIZE>
size_t Image2DPackedTensorFormatBase<PIXEL_SIZE>::image_width(
        const TensorLayout& layout) const {
    auto ret = image_width_elems(layout);
    megdnn_assert(ret % PIXEL_SIZE == 0);
    return ret / PIXEL_SIZE;
}

template <size_t PIXEL_SIZE>
void Image2DPackedTensorFormatBase<PIXEL_SIZE>::assert_valid(
        const TensorLayout& layout) const {
    auto m_align_axis = align_axis();
    megdnn_assert(!(layout.shape[layout.ndim - 1] % PIXEL_SIZE),
                  "bad shape: %zu", layout.shape[layout.ndim - 1]);
    megdnn_assert(layout.dtype.valid() && layout.ndim > m_align_axis);
    ptrdiff_t first_non_zero_stride = 0;
    for (int i = layout.ndim - 1; i >= 0; --i) {
        megdnn_assert(layout.shape[i] && layout.stride[i] >= 0);
        if (i < static_cast<int>(m_align_axis) && !first_non_zero_stride) {
            first_non_zero_stride = layout.stride[i];
        }
    }
    size_t mask =
            image_pitch_alignment_in_bytes(
                    align_size_in_elements(layout.dtype.size_log()), layout) -
            1;

    megdnn_assert(!(first_non_zero_stride & mask),
                  "first stride is %d, but alignment is %zu",
                  static_cast<int>(first_non_zero_stride), mask + 1);
}

template <size_t PIXEL_SIZE>
size_t Image2DPackedTensorFormatBase<PIXEL_SIZE>::image_row_pitch(
        const TensorLayout& layout) const {
    for (int i = align_axis() - 1; i >= 0; --i) {
        // find a non-broadcast axis
        if (auto s = layout.stride[i]) {
            return layout.dtype.size(s);
        }
    }
    // use width for all broadcasted case
    size_t alignment_in_bytes_log2 = align_size_in_elements_log2();
    if (m_vendor_type == Handle::HandleVendorType::MALI) {
        alignment_in_bytes_log2 +=
                __builtin_ctz(layout.dtype.size() * PIXEL_SIZE);
    }

    return get_aligned_power2<size_t>(
            layout.dtype.size(image_width_elems(layout)),
            1 << alignment_in_bytes_log2);
}

template <size_t PIXEL_SIZE>
size_t
Image2DPackedTensorFormatBase<PIXEL_SIZE>::image_pitch_alignment_in_bytes(
        size_t align_size_in_elements, const TensorLayout& layout) const {
    return m_vendor_type == Handle::HandleVendorType::MALI
                   ? (align_size_in_elements * layout.dtype.size() * PIXEL_SIZE)
                   : align_size_in_elements;
}

template <size_t PIXEL_SIZE>
TensorLayout::Span Image2DPackedTensorFormatBase<PIXEL_SIZE>::span_spec(
        const TensorLayout& layout) const {
    assert_valid(layout);
    size_t size = image_height(layout) * image_row_pitch(layout);
    auto mask = (1 << layout.dtype.size_log()) - 1;
    megdnn_assert(!(size & mask), "unaligned size: %zu", size);
    return {0, 0, size >> layout.dtype.size_log(), size};
}

template <size_t PIXEL_SIZE>
size_t Image2DPackedTensorFormatBase<PIXEL_SIZE>::init_contiguous_stride(
317
        TensorLayout& layout) const {
318
    auto m_align_axis = align_axis();
319 320 321 322 323
    if (!layout.ndim)
        return 0;
    megdnn_assert(layout.dtype.valid() && layout.ndim > m_align_axis,
                  "dtype=%s ndim=%zu align=%zu", layout.dtype.name(),
                  layout.ndim, m_align_axis);
324 325 326
    size_t align_size = image_pitch_alignment_in_bytes(
            align_size_in_elements(layout.dtype.size_log()), layout);

327 328 329 330 331 332 333 334 335 336 337 338 339 340
    size_t accum = 1;
    SafeMultiplies<size_t> mul;
    for (size_t i = layout.ndim; i; --i) {
        if (i == m_align_axis) {
            accum = get_aligned_power2<size_t>(accum, align_size);
        }

        layout.stride[i - 1] = accum;
        accum = mul(accum, layout.shape[i - 1]);
    }
    assert_valid(layout);
    return accum;
};

341 342
template <size_t PIXEL_SIZE>
bool Image2DPackedTensorFormatBase<PIXEL_SIZE>::is_contiguous_spec(
343 344
        const TensorLayout& layout) const {
    megdnn_assert(layout.dtype.valid());
345 346 347
    size_t align_size = image_pitch_alignment_in_bytes(
            align_size_in_elements(layout.dtype.size_log()), layout);

348
    ptrdiff_t expected = 1;
349
    int height_axis = static_cast<int>(align_axis() - 1);
350 351 352 353 354 355 356 357 358 359 360 361 362
    for (int i = layout.ndim - 1; i >= 0; --i) {
        if (i == height_axis) {
            expected = megdnn::get_aligned_power2<size_t>(expected, align_size);
        }
        if (layout.shape[i] != 1 && layout.stride[i] != expected) {
            if (i == height_axis) {
                // allow row pitch to be larger than minimal required
                auto s = layout.stride[i];
                if (!s) {
                    // broadcast is not contiguous
                    return false;
                }

363 364 365 366 367 368
                size_t mask =
                        image_pitch_alignment_in_bytes(
                                align_size_in_elements(layout.dtype.size_log()),
                                layout) -
                        1;

369 370 371 372 373 374 375 376 377 378 379 380 381 382
                megdnn_assert(s > expected && !(s & mask),
                              "invalid row pitch: %d; layout: %s",
                              static_cast<int>(s), layout.to_string().c_str());
                expected = s;
            } else {
                return false;
            }
        }
        expected *= layout.shape[i];
    }
    // empty tensors are not contiguous
    return expected != 0;
}

383 384
template <size_t PIXEL_SIZE>
TensorLayout Image2DPackedTensorFormatBase<PIXEL_SIZE>::collapse_contiguous_spec(
385 386 387
        const TensorLayout& layout) const {
    assert_valid(layout);
    TensorLayout res{layout};
388
    int new_axis = align_axis();
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    // remove all dims with shape 1
    for (int i = static_cast<int>(res.ndim) - 1; i >= 0 && res.ndim >= 3; --i) {
        if (i == new_axis && static_cast<int>(res.ndim) == new_axis + 1) {
            // i is the only width dim
            continue;
        }
        if (i == new_axis - 1 && !i) {
            // new_xis == 1 && i == 0, i is the only height dim
            continue;
        }
        if (res.shape[i] == 1) {
            res.remove_axis_inplace(i);
            if (i < new_axis)
                new_axis -= 1;
        }
    }
    megdnn_assert(res.ndim >= 2);

    auto contig_with_next = [&](size_t i) {
        return res.stride[i] ==
               res.stride[i + 1] * static_cast<ptrdiff_t>(res.shape[i + 1]);
    };

    for (int i = static_cast<int>(res.ndim) - 2; i >= new_axis; --i) {
        megdnn_assert(res.shape[i]);
        if (contig_with_next(i)) {
            // remove next axis
            res.shape[i] *= res.shape[i + 1];
            res.stride[i] = res.stride[i + 1];
            res.remove_axis_inplace(i + 1);
        }
    }

    for (int i = new_axis - 2; i >= 0; --i) {
        megdnn_assert(res.shape[i]);
        if (contig_with_next(i)) {
            res.shape[i] *= res.shape[i + 1];
            res.stride[i] = res.stride[i + 1];
            res.remove_axis_inplace(i + 1);
            if (i <= new_axis - 2)
                new_axis -= 1;
        }
    }
    res.format = change_axis(new_axis);
    return res;
}

436

437 438 439 440 441 442
namespace megdnn {
namespace detail {
template class Image2DPackedTensorFormatBase<4>;
}  // namespace detail
}  // namespace megdnn

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
/* =============== FourBitsAlignedToBytesTensorFormatBase ============== */
template <size_t SIZE_NBITS>
LowbitsTensorFormatBase<SIZE_NBITS>::LowbitsTensorFormatBase(
        Type type, size_t align_size_in_bits)
        : ImplBase(type), m_align_size_in_bits(align_size_in_bits) {
    megdnn_assert(!(m_align_size_in_bits % SIZE_NBITS),
                  "align size(%zu) must be a multiple of element size(%zu)",
                  m_align_size_in_bits, SIZE_NBITS);
    m_align_size_in_elements = m_align_size_in_bits / SIZE_NBITS;
}

template <size_t SIZE_NBITS>
std::string LowbitsTensorFormatBase<SIZE_NBITS>::to_string() const {
    return ssprintf("LOWBITS{%zu,%zu}", SIZE_NBITS, m_align_size_in_bits);
}

template <size_t SIZE_NBITS>
void LowbitsTensorFormatBase<SIZE_NBITS>::assert_valid(
        const TensorLayout& layout) const {
    megdnn_assert(layout.dtype.valid() && layout.dtype.is_low_bit() &&
                  layout.dtype.low_bit() == SIZE_NBITS);
    bool has_dim_unity_stride = false;
    for (int i = layout.ndim - 1; i >= 0; --i) {
        if (!has_dim_unity_stride && layout.stride[i] == 1)
            has_dim_unity_stride = true;
        megdnn_assert(
                layout.stride[i] >= 0 &&
                        (layout.stride[i] % m_align_size_in_elements == 0 ||
                         layout.stride[i] == 1),
                "bad stride: %zu", layout.stride[i]);
    }
    megdnn_assert(has_dim_unity_stride, "innermost dim not contiguous");
}

template <size_t SIZE_NBITS>
void LowbitsTensorFormatBase<SIZE_NBITS>::serialize_append(
        std::string& result) const {
    SerializePack pack;
    pack.align_size_in_bits = m_align_size_in_bits;
    megdnn_assert(pack.align_size_in_bits ==
                  m_align_size_in_bits);  // detect overflow;
    result.append(reinterpret_cast<char*>(&pack), sizeof(pack));
}

template <size_t SIZE_NBITS>
TensorLayout::Span LowbitsTensorFormatBase<SIZE_NBITS>::span_spec(
        const TensorLayout& layout) const {
    assert_valid(layout);
    if (layout.ndim == 0)
        return {0, 0, 0, 0};

    size_t high_elem = 0;
    for (size_t i = 0; i < layout.ndim; ++i) {
        auto shape_val = layout.shape[i];
        if (!shape_val) {
            return {0, 0, 0, 0};
        }
        auto stride_val = layout.stride[i];
        megdnn_assert(stride_val >= 0,
                      "lowbit tensors shouldn't have negative strides");
        high_elem += (shape_val - 1) * stride_val;
    }
    ++high_elem;
    size_t high_byte = layout.dtype.size(high_elem);
    return TensorLayout::Span(0, 0, high_elem, high_byte);
}

template <size_t SIZE_NBITS>
size_t LowbitsTensorFormatBase<SIZE_NBITS>::init_contiguous_stride(
        TensorLayout& layout) const {
    if (!layout.ndim)
        return 0;
    megdnn_assert(layout.ndim <= TensorLayout::MAX_NDIM);
    size_t accum = 1;
    SafeMultiplies<size_t> mul;
    for (size_t i = layout.ndim; i; --i) {
        layout.stride[i - 1] = accum;
        auto multiplier = layout.shape[i - 1];
        if (i == layout.ndim)
            multiplier = round_up(multiplier, m_align_size_in_elements);
        accum = mul(accum, multiplier);
    }
    return accum;
}

template <size_t SIZE_NBITS>
bool LowbitsTensorFormatBase<SIZE_NBITS>::is_contiguous_spec(
        const TensorLayout& layout) const {
    assert_valid(layout);
    ptrdiff_t expected = 1;
    for (int i = static_cast<int>(layout.ndim) - 1; i >= 0; --i) {
        if (layout.shape[i] != 1 && layout.stride[i] != expected)
            return false;
        auto multiplier = layout.shape[i];
        if (i == layout.ndim - 1)
            multiplier = round_up(multiplier, m_align_size_in_elements);
        expected *= multiplier;
    }
    return expected != 0;
}

template <size_t SIZE_NBITS>
TensorLayout LowbitsTensorFormatBase<SIZE_NBITS>::collapse_contiguous_spec(
        const TensorLayout& layout) const {
    assert_valid(layout);
    TensorLayout res{layout};
    for (int i = static_cast<int>(res.ndim) - 1; i >= 0; --i) {
        if (!res.shape[i]) {
            // empty tensor
            res.ndim = 1;
            res.shape[0] = 0;
            res.stride[0] = 1;
            return res;
        }
        if (res.shape[i] == 1) {
            res.remove_axis_inplace(i);
        }
    }

    megdnn_assert(res.ndim && res.shape[res.ndim - 1]);
    for (int i = static_cast<int>(res.ndim) - 2; i >= 0; --i) {
        megdnn_assert(res.shape[i]);
        if (res.stride[i] ==
            res.stride[i + 1] * static_cast<ptrdiff_t>(res.shape[i + 1])) {
            res.shape[i] *= res.shape[i + 1];
            res.stride[i] = res.stride[i + 1];
            res.remove_axis_inplace(i + 1);
        }
    }
    return res;
}

namespace megdnn {
namespace detail {
template class LowbitsTensorFormatBase<4>;
}  // namespace detail
}  // namespace megdnn

581
/* ===================== Image2DPack4TensorFormat  ===================== */
582 583 584
TensorFormat Image2DPack4TensorFormat::make_raw(
        size_t align_axis, size_t align_size_in_elements,
        Handle::HandleVendorType vendor_type) {
585 586 587 588
    static std::mutex mtx;
    static std::unordered_map<uint64_t,
                              std::unique_ptr<Image2DPack4TensorFormat>>
            cache;
589
    megdnn_assert(std::max(align_axis, align_size_in_elements) <=
590 591 592
                  std::numeric_limits<uint32_t>::max());
    MEGDNN_LOCK_GUARD(mtx);
    auto&& ptr = cache[(static_cast<uint64_t>(align_axis) << 32) |
593
                       align_size_in_elements];
594
    if (!ptr) {
595 596
        ptr.reset(new Image2DPack4TensorFormat{
                align_axis, align_size_in_elements, vendor_type});
597 598 599 600 601 602
    }
    return impl_to_tensor_format(ptr.get());
}

TensorFormat Image2DPack4TensorFormat::make(size_t align_axis,
                                            const Handle* handle) {
603 604
    return make_raw(align_axis, handle->image2d_pitch_alignment(),
                    handle->vendor_type());
605 606 607 608 609 610 611 612 613 614 615
}

TensorFormat Image2DPack4TensorFormat::deserialize(const Handle* handle,
                                                   const void* buf,
                                                   size_t size) {
    megdnn_assert(size == sizeof(SerializePack));
    auto pack = *static_cast<const SerializePack*>(buf);
    return make(pack.align_axis, handle);
}

TensorFormat Image2DPack4TensorFormat::change_axis(size_t axis) const {
616
    return make_raw(axis, align_size_in_elements(), vendor());
617 618
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
/* ===================== FourBitsAlignedToBytesTensorFormat
 * ===================== */
TensorFormat FourBitsAlignedToBytesTensorFormat::make(
        size_t align_size_in_bits) {
    static std::mutex mtx;
    static std::unordered_map<
            uint32_t, std::unique_ptr<FourBitsAlignedToBytesTensorFormat>>
            cache;
    megdnn_assert(!(align_size_in_bits % 4));
    MEGDNN_LOCK_GUARD(mtx);
    auto&& ptr = cache[static_cast<uint32_t>(align_size_in_bits)];
    if (!ptr) {
        ptr.reset(new FourBitsAlignedToBytesTensorFormat{align_size_in_bits});
    }
    return impl_to_tensor_format(ptr.get());
}

TensorFormat FourBitsAlignedToBytesTensorFormat::deserialize(const Handle*,
                                                             const void* buf,
                                                             size_t size) {
    megdnn_assert(size == sizeof(SerializePack));
    auto pack = *static_cast<const SerializePack*>(buf);
    return make(pack.align_size_in_bits);
}

644
// vim: syntax=cpp.doxygen