grad.h 5.1 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/grad.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#pragma once

#include "./tensor.h"

#include <megbrain/utils/small_vector.h>
#include <memory>

namespace mgb::imperative::python {

apply_result_t apply_grad(ApplyContext& ctx);

struct GradKey : std::enable_shared_from_this<GradKey>, NonCopyableObj {
    std::string name;
    bool active = true;
    GradInfo::head_t free_vars_head;
    std::vector<std::weak_ptr<GradFn>> tape;

    ~GradKey();

    void attach(Tensor* tensor, pybind11::object callback);
    void backward(std::vector<TensorWrapper*>, std::vector<TensorWrapper*>);
    void cleanup();
};

struct GradKeyWrapper {
    using wrap_t = pyext17::wrap<GradKeyWrapper>;
    static constexpr auto tp_name = pybind11::detail::_("GradKey");

    std::shared_ptr<GradKey> m_key;

    inline GradKeyWrapper() : m_key(std::make_shared<GradKey>()) {}

44 45
    PyObject* get_name();
    void set_name(pybind11::handle name);
46 47
    void attach(PyObject*const* args, size_t nargs);
    void backward(std::vector<TensorWrapper*>, std::vector<TensorWrapper*>);
48
    PyObject* is_attached_to(PyObject*const* args, size_t nargs);
49 50
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
struct BackwardContext {
    PyTypeObject* pytype = nullptr;

    auto wrap_tensor(std::shared_ptr<Tensor> t) {
        if (pytype) {
            return TensorWrapper::make(pytype, std::move(t));
        }
        return TensorWrapper::make(std::move(t));
    }

    auto wrap_tensor(Tensor* t) {
        return wrap_tensor(t->shared_from_this());
    }
};

struct CustomBackward {
    using BackwardFn = std::function<apply_result_t(BackwardContext&, Tensor*const*, size_t)>;
    BackwardFn m_backward;
    SmallVector<bool, 8> m_input_has_grad;
    struct OutputAttr {bool requires_grad = true, captured = true;};
    SmallVector<OutputAttr> m_output_attrs;

public:
    template<typename T, typename R>
    void operator()(BackwardContext& ctx, T&& grads, R&& receiver) {
        size_t nargs = grads.size();
        Tensor* args[nargs];
        for (size_t i = 0; i < nargs; ++i) {
            args[i] = grads[i];
        }
        auto ret = m_backward(ctx, args, nargs);
        for (size_t i = 0; i < ret.size(); ++i) {
            if (auto&& t = ret[i]) {
                receiver(i, std::move(t));
            }
        }
    }

    bool input_has_grad(size_t i) {return m_input_has_grad[i];}
    bool output_requires_grad(size_t i) {return m_output_attrs[i].requires_grad;}
    bool output_captured(size_t i) {return m_output_attrs[i].captured;}

    class Maker {
        bool output_size_set = false, input_has_grad_initialized = false;
        CustomBackward& target;
        ApplyContext& ctx;

        void init_input_has_grad() {
            if (!input_has_grad_initialized) {
                input_has_grad_initialized = true;
                target.m_input_has_grad.resize(ctx.nargs, true);
            }
        }

    public:
        Maker(CustomBackward& target_, ApplyContext& ctx_) : target(target_), ctx(ctx_) {}

        template<typename F>
        Maker& backward(F&& f) {
            mgb_assert(!target.m_backward);
            target.m_backward = std::forward<F>(f);
            return *this;
        }
        // mandatory
        Maker& output_size(size_t sz) {
            mgb_assert(!output_size_set);
            output_size_set = true;
            target.m_output_attrs.resize(sz);
            return *this;
        }
        // optional, defaults to all true
        Maker& input_has_grad(size_t i, bool v) {
            init_input_has_grad();
            target.m_input_has_grad.at(i) = v;
            return *this;
        }
        // optional, defaults to all true
        Maker& output_requires_grad(size_t i, bool v) {
            target.m_output_attrs.at(i).requires_grad = v;
            return *this;
        }
        // optional, defaults to all true
        Maker& output_captured(size_t i, bool v) {
            target.m_output_attrs.at(i).captured = v;
            return *this;
        }

        void finalize() {
            mgb_assert(output_size_set);
            init_input_has_grad();
        }
    };

    Maker maker(ApplyContext& ctx) {return {*this, ctx};}
};

using GradRuleFn = std::function<apply_result_t(ApplyContext&, CustomBackward::Maker&)>;

std::unordered_map<Typeinfo*, GradRuleFn>& grad_rule_registry();

inline bool input_requires_grad(const ApplyContext& ctx, size_t i) {
    return bool(ctx.args[i]->m_grad_info.grad_fn);
}

struct GradRuleFallback : std::exception {};

template<typename T>
bool register_grad_rule(Typeinfo* typeinfo, T&& rule) {
    return grad_rule_registry().emplace(typeinfo, std::forward<T>(rule)).second;
}

162 163 164 165 166 167 168
} // namespace mgb::imperative::python

namespace pybind11::detail {

template<> struct type_caster<mgb::imperative::python::GradKeyWrapper> : mgb::imperative::python::GradKeyWrapper::wrap_t::caster {};

} // namespace pybind11::detail