gi_float.h 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/**
 * \file dnn/src/fallback/general_intrinsic/gi_float.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2022 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#pragma once

#include "gi_common.h"

GI_FORCEINLINE
17
GI_INT32_t GiReinterpretAsInt32(GI_FLOAT32_t In) {
18 19 20 21 22
#if defined(GI_NEON_INTRINSICS)
    return vreinterpretq_s32_f32(In);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_castps_si128(In);
#else
23 24 25
    GI_INT32_t ret;
    memcpy(&ret, &In, GI_SIMD_LEN_BYTE);
    return ret;
26 27 28 29
#endif
}

GI_FORCEINLINE
30 31 32 33 34 35
GI_UINT32_t GiReinterpretAsUint32(GI_FLOAT32_t In) {
#if defined(GI_NEON_INTRINSICS)
    return vreinterpretq_u32_f32(In);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_castps_si128(In);
#else
36 37 38
    GI_UINT32_t ret;
    memcpy(&ret, &In, GI_SIMD_LEN_BYTE);
    return ret;
39 40 41 42 43 44 45 46 47 48
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiReintInt32ToFloat32(GI_INT32_t Vector) {
#if defined(GI_NEON_INTRINSICS)
    return vreinterpretq_f32_s32(Vector);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_castsi128_ps(Vector);
#else
49 50 51
    GI_FLOAT32_t ret;
    memcpy(&ret, &Vector, GI_SIMD_LEN_BYTE);
    return ret;
52 53 54 55 56 57 58 59 60 61
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiReintUint32ToFloat32(GI_UINT32_t Vector) {
#if defined(GI_NEON_INTRINSICS)
    return vreinterpretq_f32_u32(Vector);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_castsi128_ps(Vector);
#else
62 63 64
    GI_FLOAT32_t ret;
    memcpy(&ret, &Vector, GI_SIMD_LEN_BYTE);
    return ret;
65 66 67 68 69
#endif
}

GI_FORCEINLINE
GI_INT32_t GiRoundAsInt32(GI_FLOAT32_t Vector) {
70 71 72 73
#if defined(GI_NEON_INTRINSICS)
#if __ARM_ARCH >= 8
    return vcvtaq_s32_f32(Vector);
#else
74
    float32x4_t vinc0 = vbslq_f32(vcgeq_f32(Vector, vfzero), vfhalf, vfneg_half);
75 76
    return vcvtq_s32_f32(vaddq_f32(Vector, vinc0));
#endif
77
#elif defined(GI_SSE42_INTRINSICS)
78
    __m128 vinc0 = _mm_blendv_ps(vfneg_half, vfhalf, _mm_cmpge_ps(Vector, vfzero));
79
    return _mm_cvttps_epi32(_mm_add_ps(Vector, vinc0));
80
#else
81
    GI_INT32_t ret;
82 83 84 85 86 87 88 89
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret[i] = (int32_t)round(Vector[i]);
    }
    return ret;
#endif
}

GI_FORCEINLINE
90
GI_INT32_t GiCastToInt32(GI_FLOAT32_t Vector) {
91
#if defined(GI_NEON_INTRINSICS)
92
    return vcvtq_s32_f32(Vector);
93
#elif defined(GI_SSE2_INTRINSICS)
94
    return _mm_cvttps_epi32(Vector);
95
#else
96 97 98
    GI_INT32_t ret;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret[i] = (int32_t)(Vector[i]);
99 100 101 102 103 104
    }
    return ret;
#endif
}

GI_FORCEINLINE
105
GI_FLOAT32_t GiCastToFloat32(GI_INT32_t Vector) {
106
#if defined(GI_NEON_INTRINSICS)
107
    return vcvtq_f32_s32(Vector);
108
#elif defined(GI_SSE2_INTRINSICS)
109
    return _mm_cvtepi32_ps(Vector);
110
#else
111 112
    GI_FLOAT32_t ret;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(int32_t); i++) {
113
        ret[i] = (float)Vector[i];
114 115 116 117 118 119
    }
    return ret;
#endif
}

GI_FORCEINLINE
120
GI_FLOAT32_t GiLoadBroadcastFloat32(const float* Value) {
121 122 123 124 125
#if defined(GI_NEON_INTRINSICS)
    return vld1q_dup_f32(Value);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_load_ps1(Value);
#else
126
    GI_FLOAT32_t ret;
127 128 129 130 131 132 133 134
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret[i] = *Value;
    }
    return ret;
#endif
}

GI_FORCEINLINE
135
GI_FLOAT32_t GiZeroFloat32(void) {
136 137 138 139 140 141 142 143 144 145
#if defined(GI_NEON_INTRINSICS)
    return vdupq_n_f32(0.0f);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_setzero_ps();
#else
    return GiBroadcastFloat32(0.0f);
#endif
}

GI_FORCEINLINE
146
GI_FLOAT32_t GiLoadFloat32(const float* Buffer) {
147 148 149 150 151
#if defined(GI_NEON_INTRINSICS)
    return vld1q_f32(Buffer);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_loadu_ps(Buffer);
#else
152
    GI_FLOAT32_t ret;
153 154 155 156 157 158 159 160
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret[i] = Buffer[i];
    }
    return ret;
#endif
}

GI_FORCEINLINE
161
void GiStoreFloat32(float* Buffer, GI_FLOAT32_t Vector) {
162 163 164 165 166 167 168 169 170 171 172 173
#if defined(GI_NEON_INTRINSICS)
    vst1q_f32(Buffer, Vector);
#elif defined(GI_SSE2_INTRINSICS)
    _mm_storeu_ps(Buffer, Vector);
#else
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        Buffer[i] = Vector[i];
    }
#endif
}

#if defined(GI_NEON_INTRINSICS)
174 175 176
#define GISTORELANEFLOAT32(i)                                                         \
    GI_FORCEINLINE void GiStoreLane##i##Float32(float* Buffer, GI_FLOAT32_t Vector) { \
        vst1q_lane_f32(Buffer, Vector, i);                                            \
177 178 179 180 181
    }

#elif defined(GI_SSE2_INTRINSICS)

#define GISTORELANEFLOAT32(i)                                                          \
182
    GI_FORCEINLINE void GiStoreLane##i##Float32(float* Buffer, GI_FLOAT32_t Vector) {  \
183 184 185
        _mm_store_ss(Buffer, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(i, i, i, i))); \
    }
#else
186 187 188
#define GISTORELANEFLOAT32(i)                                                         \
    GI_FORCEINLINE void GiStoreLane##i##Float32(float* Buffer, GI_FLOAT32_t Vector) { \
        *Buffer = Vector[i];                                                          \
189 190 191 192 193 194 195 196 197 198 199
    }
#endif

GISTORELANEFLOAT32(0)
GISTORELANEFLOAT32(1)
GISTORELANEFLOAT32(2)
GISTORELANEFLOAT32(3)

#undef GISTORELANEFLOAT32

#if defined(GI_NEON_INTRINSICS)
200 201 202
#define GIEXTRACTLANEFLOAT32(i)                                           \
    GI_FORCEINLINE float GiExtractLane##i##Float32(GI_FLOAT32_t Vector) { \
        return vgetq_lane_f32(Vector, i);                                 \
203 204 205 206
    }
#elif defined(GI_SSE2_INTRINSICS)

#define GIEXTRACTLANEFLOAT32(i)                                                        \
207
    GI_FORCEINLINE float GiExtractLane##i##Float32(GI_FLOAT32_t Vector) {              \
208 209 210
        return _mm_cvtss_f32(_mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(i, i, i, i))); \
    }
#else
211 212 213
#define GIEXTRACTLANEFLOAT32(i)                                           \
    GI_FORCEINLINE float GiExtractLane##i##Float32(GI_FLOAT32_t Vector) { \
        return Vector[i];                                                 \
214 215 216 217 218 219 220 221 222 223
    }
#endif

GIEXTRACTLANEFLOAT32(0)
GIEXTRACTLANEFLOAT32(1)
GIEXTRACTLANEFLOAT32(2)
GIEXTRACTLANEFLOAT32(3)
#undef GIEXTRACTLANEFLOAT32

GI_FORCEINLINE
224
GI_FLOAT32_t GiInterleaveLowFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
225 226 227
#if defined(GI_NEON64_INTRINSICS)
    return vzip1q_f32(Vector1, Vector2);
#elif defined(GI_NEON32_INTRINSICS)
228
    float32x4x2_t zipped = vzipq_f32(Vector1, Vector2);
229 230 231 232
    return zipped.val[0];
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_unpacklo_ps(Vector1, Vector2);
#else
233
    GI_FLOAT32_t ret;
234 235 236 237 238 239 240 241 242
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / 2 / sizeof(float); i++) {
        ret[2 * i] = Vector1[i];
        ret[2 * i + 1] = Vector2[i];
    }
    return ret;
#endif
}

GI_FORCEINLINE
243
GI_FLOAT32_t GiInterleaveHighFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
244 245 246
#if defined(GI_NEON64_INTRINSICS)
    return vzip2q_f32(Vector1, Vector2);
#elif defined(GI_NEON32_INTRINSICS)
247
    float32x4x2_t zipped = vzipq_f32(Vector1, Vector2);
248 249 250 251
    return zipped.val[1];
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_unpackhi_ps(Vector1, Vector2);
#else
252
    GI_FLOAT32_t ret;
253 254 255 256 257 258 259 260 261
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / 2 / sizeof(float); i++) {
        ret[2 * i] = Vector1[GI_SIMD_LEN_BYTE / 2 + i];
        ret[2 * i + 1] = Vector2[GI_SIMD_LEN_BYTE / 2 + i];
    }
    return ret;
#endif
}

GI_FORCEINLINE
262
GI_FLOAT32_t GiAddFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
263 264 265 266 267 268 269 270 271 272
#if defined(GI_NEON_INTRINSICS)
    return vaddq_f32(Vector1, Vector2);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_add_ps(Vector1, Vector2);
#else
    return Vector1 + Vector2;
#endif
}

GI_FORCEINLINE
273
GI_FLOAT32_t GiSubtractFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
274 275 276 277 278 279 280 281 282 283
#if defined(GI_NEON_INTRINSICS)
    return vsubq_f32(Vector1, Vector2);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_sub_ps(Vector1, Vector2);
#else
    return Vector1 - Vector2;
#endif
}

GI_FORCEINLINE
284
GI_FLOAT32_t GiMultiplyFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
285 286 287 288 289 290 291 292 293 294
#if defined(GI_NEON_INTRINSICS)
    return vmulq_f32(Vector1, Vector2);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_mul_ps(Vector1, Vector2);
#else
    return Vector1 * Vector2;
#endif
}

GI_FORCEINLINE
295
GI_FLOAT32_t GiMultiplyScalerFloat32(GI_FLOAT32_t Vector1, float Scaler) {
296 297 298
#if defined(GI_NEON_INTRINSICS)
    return vmulq_n_f32(Vector1, Scaler);
#elif defined(GI_SSE2_INTRINSICS)
299
    GI_FLOAT32_t Vector2 = _mm_set1_ps(Scaler);
300 301 302 303 304 305 306
    return _mm_mul_ps(Vector1, Vector2);
#else
    return Vector1 * Scaler;
#endif
}

GI_FORCEINLINE
307 308
GI_FLOAT32_t GiMultiplyAddFloat32(
        GI_FLOAT32_t VectorSum, GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
309
#if defined(GI_NEON_INTRINSICS)
310
    return v_fma_ps_f32(VectorSum, Vector1, Vector2);
311 312 313 314 315 316 317 318 319 320
#elif defined(GI_FMA3_INTRINSICS)
    return _mm_fmadd_ps(Vector1, Vector2, VectorSum);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_add_ps(_mm_mul_ps(Vector1, Vector2), VectorSum);
#else
    return Vector1 * Vector2 + VectorSum;
#endif
}

GI_FORCEINLINE
321 322
GI_FLOAT32_t GiMultiplySubFloat32(
        GI_FLOAT32_t VectorSum, GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
323
#if defined(GI_NEON_INTRINSICS)
324 325 326 327 328 329 330 331 332 333 334 335
    return vmlsq_f32(VectorSum, Vector1, Vector2);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_sub_ps(VectorSum, _mm_mul_ps(Vector1, Vector2));
#else
    return VectorSum - Vector1 * Vector2;
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiMultiplyAddScalarFloat32(
        GI_FLOAT32_t VectorSum, GI_FLOAT32_t Vector, float Scalar) {
#if defined(GI_NEON_INTRINSICS)
336
    return v_fma_n_f32(VectorSum, Vector, Scalar);
337
#elif defined(GI_SSE2_INTRINSICS)
338
    return GiMultiplyAddFloat32(VectorSum, GiBroadcastFloat32(Scalar), Vector);
339 340 341 342 343 344
#else
    return VectorSum + Vector * Scalar;
#endif
}

#if defined(GI_NEON_INTRINSICS)
345 346 347
#define GIMULTIPLYADDLANFLOAT32(i)                                                \
    GI_FORCEINLINE GI_FLOAT32_t GiMultiplyAddLan##i##Float32(                     \
            GI_FLOAT32_t VectorSum, GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) { \
348
        return v_fma_lane_f32(VectorSum, Vector1, vget_low_f32(Vector2), i);      \
349 350 351 352 353
    }
GIMULTIPLYADDLANFLOAT32(0)
GIMULTIPLYADDLANFLOAT32(1)
#undef GIMULTIPLYADDLANFLOAT32
#define GIMULTIPLYADDLANFLOAT32(i)                                                \
354 355
    GI_FORCEINLINE GI_FLOAT32_t GiMultiplyAddLan##i##Float32(                     \
            GI_FLOAT32_t VectorSum, GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) { \
356
        return v_fma_lane_f32(VectorSum, Vector1, vget_high_f32(Vector2), i - 2); \
357 358 359
    }
GIMULTIPLYADDLANFLOAT32(2)
GIMULTIPLYADDLANFLOAT32(3)
360 361 362
#undef GIMULTIPLYADDLANFLOAT32
#elif defined(GI_SSE2_INTRINSICS)

363 364 365 366 367
#define GIMULTIPLYADDLANFLOAT32(i)                                                \
    GI_FORCEINLINE GI_FLOAT32_t GiMultiplyAddLan##i##Float32(                     \
            GI_FLOAT32_t VectorSum, GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) { \
        return GiMultiplyAddScalarFloat32(                                        \
                VectorSum, Vector1, GiExtractLane##i##Float32(Vector2));          \
368 369 370 371 372 373 374
    }
GIMULTIPLYADDLANFLOAT32(0)
GIMULTIPLYADDLANFLOAT32(1)
GIMULTIPLYADDLANFLOAT32(2)
GIMULTIPLYADDLANFLOAT32(3)
#undef GIMULTIPLYADDLANFLOAT32
#else
375 376 377 378
#define GIMULTIPLYADDLANFLOAT32(i)                                                \
    GI_FORCEINLINE GI_FLOAT32_t GiMultiplyAddLan##i##Float32(                     \
            GI_FLOAT32_t VectorSum, GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) { \
        return VectorSum + Vector1 * Vector2[i];                                  \
379 380 381 382 383 384 385 386 387
    }
GIMULTIPLYADDLANFLOAT32(0)
GIMULTIPLYADDLANFLOAT32(1)
GIMULTIPLYADDLANFLOAT32(2)
GIMULTIPLYADDLANFLOAT32(3)
#undef GIMULTIPLYADDLANFLOAT32
#endif

GI_FORCEINLINE
388
GI_FLOAT32_t GiDivideFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
389 390 391 392 393 394 395 396 397 398 399 400 401 402
#if defined(GI_NEON64_INTRINSICS)
    return vdivq_f32(Vector1, Vector2);
#elif defined(GI_NEON32_INTRINSICS)
    float32x4_t recp = vrecpeq_f32(Vector2);
    recp = vmulq_f32(vrecpsq_f32(Vector2, recp), recp);
    return vmulq_f32(Vector1, recp);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_div_ps(Vector1, Vector2);
#else
    return Vector1 / Vector2;
#endif
}

GI_FORCEINLINE
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
GI_FLOAT32_t GiRecpeSFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
#if defined(GI_NEON64_INTRINSICS)
    return vrecpsq_f32(Vector1, Vector2);
#elif defined(GI_SSE2_INTRINSICS)
    GI_FLOAT32_t two = _mm_set1_ps(2.0f);
    return _mm_sub_ps(two, _mm_mul_ps(Vector1, Vector2));
#else
    return (2.0f - Vector1 * Vector2);
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiRecpeFloat32(GI_FLOAT32_t Vector) {
#if defined(GI_NEON32_INTRINSICS)
    return vrecpeq_f32(Vector);
#elif defined(GI_SSE2_INTRINSICS)
    GI_FLOAT32_t ones = _mm_set1_ps(1.0f);
    return _mm_div_ps(ones, Vector);
#else
    return 1 / Vector;
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiNegFloat32(GI_FLOAT32_t Vector) {
#if defined(GI_NEON32_INTRINSICS)
    return vnegq_f32(Vector);
#elif defined(GI_SSE2_INTRINSICS)
    GI_FLOAT32_t zero = _mm_set1_ps(0.0f);
    return _mm_sub_ps(zero, Vector);
#else
    return -Vector;
#endif
}

GI_FORCEINLINE
GI_UINT32_t GiGreaterThanFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
#if defined(GI_NEON_INTRINSICS)
    return vcgtq_f32(Vector1, Vector2);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_castps_si128(_mm_cmpgt_ps(Vector1, Vector2));
#else
    GI_UINT32_t ret;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret[i] = Vector1[i] > Vector2[i] ? 0xFFFFFFFF : 0;
    }
    return ret;
#endif
}

GI_FORCEINLINE
GI_UINT32_t GiLessThanEqFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
455
#if defined(GI_NEON_INTRINSICS)
456
    return vcleq_f32(Vector1, Vector2);
457
#elif defined(GI_SSE2_INTRINSICS)
458
    return _mm_castps_si128(_mm_cmple_ps(Vector1, Vector2));
459
#else
460 461 462 463 464
    GI_UINT32_t ret;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret[i] = Vector1[i] <= Vector2[i] ? 0xFFFFFFFF : 0;
    }
    return ret;
465 466 467 468
#endif
}

GI_FORCEINLINE
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
GI_UINT32_t GiLessThanFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
#if defined(GI_NEON_INTRINSICS)
    return vcltq_f32(Vector1, Vector2);
#elif defined(GI_SSE2_INTRINSICS)
    return _mm_castps_si128(_mm_cmplt_ps(Vector1, Vector2));
#else
    GI_UINT32_t ret;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret[i] = Vector1[i] < Vector2[i] ? 0xFFFFFFFF : 0;
    }
    return ret;
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiAndFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
485 486 487
#if defined(GI_SSE2_INTRINSICS)
    return _mm_and_ps(Vector1, Vector2);
#else
488
    return GiReintInt32ToFloat32(
489 490 491 492 493
            GiAndInt32(GiReinterpretAsInt32(Vector1), GiReinterpretAsInt32(Vector2)));
#endif
}

GI_FORCEINLINE
494
GI_FLOAT32_t GiOrFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
495 496 497
#if defined(GI_SSE2_INTRINSICS)
    return _mm_or_ps(Vector1, Vector2);
#else
498
    return GiReintInt32ToFloat32(
499 500 501 502 503
            GiOrInt32(GiReinterpretAsInt32(Vector1), GiReinterpretAsInt32(Vector2)));
#endif
}

GI_FORCEINLINE
504
GI_FLOAT32_t GiAndNotFloat32(GI_FLOAT32_t VectorNot, GI_FLOAT32_t Vector) {
505 506 507
#if defined(GI_SSE2_INTRINSICS)
    return _mm_andnot_ps(VectorNot, Vector);
#else
508
    return GiReintInt32ToFloat32(GiAndNotInt32(
509 510 511 512 513
            GiReinterpretAsInt32(VectorNot), GiReinterpretAsInt32(Vector)));
#endif
}

GI_FORCEINLINE
514
GI_FLOAT32_t GiXorFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
515 516 517
#if defined(GI_SSE2_INTRINSICS)
    return _mm_xor_ps(Vector1, Vector2);
#else
518
    return GiReintInt32ToFloat32(
519 520 521 522 523
            GiXorInt32(GiReinterpretAsInt32(Vector1), GiReinterpretAsInt32(Vector2)));
#endif
}

GI_FORCEINLINE
524 525
GI_FLOAT32_t GiBlendFloat32(
        GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2, GI_FLOAT32_t Selection) {
526 527 528 529
    return GiOrFloat32(
            GiAndFloat32(Vector2, Selection), GiAndNotFloat32(Selection, Vector1));
}

530 531 532
#define MIN_NAN(a, b) (isnan(a) || (a) < (b)) ? (a) : (b);
#define MAX_NAN(a, b) (isnan(a) || (a) > (b)) ? (a) : (b);

533
GI_FORCEINLINE
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
GI_FLOAT32_t GiBSLFloat32(
        GI_UINT32_t Selection, GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
#if defined(GI_NEON_INTRINSICS)
    return vbslq_f32(Selection, Vector1, Vector2);
#else
    return GiBlendFloat32(Vector1, Vector2, GiReintUint32ToFloat32(Selection));
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiMaximumFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
#if defined(GI_NEON_INTRINSICS)
    return vmaxq_f32(Vector1, Vector2);
#elif defined(GI_NEON32_INTRINSICS)
    return _mm_max_ps(Vector1, Vector2);
#else
    GI_FLOAT32_t max;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        max[i] = Max(Vector1[i], Vector2[i]);
    }
    return max;
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiMinimumFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
#if defined(GI_NEON_INTRINSICS)
    return vminq_f32(Vector1, Vector2);
#elif defined(GI_NEON32_INTRINSICS)
    return _mm_min_ps(Vector1, Vector2);
#else
    GI_FLOAT32_t min;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        min[i] = Min(Vector1[i], Vector2[i]);
    }
    return min;
#endif
}

GI_FORCEINLINE
GI_FLOAT32_t GiMaxNanFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
575 576
#if defined(GI_NEON_INTRINSICS)
    return vmaxq_f32(Vector1, Vector2);
577
#else
578 579
    //! _mm_max_ps does not fellow the IEEE standard when input is NAN, so
    //! implement by C code
580 581
#define MAX_NAN(a, b) (isnan(a) || (a) > (b)) ? (a) : (b);
    GI_FLOAT32_t max;
582 583 584 585
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        max[i] = MAX_NAN(Vector1[i], Vector2[i]);
    }
    return max;
586 587 588 589
#endif
}

GI_FORCEINLINE
590
GI_FLOAT32_t GiMinNanFloat32(GI_FLOAT32_t Vector1, GI_FLOAT32_t Vector2) {
591 592
#if defined(GI_NEON_INTRINSICS)
    return vminq_f32(Vector1, Vector2);
593
#else
594 595
    //! _mm_min_ps does not fellow the IEEE standard when input is NAN, so
    //! implement by C code
596 597
#define MIN_NAN(a, b) (isnan(a) || (a) < (b)) ? (a) : (b);
    GI_FLOAT32_t min;
598 599 600 601
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        min[i] = MIN_NAN(Vector1[i], Vector2[i]);
    }
    return min;
602 603 604 605
#endif
}

GI_FORCEINLINE
606
GI_FLOAT32_t GiClampFloat32(GI_FLOAT32_t Value, float LowerRange, float UpperRange) {
607 608 609 610 611 612
    Value = GiMaximumFloat32(GiBroadcastFloat32(LowerRange), Value);
    Value = GiMinimumFloat32(GiBroadcastFloat32(UpperRange), Value);
    return Value;
}

GI_FORCEINLINE
613
float GiReduceAddFloat32(GI_FLOAT32_t Vector) {
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
#if defined(GI_NEON64_INTRINSICS)
    Vector = vpaddq_f32(Vector, Vector);
    Vector = vpaddq_f32(Vector, Vector);
    return vgetq_lane_f32(Vector, 0);
#elif defined(GI_NEON32_INTRINSICS)
    float32x2_t VectorLow = vget_low_f32(Vector);
    float32x2_t VectorHigh = vget_high_f32(Vector);
    VectorLow = vpadd_f32(VectorLow, VectorHigh);
    VectorLow = vpadd_f32(VectorLow, VectorHigh);
    return vget_lane_f32(VectorLow, 0);
#elif defined(GI_SSE2_INTRINSICS)
    Vector = GiAddFloat32(
            Vector, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(2, 3, 2, 3)));
    Vector = GiAddFloat32(
            Vector, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(1, 1, 1, 1)));
    return GiExtractLane0Float32(Vector);
#else
    float ret = 0;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret += Vector[i];
    }
    return ret;
#endif
}

GI_FORCEINLINE
640
float GiReduceMultiplyFloat32(GI_FLOAT32_t Vector) {
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
#if defined(GI_NEON64_INTRINSICS)
    float32x2_t low = vget_low_f32(Vector);
    float32x2_t high = vget_high_f32(Vector);
    float32x2_t res = vmul_f32(low, high);
    return vget_lane_f32(res, 0) * vget_lane_f32(res, 1);
#elif defined(GI_SSE2_INTRINSICS)
    Vector = GiMultiplyFloat32(
            Vector, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(2, 3, 2, 3)));
    Vector = GiMultiplyFloat32(
            Vector, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(1, 1, 1, 1)));
    return GiExtractLane0Float32(Vector);
#else
    float ret = 1;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret *= Vector[i];
    }
    return ret;
#endif
}

#define Max(a, b) (a) > (b) ? (a) : (b)
#define Min(a, b) (a) < (b) ? (a) : (b)

GI_FORCEINLINE
665
float GiReduceMaxNanFloat32(GI_FLOAT32_t Vector) {
666 667 668 669 670 671 672 673 674
#if defined(GI_NEON64_INTRINSICS)
    return vmaxvq_f32(Vector);
#elif defined(GI_NEON32_INTRINSICS)
    float32x2_t VectorLow = vget_low_f32(Vector);
    float32x2_t VectorHigh = vget_high_f32(Vector);
    VectorLow = vpmax_f32(VectorLow, VectorHigh);
    VectorLow = vpmax_f32(VectorLow, VectorHigh);
    return vget_lane_f32(VectorLow, 0);
#elif defined(GI_SSE2_INTRINSICS)
675
    Vector = GiMaxNanFloat32(
676
            Vector, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(2, 3, 2, 3)));
677
    Vector = GiMaxNanFloat32(
678 679 680 681 682
            Vector, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(1, 1, 1, 1)));
    return GiExtractLane0Float32(Vector);
#else
    float ret = Vector[0];
    for (size_t i = 1; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
683
        ret = MAX_NAN(ret, Vector[i]);
684 685 686 687 688 689
    }
    return ret;
#endif
}

GI_FORCEINLINE
690
float GiReduceMinNanFloat32(GI_FLOAT32_t Vector) {
691 692 693 694 695 696 697 698 699
#if defined(GI_NEON64_INTRINSICS)
    return vminvq_f32(Vector);
#elif defined(GI_NEON32_INTRINSICS)
    float32x2_t VectorLow = vget_low_f32(Vector);
    float32x2_t VectorHigh = vget_high_f32(Vector);
    VectorLow = vpmin_f32(VectorLow, VectorHigh);
    VectorLow = vpmin_f32(VectorLow, VectorHigh);
    return vget_lane_f32(VectorLow, 0);
#elif defined(GI_SSE2_INTRINSICS)
700
    Vector = GiMinNanFloat32(
701
            Vector, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(2, 3, 2, 3)));
702
    Vector = GiMinNanFloat32(
703 704 705 706 707
            Vector, _mm_shuffle_ps(Vector, Vector, _MM_SHUFFLE(1, 1, 1, 1)));
    return GiExtractLane0Float32(Vector);
#else
    float ret = Vector[0];
    for (size_t i = 1; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
708
        ret = MIN_NAN(ret, Vector[i]);
709 710 711 712 713
    }
    return ret;
#endif
}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
GI_FORCEINLINE
GI_FLOAT32_t GiAbsFloat32(GI_FLOAT32_t Vector1) {
#if defined(GI_NEON64_INTRINSICS)
    return vabsq_f32(Vector1);
#elif defined(GI_SSE2_INTRINSICS)
    union {
        unsigned int int_val;
        float float_val;
    } value;
    value.int_val = 0x7fffffff;
    return _mm_and_ps(Vector1, _mm_set_ps1(value.float_val));
#else
    GI_FLOAT32_t ret;
    for (size_t i = 0; i < GI_SIMD_LEN_BYTE / sizeof(float); i++) {
        ret[i] = Vector1[i] > 0 ? Vector1[i] : -Vector1[i];
    }
    return ret;
#endif
}

734
// vim: syntax=cpp.doxygen