opr_footprint.cpp 33.8 KB
Newer Older
1 2 3
#include "megbrain/plugin/opr_footprint.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
M
Megvii Engine Team 已提交
4 5
#include "megbrain/opr/dnn/adaptive_pooling.h"
#include "megbrain/opr/dnn/batch_norm.h"
6 7 8 9 10
#include "megbrain/opr/dnn/convolution.h"
#include "megbrain/opr/dnn/images2neibs.h"
#include "megbrain/opr/dnn/local.h"
#include "megbrain/opr/dnn/lrn.h"
#include "megbrain/opr/dnn/pooling.h"
11
#include "megbrain/opr/dnn/roi_align.h"
M
Megvii Engine Team 已提交
12
#include "megbrain/opr/dnn/roi_pooling.h"
13
#include "megbrain/opr/imgproc.h"
14 15
#include "megbrain/opr/indexing.h"
#include "megbrain/opr/internal/indexing_helper.h"
M
Megvii Engine Team 已提交
16 17
#include "megbrain/opr/io.h"
#include "megbrain/opr/misc.h"
18
#include "megbrain/opr/nn_int.h"
M
Megvii Engine Team 已提交
19 20
#include "megbrain/opr/rand.h"
#include "megbrain/opr/standalone/nms_opr.h"
21
#include "megbrain/opr/tensor_gen.h"
M
Megvii Engine Team 已提交
22
#include "megbrain/opr/tensor_manip.h"
23 24 25 26
#if MGB_ENABLE_JSON
#include "megdnn/opr_param_json.h"
#endif

27 28 29 30
#include "megbrain/utils/hash_ct.h"
#include "midout.h"

MIDOUT_DECL(megbrain_opr_footprint)
M
Megvii Engine Team 已提交
31
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_footprint, __VA_ARGS__) {
32 33 34 35
#define MIDOUT_E \
    }            \
    MIDOUT_END();

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
using namespace mgb;

namespace {

template <class T>
uint64_t opr_footprint_func(cg::OperatorNodeBase* opr);

// Elemwise
template <>
uint64_t opr_footprint_func<opr::Elemwise>(cg::OperatorNodeBase* opr) {
    return opr->output()[0]->shape().total_nr_elems() *
           (std::max<size_t>(opr->input().size(), 2) - 1);
}

// AddUpdate
template <>
uint64_t opr_footprint_func<opr::AddUpdate>(cg::OperatorNodeBase* opr) {
M
Megvii Engine Team 已提交
53
    mgb_assert(opr->input().size() == 2, "AddUpdate opr should have two inputs");
54 55 56 57 58
    auto&& out_shape = opr->output()[0]->shape();
    return out_shape.total_nr_elems() * 3;
}

template <class Conv>
M
Megvii Engine Team 已提交
59 60 61
uint64_t eval_conv_computation(
        const TensorShape& src_shape, const TensorShape& filter_shape,
        const TensorShape& dst_shape, cg::OperatorNodeBase* opr) {
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    using Param = opr::ConvolutionForward::Param;
    auto&& param = opr->cast_final_safe<Conv>().param();

    if (param.format == Param::Format::NHWCD4) {
        size_t fh, fw;
        size_t group = 1;
        if (param.sparse == Param::Sparse::DENSE) {
            fh = filter_shape[1];
            fw = filter_shape[2];
            group = 1;
        } else {
            // chanwise conv
            mgb_assert(param.sparse == Param::Sparse::GROUP);
            fh = filter_shape[2];
            fw = filter_shape[3];
            group = filter_shape[0];

            if (filter_shape.ndim == 5) {
                group *= 4;
            }
        }
M
Megvii Engine Team 已提交
83
        return dst_shape.total_nr_elems() * fh * fw * src_shape[2] * 4 / group * 2;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    }
    auto eval_conv_computation_nchwx = [&param, &src_shape, &filter_shape,
                                        &dst_shape]() -> uint64_t {
        size_t fh, fw;
        bool hybird_nchwx = false;
        size_t group = 1;
        if (param.sparse == Param::Sparse::DENSE) {
            //! if nchwxx mode src is nchw output is nchwxx
            if (dst_shape.ndim == 5 && src_shape.ndim == 4) {
                fh = filter_shape[1];
                fw = filter_shape[2];
                hybird_nchwx = true;
            } else {
                fh = filter_shape[2];
                fw = filter_shape[3];
            }
            group = 1;
        } else {
            mgb_assert(param.sparse == Param::Sparse::GROUP);
            fh = filter_shape[3];
            fw = filter_shape[4];
            group = filter_shape[0];
        }
        if (param.format == Param::Format::NCHW88) {
108
            //! if channel wise weight layout is {group/8, FH, FW, 1, 1, 8}
109 110 111
            if (filter_shape[1] == 1 && filter_shape[2] == 1) {
                group *= 8;
            }
M
Megvii Engine Team 已提交
112 113
            size_t computation =
                    dst_shape.total_nr_elems() * fh * fw * src_shape[1] / group * 2;
114 115
            return hybird_nchwx ? computation : computation * 8;
        }
116 117
        if (param.format == Param::Format::NCHW44 ||
            param.format == Param::Format::NCHW44_DOT) {
118
            //! if channel wise weight layout is {group/4, FH, FW, 1, 1, 4}
119 120
            if (filter_shape[1] == 1 && filter_shape[2] == 1 &&
                filter_shape.ndim == 6) {
121 122
                group *= 4;
            }
M
Megvii Engine Team 已提交
123 124
            size_t computation =
                    dst_shape.total_nr_elems() * fh * fw * src_shape[1] / group * 2;
125 126
            return hybird_nchwx ? computation : computation * 4;
        }
127 128 129
        size_t packed_size;
        if (param.format == Param::Format::NCHW64) {
            packed_size = 64;
M
Megvii Engine Team 已提交
130 131 132
        } else if (
                param.format == Param::Format::NCHW32 ||
                param.format == Param::Format::NCHW32_NCHW4) {
133 134
            packed_size = 32;
        } else {
M
Megvii Engine Team 已提交
135 136 137 138 139 140 141
            mgb_assert(
                    param.format == Param::Format::NCHW4 ||
                            param.format == Param::Format::NCHW4_NHWC ||
                            param.format == Param::Format::NCHW4_NCHW ||
                            param.format == Param::Format::NCHW4_NCHW32,
                    "format should be "
                    "NCHW4/NCHW4_NCHW/NCHW4_NHWC/NCHW4_NCHW32");
142
            packed_size = 4;
143
        }
M
Megvii Engine Team 已提交
144 145
        return dst_shape.total_nr_elems() * fh * fw * src_shape[1] * packed_size /
               group * 2;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    };
    auto eval_conv_computation_chwn4 = [&param, &src_shape, &filter_shape,
                                        &dst_shape]() -> uint64_t {
        size_t fh, fw;
        size_t group = 1;
        if (param.sparse == Param::Sparse::DENSE) {
            fh = filter_shape[1];
            fw = filter_shape[2];
            group = 1;
        } else {
            mgb_assert(param.sparse == Param::Sparse::GROUP);
            fh = filter_shape[2];
            fw = filter_shape[3];
            group = filter_shape[0];
        }
M
Megvii Engine Team 已提交
161
        return dst_shape.total_nr_elems() * fh * fw * src_shape[0] * 4 / group * 2;
162 163
    };
    if (param.format == Param::Format::NCHW4 ||
164
        param.format == Param::Format::NCHW4_NCHW ||
165
        param.format == Param::Format::NCHW4_NHWC ||
166
        param.format == Param::Format::NCHW4_NCHW32 ||
167
        param.format == Param::Format::NCHW88 ||
168
        param.format == Param::Format::NCHW44 ||
169
        param.format == Param::Format::NCHW44_DOT ||
170
        param.format == Param::Format::NCHW32 ||
171 172
        param.format == Param::Format::NCHW32_NCHW4 ||
        param.format == Param::Format::NCHW64) {
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        return eval_conv_computation_nchwx();
    }
    if (param.format == Param::Format::CHWN4) {
        return eval_conv_computation_chwn4();
    }
    size_t cpos;
    size_t spatial_start;
    size_t group = 1;
    switch (param.format) {
        case Param::Format::NCHW:
            cpos = 1;
            spatial_start = 2;
            break;
        case Param::Format::NHWC:
            cpos = 3;
            spatial_start = 1;
            break;
        default:
            mgb_assert(false, "Unknown CONV Param::Format type");
    }
    switch (param.sparse) {
        case Param::Sparse::DENSE:
M
Megvii Engine Team 已提交
195 196 197 198
            mgb_assert(
                    filter_shape.ndim == 4 || filter_shape.ndim == 6,
                    "DENSE conv filter shape dimension should be "
                    "4/6(winograd mk4)");
199 200
            break;
        case Param::Sparse::GROUP:
M
Megvii Engine Team 已提交
201 202 203 204
            mgb_assert(
                    filter_shape.ndim == 5 || filter_shape.ndim == 7,
                    "GROUP conv filter shape dimension should be "
                    "5/7(winograd mk4)");
205 206 207 208 209 210 211 212 213
            spatial_start++;
            group = filter_shape[0];
            break;
        default:
            mgb_assert(false, "Unkown CONV Param::Sparse type");
    }

    uint64_t fh = static_cast<uint64_t>(filter_shape[spatial_start]);
    uint64_t fw = static_cast<uint64_t>(filter_shape[spatial_start + 1]);
214

215
    // mul and add are counted as 2 operations
216

217 218 219 220 221 222
    return dst_shape.total_nr_elems() * fh * fw *
           static_cast<uint64_t>(src_shape[cpos]) / group * 2;
}

// ConvolutionForward
template <>
M
Megvii Engine Team 已提交
223 224
uint64_t opr_footprint_func<opr::ConvolutionForward>(cg::OperatorNodeBase* opr) {
    mgb_assert(opr->input().size() == 2, "ConvolutionFwd opr should have two inputs");
225 226 227 228 229 230 231
    auto&& out_shape = opr->output()[0]->shape();
    auto&& src_shape = opr->input()[0]->shape();
    auto&& filter_shape = opr->input()[1]->shape();
    return eval_conv_computation<opr::ConvolutionForward>(
            src_shape, filter_shape, out_shape, opr);
}
template <>
M
Megvii Engine Team 已提交
232 233 234 235 236
uint64_t opr_footprint_func<opr::ConvBiasForward>(cg::OperatorNodeBase* opr) {
    mgb_assert(
            opr->input().size() == 2 || opr->input().size() == 3 ||
                    opr->input().size() == 4,
            "ConvBiasForward opr should have two/three/four inputs");
237 238 239 240 241 242 243 244 245 246 247 248 249
    auto&& out_shape = opr->output()[0]->shape();
    auto&& src_shape = opr->input()[0]->shape();
    auto&& filter_shape = opr->input()[1]->shape();
    uint64_t res = eval_conv_computation<opr::ConvBiasForward>(
            src_shape, filter_shape, out_shape, opr);
    if (opr->input().size() == 3) {
        res += out_shape.total_nr_elems();
    }
    return res;
}

// ConvolutionBackwardData
template <>
M
Megvii Engine Team 已提交
250 251 252 253
uint64_t opr_footprint_func<opr::ConvolutionBackwardData>(cg::OperatorNodeBase* opr) {
    mgb_assert(
            opr->input().size() == 2 || opr->input().size() == 3,
            "ConvolutionBackwardData opr should have two or three inputs");
254 255 256 257 258 259 260 261 262
    auto&& filter_shape = opr->input()[0]->shape();
    auto&& diff_shape = opr->input()[1]->shape();
    auto&& grad_shape = opr->output()[0]->shape();
    return eval_conv_computation<opr::ConvolutionBackwardData>(
            grad_shape, filter_shape, diff_shape, opr);
}

// ConvolutionBackwardFilter
template <>
M
Megvii Engine Team 已提交
263 264 265 266
uint64_t opr_footprint_func<opr::ConvolutionBackwardFilter>(cg::OperatorNodeBase* opr) {
    mgb_assert(
            opr->input().size() == 3,
            "ConvolutionBackwardData opr should have three inputs");
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    auto&& filter_shape = opr->input()[2]->shape();
    auto&& diff_shape = opr->input()[1]->shape();
    auto&& src_shape = opr->input()[0]->shape();
    return eval_conv_computation<opr::ConvolutionBackwardFilter>(
            src_shape, filter_shape, diff_shape, opr);
}

// MatrixMul
template <>
uint64_t opr_footprint_func<opr::MatrixMul>(cg::OperatorNodeBase* opr) {
    auto&& mopr = opr->cast_final_safe<opr::MatrixMul>();
    auto &&i0 = opr->input(0)->shape(), &&i1 = opr->input(1)->shape();
    mgb_assert(i0.ndim == 2 && i1.ndim == 2);
    auto m = i0[0], k0 = i0[1], k1 = i1[0], n = i1[1];
    if (mopr.param().transposeA) {
        std::swap(m, k0);
    }
    if (mopr.param().transposeB) {
        std::swap(k1, n);
    }
    mgb_assert(k0 == k1);
    // mul and add are counted as 2 operations
    return m * k0 * n * 2;
}

template <>
uint64_t opr_footprint_func<opr::LocalShareForward>(cg::OperatorNodeBase* opr) {
M
Megvii Engine Team 已提交
294
    mgb_assert(opr->input().size() == 2, "LocalShare opr should have two inputs");
295 296 297 298 299 300 301 302 303 304 305 306
    auto&& out_shape = opr->output()[0]->shape();
    auto&& src_shape = opr->input()[0]->shape();
    auto&& filter_shape = opr->input()[1]->shape();
    using Param = opr::LocalShareForward::Param;
    auto&& param = opr->cast_final_safe<opr::LocalShareForward>().param();
    mgb_assert(param.format == Param::Format::NCHW);
    size_t groups = 1;
    size_t kern_spatial_pos = 3;
    if (param.sparse == Param::Sparse::GROUP) {
        groups = filter_shape[0];
        kern_spatial_pos = 4;
    }
M
Megvii Engine Team 已提交
307
    size_t fh = filter_shape[kern_spatial_pos], fw = filter_shape[kern_spatial_pos + 1];
308 309 310 311 312
    return out_shape.total_nr_elems() * fh * fw * src_shape[1] * 2 / groups;
}

template <>
uint64_t opr_footprint_func<opr::LocalShareBackwardData>(cg::OperatorNodeBase* opr) {
M
Megvii Engine Team 已提交
313 314 315
    mgb_assert(
            opr->input().size() == 3,
            "LocalShareBackwardData opr should have three inputs");
316 317 318 319 320 321 322 323 324 325 326 327
    auto&& filter_shape = opr->input()[0]->shape();
    auto&& diff_shape = opr->input()[1]->shape();
    auto&& grad_shape = opr->output()[0]->shape();
    using Param = opr::LocalShareForward::Param;
    auto&& param = opr->cast_final_safe<opr::LocalShareBackwardData>().param();
    mgb_assert(param.format == Param::Format::NCHW);
    size_t groups = 1;
    size_t kern_spatial_pos = 3;
    if (param.sparse == Param::Sparse::GROUP) {
        groups = filter_shape[0];
        kern_spatial_pos = 4;
    }
M
Megvii Engine Team 已提交
328
    size_t fh = filter_shape[kern_spatial_pos], fw = filter_shape[kern_spatial_pos + 1];
329 330 331 332 333
    return diff_shape.total_nr_elems() * fh * fw * grad_shape[1] * 2 / groups;
}

template <>
uint64_t opr_footprint_func<opr::LocalShareBackwardFilter>(cg::OperatorNodeBase* opr) {
M
Megvii Engine Team 已提交
334 335 336
    mgb_assert(
            opr->input().size() == 3,
            "LocalShareBackwardFilter opr should have three inputs");
337 338 339 340 341 342 343 344 345 346 347 348
    auto&& src_shape = opr->input()[0]->shape();
    auto&& diff_shape = opr->input()[1]->shape();
    auto&& grad_shape = opr->output()[0]->shape();
    using Param = opr::LocalShareForward::Param;
    auto&& param = opr->cast_final_safe<opr::LocalShareBackwardFilter>().param();
    mgb_assert(param.format == Param::Format::NCHW);
    size_t groups = 1;
    size_t kern_spatial_pos = 3;
    if (param.sparse == Param::Sparse::GROUP) {
        groups = grad_shape[0];
        kern_spatial_pos = 4;
    }
M
Megvii Engine Team 已提交
349
    size_t fh = grad_shape[kern_spatial_pos], fw = grad_shape[kern_spatial_pos + 1];
350 351 352 353
    return diff_shape.total_nr_elems() * fh * fw * src_shape[1] * 2 / groups;
}

template <>
M
Megvii Engine Team 已提交
354 355 356 357
uint64_t opr_footprint_func<opr::DeformableConvForward>(cg::OperatorNodeBase* opr) {
    mgb_assert(
            opr->input().size() == 4,
            "DeformableConvForward opr should have four inputs");
358 359 360
    auto&& out_shape = opr->output()[0]->shape();
    auto&& filter_shape = opr->input()[1]->shape();
    using Param = opr::DeformableConvForward::Param;
361
    auto&& param = opr->cast_final_safe<opr::DeformableConvForward>().param();
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    size_t fh, fw, icpg;
    mgb_assert(param.format == Param::Format::NCHW);
    if (param.sparse == Param::Sparse::GROUP) {
        icpg = filter_shape[2];
        fh = filter_shape[3], fw = filter_shape[4];
    } else {
        icpg = filter_shape[1];
        fh = filter_shape[2], fw = filter_shape[3];
    }
    //! conv(1 mul), mask(1, mul), accumulate(1 add)
    return out_shape.total_nr_elems() * fh * fw * icpg * 3;
}

template <>
uint64_t opr_footprint_func<opr::DeformableConvBackwardFilter>(
        cg::OperatorNodeBase* opr) {
M
Megvii Engine Team 已提交
378 379 380
    mgb_assert(
            opr->input().size() == 5,
            "DeformableConvBackwardFilter opr should have four inputs");
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    auto&& out_shape = opr->output()[0]->shape();
    auto&& filter_shape = opr->input()[1]->shape();
    using Param = opr::DeformableConvBackwardFilter::Param;
    auto&& param = opr->cast_final_safe<opr::Convolution>().param();
    size_t fh, fw, icpg;
    mgb_assert(param.format == Param::Format::NCHW);
    if (param.sparse == Param::Sparse::GROUP) {
        icpg = filter_shape[2];
        fh = filter_shape[3], fw = filter_shape[4];
    } else {
        icpg = filter_shape[1];
        fh = filter_shape[2], fw = filter_shape[3];
    }
    //! deconv(1 mul), mask(1 mul), accumulate(1 add), bilinear(4 add, 4mul,
    //! skip)
    return out_shape.total_nr_elems() * fh * fw * icpg * 3;
}

template <>
uint64_t opr_footprint_func<opr::DeformableConvBackwardData>(
        cg::OperatorNodeBase* opr) {
M
Megvii Engine Team 已提交
402 403 404
    mgb_assert(
            opr->input().size() == 5,
            "DeformableConvBackwardData opr should have four inputs");
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    auto&& out_shape = opr->output()[0]->shape();
    auto&& filter_shape = opr->input()[1]->shape();
    using Param = opr::DeformableConvForward::Param;
    auto&& param = opr->cast_final_safe<opr::Convolution>().param();
    size_t fh, fw, icpg;
    mgb_assert(param.format == Param::Format::NCHW);
    if (param.sparse == Param::Sparse::GROUP) {
        icpg = filter_shape[2];
        fh = filter_shape[3], fw = filter_shape[4];
    } else {
        icpg = filter_shape[1];
        fh = filter_shape[2], fw = filter_shape[3];
    }
    //! deconv(1 mul), mask(1 mul), accumulate(1 add), grad_weight(1 mul, skip),
    //! grad_coord(4mul, 4 add)
    return out_shape.total_nr_elems() * fh * fw * icpg * 12;
}

template <>
M
Megvii Engine Team 已提交
424 425 426 427 428
uint64_t opr_footprint_func<opr::BatchConvBiasForward>(cg::OperatorNodeBase* opr) {
    mgb_assert(
            opr->input().size() == 2 || opr->input().size() == 3 ||
                    opr->input().size() == 4,
            "BatchConvBias opr should have two/three/four inputs");
429 430 431 432 433
    auto&& out_shape = opr->output()[0]->shape();
    auto&& src_shape = opr->input()[0]->shape();
    auto&& filter_shape = opr->input()[1]->shape();
    using Param = opr::BatchConvBiasForward::Param;
    auto&& param = opr->cast_final_safe<opr::BatchConvBiasForward>().param();
434
    size_t packed_channels = 1;
435
    size_t kern_spatial_pos = 3;
436 437 438
    if (param.format == Param::Format::NCHW4) {
        packed_channels = 4;
    }
M
Megvii Engine Team 已提交
439 440
    size_t fh = filter_shape[kern_spatial_pos], fw = filter_shape[kern_spatial_pos + 1];
    return out_shape.total_nr_elems() * fh * fw * src_shape[1] * packed_channels * 2;
441 442 443 444 445 446 447 448 449 450
}

// Pooling
template <>
uint64_t opr_footprint_func<opr::PoolingForward>(cg::OperatorNodeBase* opr) {
    auto&& param = opr->cast_final_safe<opr::PoolingForward>().param();
    auto area = param.window_h * param.window_w;
    return opr->output(0)->shape().total_nr_elems() * area;
}

451 452 453 454 455 456 457 458
// PoolingBackWard
template <>
uint64_t opr_footprint_func<opr::PoolingBackward>(cg::OperatorNodeBase* opr) {
    auto&& param = opr->cast_final_safe<opr::PoolingBackward>().param();
    auto area = param.window_h * param.window_w;
    return opr->input()[0]->shape().total_nr_elems() * area;
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
// Concat
template <>
uint64_t opr_footprint_func<opr::Concat>(cg::OperatorNodeBase* opr) {
    auto&& out_shape = opr->output()[0]->shape();
    return out_shape.total_nr_elems();
}

// Dimshuffle
template <>
uint64_t opr_footprint_func<opr::Dimshuffle>(cg::OperatorNodeBase* opr) {
    auto&& out = opr->output()[0];
    return out->shape().total_nr_elems();
}

// Reduce
template <>
uint64_t opr_footprint_func<opr::Reduce>(cg::OperatorNodeBase* opr) {
    return opr->input()[0]->shape().total_nr_elems();
}

// Host2DeviceCopy
template <>
uint64_t opr_footprint_func<opr::Host2DeviceCopy>(cg::OperatorNodeBase* opr) {
    auto&& out_shape = opr->output()[0]->shape();
    return out_shape.total_nr_elems();
}

/******************* Registe Param Json Functions *************************/
#if MGB_ENABLE_JSON
template <class T>
std::shared_ptr<json::Value> opr_param_json_func(cg::OperatorNodeBase* opr);

M
Megvii Engine Team 已提交
491 492 493 494 495
#define REGISTE_PARAM_JSON_FUNC(cls)                                             \
    template <>                                                                  \
    std::shared_ptr<json::Value> opr_param_json_func<opr::cls>(                  \
            cg::OperatorNodeBase * opr) {                                        \
        return opr::opr_param_to_json(opr->cast_final_safe<opr::cls>().param()); \
496 497 498 499 500 501 502 503 504 505 506 507 508 509
    }

REGISTE_PARAM_JSON_FUNC(Elemwise)
REGISTE_PARAM_JSON_FUNC(ConvolutionForward)
REGISTE_PARAM_JSON_FUNC(Convolution3D)
REGISTE_PARAM_JSON_FUNC(ConvBiasForward)
REGISTE_PARAM_JSON_FUNC(ConvolutionBackwardData)
REGISTE_PARAM_JSON_FUNC(Convolution3DBackwardData)
REGISTE_PARAM_JSON_FUNC(ConvolutionBackwardFilter)
REGISTE_PARAM_JSON_FUNC(MatrixMul)
REGISTE_PARAM_JSON_FUNC(BatchedMatrixMul)
REGISTE_PARAM_JSON_FUNC(Dot)
REGISTE_PARAM_JSON_FUNC(MatrixInverse)
REGISTE_PARAM_JSON_FUNC(PoolingForward)
510
REGISTE_PARAM_JSON_FUNC(PoolingBackward)
511 512 513 514 515 516 517 518 519 520 521 522 523 524
REGISTE_PARAM_JSON_FUNC(SVD)
REGISTE_PARAM_JSON_FUNC(MaskConvolution)
REGISTE_PARAM_JSON_FUNC(Images2Neibs)
REGISTE_PARAM_JSON_FUNC(Local)
REGISTE_PARAM_JSON_FUNC(GroupLocal)
REGISTE_PARAM_JSON_FUNC(LRN)
REGISTE_PARAM_JSON_FUNC(Concat)
REGISTE_PARAM_JSON_FUNC(Reduce)
REGISTE_PARAM_JSON_FUNC(LocalShareForward)
REGISTE_PARAM_JSON_FUNC(LocalShareBackwardData)
REGISTE_PARAM_JSON_FUNC(LocalShareBackwardFilter)
REGISTE_PARAM_JSON_FUNC(DeformableConvForward)
REGISTE_PARAM_JSON_FUNC(DeformableConvBackwardFilter)
REGISTE_PARAM_JSON_FUNC(DeformableConvBackwardData)
525
REGISTE_PARAM_JSON_FUNC(DeformablePSROIPoolingForward)
526
REGISTE_PARAM_JSON_FUNC(BatchConvBiasForward)
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
REGISTE_PARAM_JSON_FUNC(BatchNormForward)
REGISTE_PARAM_JSON_FUNC(ElemwiseMultiType)
REGISTE_PARAM_JSON_FUNC(Argsort)
REGISTE_PARAM_JSON_FUNC(Argmax)
REGISTE_PARAM_JSON_FUNC(Argmin)
REGISTE_PARAM_JSON_FUNC(AdaptivePooling)
REGISTE_PARAM_JSON_FUNC(ROIPooling)
REGISTE_PARAM_JSON_FUNC(ROIAlign)
REGISTE_PARAM_JSON_FUNC(WarpPerspective)
REGISTE_PARAM_JSON_FUNC(WarpAffine)
REGISTE_PARAM_JSON_FUNC(Remap)
REGISTE_PARAM_JSON_FUNC(Resize)
REGISTE_PARAM_JSON_FUNC(IndexingOneHot)
REGISTE_PARAM_JSON_FUNC(IndexingSetOneHot)
REGISTE_PARAM_JSON_FUNC(TopK)
REGISTE_PARAM_JSON_FUNC(UniformRNG)
REGISTE_PARAM_JSON_FUNC(GaussianRNG)
REGISTE_PARAM_JSON_FUNC(Linspace)
REGISTE_PARAM_JSON_FUNC(Eye)
REGISTE_PARAM_JSON_FUNC(CvtColor)

548 549
template <>
std::shared_ptr<json::Value> opr_param_json_func<opr::Dimshuffle>(
M
Megvii Engine Team 已提交
550 551
        cg::OperatorNodeBase* opr) {
    auto param = opr->cast_final_safe<opr::Dimshuffle>().param();
552

M
Megvii Engine Team 已提交
553 554 555
    auto pattern = json::Array::make();
    for (size_t i = 0; i < param.pattern_len; i++)
        pattern->add(json::NumberInt::make(param.pattern[i]));
556

M
Megvii Engine Team 已提交
557
    return json::Object::make({
558 559
            {"ndim", json::NumberInt::make(param.ndim)},
            {"pattern", pattern},
M
Megvii Engine Team 已提交
560 561
    });
}
562 563 564

template <>
std::shared_ptr<json::Value> opr_param_json_func<opr::AxisAddRemove>(
M
Megvii Engine Team 已提交
565 566
        cg::OperatorNodeBase* opr) {
    auto param = opr->cast_final_safe<opr::AxisAddRemove>().param();
567

M
Megvii Engine Team 已提交
568 569 570 571 572 573 574 575 576 577 578
    auto desc = json::Array::make();
    for (size_t i = 0; i < param.nr_desc; i++) {
        auto axisdesc = param.desc[i];
        desc->add(json::Object::make({
                {"method",
                 json::NumberInt::make(static_cast<int32_t>(axisdesc.method))},
                {"axisnum", json::NumberInt::make(axisdesc.axis.get_raw())},
        }));
    }

    return json::Object::make({
579 580
            {"nr_desc", json::NumberInt::make(param.nr_desc)},
            {"desc", desc},
M
Megvii Engine Team 已提交
581 582
    });
}
583

584 585 586 587 588 589
std::shared_ptr<json::Value> indexing_param_to_json(
        const std::vector<opr::indexing::AxisIndexer>& indices) {
    auto desc = json::Array::make();
    for (auto& index : indices) {
        desc->add(json::Object::make({
                {"axis", json::NumberInt::make(index.axis.get_raw())},
M
Megvii Engine Team 已提交
590
                {"begin", json::NumberInt::make(index.begin.node() != nullptr)},
591
                {"end", json::NumberInt::make(index.end.node() != nullptr)},
M
Megvii Engine Team 已提交
592
                {"step", json::NumberInt::make(index.step.node() != nullptr)},
593 594 595 596 597 598 599 600 601 602 603
                {"idx", json::NumberInt::make(index.idx.node() != nullptr)},
        }));
    }
    return desc;
}

#define REGISTE_INDEXING_PARAM_JSON_FUNC(cls)                         \
    template <>                                                       \
    std::shared_ptr<json::Value> opr_param_json_func<opr::cls>(       \
            cg::OperatorNodeBase * opr) {                             \
        auto indices = opr->cast_final_safe<opr::cls>().index_desc(); \
M
Megvii Engine Team 已提交
604
        return indexing_param_to_json(indices);                       \
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    }

REGISTE_INDEXING_PARAM_JSON_FUNC(Subtensor);
REGISTE_INDEXING_PARAM_JSON_FUNC(SetSubtensor);
REGISTE_INDEXING_PARAM_JSON_FUNC(IncrSubtensor);
REGISTE_INDEXING_PARAM_JSON_FUNC(IndexingMultiAxisVec);
REGISTE_INDEXING_PARAM_JSON_FUNC(IndexingSetMultiAxisVec);
REGISTE_INDEXING_PARAM_JSON_FUNC(IndexingIncrMultiAxisVec);
REGISTE_INDEXING_PARAM_JSON_FUNC(MeshIndexing);
REGISTE_INDEXING_PARAM_JSON_FUNC(IncrMeshIndexing);
REGISTE_INDEXING_PARAM_JSON_FUNC(SetMeshIndexing);
REGISTE_INDEXING_PARAM_JSON_FUNC(BatchedMeshIndexing);
REGISTE_INDEXING_PARAM_JSON_FUNC(BatchedIncrMeshIndexing);
REGISTE_INDEXING_PARAM_JSON_FUNC(BatchedSetMeshIndexing);

620
template <>
621
std::shared_ptr<json::Value> opr_param_json_func<opr::Reshape>(
M
Megvii Engine Team 已提交
622 623 624 625 626
        cg::OperatorNodeBase* opr) {
    auto desc = json::Array::make();
    auto axis_param = opr->cast_final_safe<opr::Reshape>().param();
    if (axis_param.axis != axis_param.MAX_NDIM) {
        return json::Object::make({
627
                {"axis", json::NumberInt::make(axis_param.axis)},
M
Megvii Engine Team 已提交
628 629 630
        });
    } else {
        return json::Object::make();
631
    }
M
Megvii Engine Team 已提交
632
}
633

634 635
template <>
std::shared_ptr<json::Value> opr_param_json_func<opr::GetVarShape>(
M
Megvii Engine Team 已提交
636 637 638 639 640
        cg::OperatorNodeBase* opr) {
    auto desc = json::Array::make();
    auto axis_param = opr->cast_final_safe<opr::GetVarShape>().param();
    if (axis_param.axis != axis_param.MAX_NDIM) {
        return json::Object::make({
641
                {"axis", json::NumberInt::make(axis_param.axis)},
M
Megvii Engine Team 已提交
642 643 644
        });
    } else {
        return json::Object::make();
645
    }
M
Megvii Engine Team 已提交
646
}
647 648 649

template <>
std::shared_ptr<json::Value> opr_param_json_func<opr::standalone::NMSKeep>(
M
Megvii Engine Team 已提交
650 651 652 653 654 655 656
        cg::OperatorNodeBase* opr) {
    auto nms_param = opr->cast_final_safe<opr::standalone::NMSKeep>().param();
    return json::Object::make({
            {"iou_thresh", json::Number::make(nms_param.iou_thresh)},
            {"max_output", json::Number::make(nms_param.max_output)},
    });
}
657

M
Megvii Engine Team 已提交
658
#endif  // MGB_ENABLE_JSON
659 660 661 662 663

}  // namespace

template <class OprType>
void OprFootprint::add_single_comp_footprint() {
M
Megvii Engine Team 已提交
664 665 666 667
    MIDOUT_B(
            OprType, midout_iv(MGB_HASH_STR("OprFootprint::add_single_comp_footprint")))
    auto&& record = m_type2comp_footprint.emplace(
            OprType::typeinfo(), opr_footprint_func<OprType>);
668
    mgb_assert(record.second, "duplicate opr typeinfo");
669
    MIDOUT_E
670 671 672 673 674
}

#if MGB_ENABLE_JSON
template <class OprType>
void OprFootprint::add_single_param_json() {
M
Megvii Engine Team 已提交
675 676
    auto&& record = m_type2param_json.emplace(
            OprType::typeinfo(), opr_param_json_func<OprType>);
677 678 679 680 681 682 683 684 685 686 687 688 689
    mgb_assert(record.second, "duplicate opr typeinfo");
}
#endif

void OprFootprint::init_all_footprints() {
    add_single_comp_footprint<opr::Elemwise>();
    add_single_comp_footprint<opr::AddUpdate>();
    add_single_comp_footprint<opr::ConvolutionForward>();
    add_single_comp_footprint<opr::ConvBiasForward>();
    add_single_comp_footprint<opr::ConvolutionBackwardData>();
    add_single_comp_footprint<opr::ConvolutionBackwardFilter>();
    add_single_comp_footprint<opr::MatrixMul>();
    add_single_comp_footprint<opr::PoolingForward>();
690
    add_single_comp_footprint<opr::PoolingBackward>();
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    add_single_comp_footprint<opr::Concat>();
    add_single_comp_footprint<opr::Dimshuffle>();
    add_single_comp_footprint<opr::Reduce>();
    add_single_comp_footprint<opr::Host2DeviceCopy>();
    add_single_comp_footprint<opr::LocalShareForward>();
    add_single_comp_footprint<opr::LocalShareBackwardData>();
    add_single_comp_footprint<opr::LocalShareBackwardFilter>();
    add_single_comp_footprint<opr::DeformableConvForward>();
    add_single_comp_footprint<opr::DeformableConvBackwardFilter>();
    add_single_comp_footprint<opr::DeformableConvBackwardData>();
    add_single_comp_footprint<opr::BatchConvBiasForward>();

#if MGB_ENABLE_JSON
    add_single_param_json<opr::Elemwise>();
    add_single_param_json<opr::ConvolutionForward>();
    add_single_param_json<opr::Convolution3D>();
    add_single_param_json<opr::ConvBiasForward>();
    add_single_param_json<opr::ConvolutionBackwardData>();
    add_single_param_json<opr::Convolution3DBackwardData>();
    add_single_param_json<opr::ConvolutionBackwardFilter>();
    add_single_param_json<opr::MatrixMul>();
    add_single_param_json<opr::BatchedMatrixMul>();
    add_single_param_json<opr::Dot>();
    add_single_param_json<opr::MatrixInverse>();
    add_single_param_json<opr::PoolingForward>();
716
    add_single_param_json<opr::PoolingBackward>();
717 718 719 720 721 722 723
    add_single_param_json<opr::SVD>();
    add_single_param_json<opr::MaskConvolution>();
    add_single_param_json<opr::Images2Neibs>();
    add_single_param_json<opr::Local>();
    add_single_param_json<opr::GroupLocal>();
    add_single_param_json<opr::LRN>();
    add_single_param_json<opr::Concat>();
724 725 726
    add_single_param_json<opr::Dimshuffle>();
    add_single_param_json<opr::AxisAddRemove>();
    add_single_param_json<opr::Subtensor>();
727 728 729 730 731 732 733 734 735 736 737
    add_single_param_json<opr::SetSubtensor>();
    add_single_param_json<opr::IncrSubtensor>();
    add_single_param_json<opr::IndexingMultiAxisVec>();
    add_single_param_json<opr::IndexingSetMultiAxisVec>();
    add_single_param_json<opr::IndexingIncrMultiAxisVec>();
    add_single_param_json<opr::MeshIndexing>();
    add_single_param_json<opr::SetMeshIndexing>();
    add_single_param_json<opr::IncrMeshIndexing>();
    add_single_param_json<opr::BatchedMeshIndexing>();
    add_single_param_json<opr::BatchedSetMeshIndexing>();
    add_single_param_json<opr::BatchedIncrMeshIndexing>();
738 739 740 741 742 743 744
    add_single_param_json<opr::Reduce>();
    add_single_param_json<opr::LocalShareForward>();
    add_single_param_json<opr::LocalShareBackwardData>();
    add_single_param_json<opr::LocalShareBackwardFilter>();
    add_single_param_json<opr::DeformableConvForward>();
    add_single_param_json<opr::DeformableConvBackwardFilter>();
    add_single_param_json<opr::DeformableConvBackwardData>();
745
    add_single_param_json<opr::DeformablePSROIPoolingForward>();
746
    add_single_param_json<opr::BatchConvBiasForward>();
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    add_single_param_json<opr::BatchNormForward>();
    add_single_param_json<opr::Reshape>();
    add_single_param_json<opr::GetVarShape>();
    add_single_param_json<opr::Argsort>();
    add_single_param_json<opr::Argmin>();
    add_single_param_json<opr::Argmax>();
    add_single_param_json<opr::ElemwiseMultiType>();
    add_single_param_json<opr::AdaptivePooling>();
    add_single_param_json<opr::ROIPooling>();
    add_single_param_json<opr::ROIAlign>();
    add_single_param_json<opr::WarpPerspective>();
    add_single_param_json<opr::Remap>();
    add_single_param_json<opr::Resize>();
    add_single_param_json<opr::IndexingOneHot>();
    add_single_param_json<opr::IndexingSetOneHot>();
    add_single_param_json<opr::WarpAffine>();
    add_single_param_json<opr::TopK>();
    add_single_param_json<opr::UniformRNG>();
    add_single_param_json<opr::GaussianRNG>();
    add_single_param_json<opr::Linspace>();
    add_single_param_json<opr::Eye>();
    add_single_param_json<opr::standalone::NMSKeep>();
    add_single_param_json<opr::CvtColor>();
770 771 772 773 774 775 776 777 778 779 780 781

#endif
}

OprFootprint::Result OprFootprint::calc_footprint(cg::OperatorNodeBase* opr) {
    Result rst;
    auto&& dep_map = opr->node_prop().dep_map();
    for (auto&& inp : opr->input()) {
        if (inp->mem_plan().valid())
            rst.inp_layout.push_back(inp->layout());
        else
            rst.inp_layout.push_back({inp->shape(), inp->dtype()});
M
Megvii Engine Team 已提交
782
        if (cg::OperatorNodeBase::NodeProp::is_device_value_dep(dep_map.at(inp))) {
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
            rst.memory += inp->dtype().size(inp->shape().total_nr_elems());
        }
    }
    for (auto&& out : opr->output()) {
        if (out->contain_flag(VarNode::Flag::VOLATILE_CONTENT))
            continue;
        rst.out_shape.push_back(out->shape());
        rst.memory += out->dtype().size(out->shape().total_nr_elems());
    }
    rst.computation = get_computation(opr);
#if MGB_ENABLE_JSON
    rst.param = get_param_json(opr);
#endif
    rst.opr_type = opr->dyn_typeinfo();
    return rst;
}

uint64_t OprFootprint::get_computation(cg::OperatorNodeBase* opr) {
    auto comp_trait = m_type2comp_footprint.find(opr->dyn_typeinfo());
    if (comp_trait != m_type2comp_footprint.end()) {
        return (comp_trait->second)(opr);
    }
    return 0;
}

#if MGB_ENABLE_JSON
M
Megvii Engine Team 已提交
809
std::shared_ptr<json::Value> OprFootprint::get_param_json(cg::OperatorNodeBase* opr) {
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
    auto param_trait = m_type2param_json.find(opr->dyn_typeinfo());
    if (param_trait != m_type2param_json.end()) {
        return (param_trait->second)(opr);
    }
    return json::Object::make();
}

std::shared_ptr<json::Value> OprFootprint::Result::to_json() const {
    using namespace json;
    std::shared_ptr<Value> comp;
    if (computation) {
        comp = NumberInt::make(computation);
    } else {
        comp = Null::make();
    }
    auto format_shape_arr = [](const TensorShapeArray& arr) {
        auto ret = Array::make();
        for (auto&& shp : arr) {
            auto cur = Array::make();
            for (size_t i = 0; i < shp.ndim; ++i) {
                cur->add(NumberInt::make(shp[i]));
            }
            ret->add(std::move(cur));
        }
        return ret;
    };
    auto format_layout_arr =
            [](const TensorLayoutArray& arr) -> std::shared_ptr<Value> {
        auto ret = Array::make();
        bool have_non_contig = false;
        for (auto&& item : arr) {
            if (item.is_contiguous()) {
                ret->add(json::Null::make());
            } else {
                have_non_contig = true;
                auto cur = Array::make();
                for (size_t i = 0; i < item.ndim; ++i) {
                    cur->add(NumberInt::make(item.stride[i]));
                }
                ret->add(std::move(cur));
            }
        }
        if (!have_non_contig) {
            ret.reset();
        }
        return ret;
    };

    TensorShapeArray inp_shape;
    for (auto&& i : inp_layout)
        inp_shape.push_back(i);
M
Megvii Engine Team 已提交
861 862 863 864 865 866
    auto ret = Object::make(
            {{"computation", std::move(comp)},
             {"memory", NumberInt::make(memory)},
             {"in_shapes", format_shape_arr(inp_shape)},
             {"out_shapes", format_shape_arr(out_shape)},
             {"param", param}});
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    if (auto inp_layout_json = format_layout_arr(inp_layout)) {
        ret->operator[]("in_layouts") = std::move(inp_layout_json);
    }
    return ret;
}

std::shared_ptr<json::Value> OprFootprint::get_opr_fp_graph_exec(
        cg::ComputingGraph& graph, const SymbolVarArray& outputs) {
    OprFootprint m_opr_footprint;
    ComputingGraph::OutputSpec out_spec;
    for (auto i : outputs) {
        out_spec.emplace_back(i, nullptr);
    }
    graph.options().allocate_static_mem_after_graph_compile = true;
    auto async_exec = graph.compile(out_spec);
    std::vector<std::pair<json::String, std::shared_ptr<json::Value>>> rst_vals;
    auto on_opr = [&m_opr_footprint, &rst_vals](cg::OperatorNodeBase* opr) {
        Result trait(m_opr_footprint.calc_footprint(opr));
        rst_vals.emplace_back(json::String(opr->id_str()), trait.to_json());
        return true;
    };
    async_exec->iter_opr_seq(on_opr);
    auto opr_fp = json::Object::make(rst_vals);
    return json::Object::make(
            {{"opr_footprint", opr_fp}, {"graph_exec", async_exec->to_json()}});
}
#endif

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}