test_elemwise.py 9.4 KB
Newer Older
1 2
# -*- coding: utf-8 -*-
import numpy as np
3
import pytest
4 5

import megengine.functional as F
6
import megengine.functional.elemwise as elemwise
7
from megengine import tensor
8
from megengine.core.tensor import dtype
9
from megengine.functional.elemwise import Elemwise
10
from megengine.jit import trace
11 12 13


def test_abs():
14
    np.testing.assert_allclose(
15 16 17 18
        F.abs(tensor([-3.0, -4.0, -5.0])).numpy(),
        np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)),
    )

19
    np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0)))
20 21


22
def test_elemwise_mode_string():
23 24 25 26
    for key, mode in vars(Elemwise.Mode).items():
        if isinstance(mode, Elemwise.Mode):
            assert key == mode
            assert Elemwise(mode=key) == Elemwise(mode=mode)
27 28


29
def test_multiply():
30
    np.testing.assert_allclose(
31 32
        F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0))
    )
33

34
    np.testing.assert_allclose(
35 36 37 38
        F.mul(tensor([3.0, 4.0]), 4.0).numpy(),
        np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0),
    )

39
    np.testing.assert_allclose(
40 41 42 43
        F.mul(4.0, tensor([3.0, 4.0])).numpy(),
        np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)),
    )

44
    np.testing.assert_allclose(
45 46 47 48 49 50 51 52
        F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(),
        np.multiply(
            np.array([3.0, 4.0], dtype=np.float32),
            np.array([3.0, 4.0], dtype=np.float32),
        ),
    )


53 54
def test_div():
    np.testing.assert_allclose(
55
        F.div(tensor([3.0, 4.0]), 2).numpy(),
56 57 58 59 60 61 62
        np.divide(np.array([3, 4], dtype=np.float32), 2),
    )

    np.testing.assert_allclose(
        (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2),
    )

63 64 65 66 67 68 69 70 71 72
    np.testing.assert_allclose(
        F.floor_div(tensor([-5.0, -7.0]), 2).numpy(),
        np.floor_divide(np.array([-5.0, -7.0], dtype=np.float32), 2),
    )

    np.testing.assert_allclose(
        (tensor([-5, -7]) // 2).numpy(),
        np.floor_divide(np.array([-5, -7], dtype=np.int32), 2),
    )

73 74 75 76 77
    np.testing.assert_allclose(
        (tensor([[5, 4, 3], [4, 2, 6]]) // [1, 2, 1]).numpy(),
        np.floor_divide(np.array([[5, 4, 3], [4, 2, 6]], dtype=np.int32), [1, 2, 1]),
    )

78

79 80
def test_clamp():
    """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and
81
    `F.clip` will fall into wrong conditions unexpectedly.
82 83
    """
    x = np.linspace(-6, 6, dtype="float32")
84
    np.testing.assert_allclose(
85
        F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6)
86 87
    )
    np.testing.assert_allclose(
88
        F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0)
89
    )
90 91


92 93
def test_isnan():
    for case in [[1, float("nan"), 0]]:
94
        np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case))
95 96 97 98


def test_isinf():
    for case in [[1, float("inf"), 0]]:
99
        np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case))
100 101 102 103 104


def test_sign():
    for case in [[1, -1, 0]]:
        x = tensor(case)
105
        np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype))
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154


def test_cosh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.cosh(x)
    y_mge = F.cosh(tensor(x)).numpy()
    np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)


def test_sinh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.sinh(x)
    y_mge = F.sinh(tensor(x)).numpy()
    np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)


def test_asinh():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.arcsinh(x)
    y_mge = F.asinh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=5)


def test_acosh():
    x = np.arange(0, 10000).astype("float32") / 100 + 1
    y_np = np.arccosh(x)
    y_mge = F.acosh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=6)


def test_atanh():
    np.random.seed(42)
    x = np.random.rand(100).astype("float32") * 2 - 1
    y_np = np.arctanh(x)
    y_mge = F.atanh(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=5)


def test_hswish():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6
    y_mge = F.hswish(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=6)


155 156 157 158 159 160 161
def test_silu():
    x = np.array([-1.5, 0.0, 1.0, 1.5]).astype("float32")
    y_np = x / (1 + np.exp(-x))
    y_mge = F.silu(tensor(x)).numpy()
    np.testing.assert_almost_equal(y_np, y_mge, decimal=6)


162 163 164 165 166
def test_hsigmoid():
    np.random.seed(42)
    x = np.random.randn(100).astype("float32")
    y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6
    y_mge = F.hsigmoid(tensor(x)).numpy()
167
    np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
168 169 170 171 172 173 174 175 176 177 178


def test_logical_oprs():
    x = np.array([[True, False], [False, True]])
    y = np.array([[True, True], [False, False]])
    xx = tensor(x)
    yy = tensor(y)
    np.testing.assert_equal(~x, (F.logical_not(xx)).numpy())
    np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy())
    np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy())
    np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy())
179 180


181 182 183 184 185 186 187 188 189 190
def test_logaddexp():
    x = np.random.randn(2, 100)
    y = np.random.randn(2, 100)
    xx = tensor(x)
    yy = tensor(y)
    out_np = np.log(np.exp(x) + np.exp(y))
    out_mge = F.logaddexp(xx, yy)
    np.testing.assert_almost_equal(out_np, out_mge.numpy(), decimal=6)


191 192 193 194 195 196 197 198
def test_qadd():
    inp_scale = 0.5
    outp_scale = 0.2
    x = np.arange(6).reshape(2, 3).astype("float32")
    y = np.arange(6).reshape(2, 3).astype("float32")
    x = tensor(x, dtype=dtype.qint8(inp_scale))
    y = tensor(y, dtype=dtype.qint8(inp_scale))
    result_mge = F.elemwise._elemwise_multi_type(
199
        x, y, mode="qadd", dtype=dtype.qint8(outp_scale)
200 201 202 203
    )
    result_mge = result_mge.astype("float32").numpy()
    result_expect = x.astype("float32").numpy() + y.astype("float32").numpy()
    np.testing.assert_almost_equal(result_mge, result_expect, decimal=6)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220


def test_int32_input():
    x = tensor(np.array([1, 2, 3, 4, 5]), dtype="int32")
    for op_name in elemwise.__all__:
        op = getattr(elemwise, op_name)
        nargs = op.__code__.co_argcount
        if op_name == "clip":
            inp = (x, 0, 1)
        elif op_name.endswith("_shift"):
            inp = (x, 1)
        elif op_name.startswith("logical_"):
            continue
        else:
            inp = (x,) * nargs
        y = op(*inp)
        y.numpy()
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256


@pytest.mark.parametrize("is_trace", [True, False])
def test_empty_tensor(is_trace):
    binary_func = []
    unary_func = []
    for op_name in elemwise.__all__:
        op = getattr(elemwise, op_name)
        nargs = op.__code__.co_argcount
        if op_name == "clip":
            unary_func.append(["clip", lambda x, f=op: f(x, lower=0, upper=1)])
        elif op_name.endswith("_shift"):
            unary_func.append(
                [op_name, lambda x, f=op: f(tensor(x.numpy(), dtype="int32"), 1)]
            )
        elif op_name.startswith("logical_"):  # logical_xxx op only accept boolean type
            if nargs == 1:
                unary_func.append(
                    [op_name, lambda x, f=op: f(tensor(x.numpy(), dtype="bool"))]
                )
            else:
                assert nargs == 2
                binary_func.append(
                    [
                        op_name,
                        lambda x, y, f=op: f(
                            tensor(x.numpy(), dtype="bool"),
                            tensor(y.numpy(), dtype="bool"),
                        ),
                    ]
                )
        elif nargs == 1:
            unary_func.append([op_name, op])
        elif nargs == 2:
            binary_func.append([op_name, op])
        else:
257
            raise NotImplementedError("nargs {}".format(nargs))
258 259 260 261 262 263 264 265 266 267

    def run_test(func, args, ref_shape, is_trace, sym=False):
        args = [tensor(t, dtype="float32") for t in args]
        if is_trace:
            func = trace(symbolic=sym)(func)
            for _ in range(3):
                out = func(*args)
                assert out.numpy().shape == ref_shape
        else:
            out = func(*args)
268
            assert out.numpy().shape == ref_shape, out.numpy().shape
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

    inps = [
        np.array([]).astype("float32"),
        np.random.randn(2, 0, 3).astype("float32"),
        123,
    ]
    for op_name, op in unary_func:
        if is_trace:
            for sym in [True, False]:
                run_test(op, [inps[0],], inps[0].shape, True, sym)
                run_test(op, [inps[1],], inps[1].shape, True, sym)
        else:
            run_test(op, [inps[0],], inps[0].shape, False)
            run_test(op, [inps[1],], inps[1].shape, False)

    for op_name, op in binary_func:
        if is_trace:
            for sym in [True, False]:
                run_test(op, [inps[0], inps[0]], (inps[0] + inps[0]).shape, True, sym)
                run_test(op, [inps[1], inps[1]], (inps[1] + inps[1]).shape, True, sym)
                run_test(op, [inps[0], inps[2]], (inps[0] + inps[2]).shape, True, sym)
                run_test(op, [inps[1], inps[2]], (inps[1] + inps[2]).shape, True, sym)
        else:
            run_test(op, [inps[0], inps[0]], (inps[0] + inps[0]).shape, False)
            run_test(op, [inps[1], inps[1]], (inps[1] + inps[1]).shape, False)
            run_test(op, [inps[0], inps[2]], (inps[0] + inps[2]).shape, False)
            run_test(op, [inps[1], inps[2]], (inps[1] + inps[2]).shape, False)