comp_node_helper.cpp 20.7 KB
Newer Older
1 2 3 4
/**
 * \file src/core/test/comp_node_helper.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./comp_node_helper.h"

#include "megbrain/opr/basic_arith_wrapper.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/serialization/serializer.h"

using namespace mgb;
using namespace comp_node_test;

namespace {

void run_comp_seq_rec_basic(CompNode cn, bool fake_first) {
    using ConvParam = opr::Convolution::Param;
    ConvParam param;
    param.sparse = ConvParam::Sparse::GROUP;
    HostTensorGenerator<> gen;
    auto host_x = gen({3, 4, 10, 8}, cn), host_y = gen({2, 3, 2, 3, 3}, cn);

    int iter = 0;
    std::vector<int> executed;

    HostTensorND host_z;
    auto graph = ComputingGraph::make();
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y),
         z = opr::CallbackInjector::make(
                 opr::Convolution::make(x, y, param),
                 [&](DeviceTensorND&dv) { executed.push_back(iter); });
    graph->options().comp_node_seq_record_level = 1;
    if (fake_first) {
        graph->options().fake_next_exec = true;
        graph->options().var_sanity_check_first_run = false;
    }
47
    auto func = graph->compile({make_callback_copy(z, host_z, false)});
48 49 50 51 52 53 54 55 56 57
    if (fake_first) {
        func->execute();  // first exec
    }
    int change = 5;
    for (; iter < 10; ++iter) {
        if (iter == change) {
            *host_x = *gen({2, 4, 15, 13}, cn);
        }
        host_x->copy_from_fixlayout(*gen(host_x->shape(), cn));
        func->execute();
58 59
        func->wait();
        host_z.sync();
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        auto expect = eval_conv_cpu<opr::Convolution>(*host_x, *host_y, param);
        MGB_ASSERT_TENSOR_NEAR(expect, host_z, 1e-3) << "iter " << iter;
    }
    ASSERT_EQ(executed.size(), 4u);

    // if fake_first, both warmup exec and exec with recorder will perform in
    // iter0 else, normal exec will perform in iter0 and exec with recorder in
    // iter1
    ASSERT_EQ(executed[0], 0);
    ASSERT_EQ(executed[1], fake_first ? 0 : 1);

    // recorder would be reset, normal exec
    ASSERT_EQ(executed[2], change);
    // create new recorder, exec with recorder
    ASSERT_EQ(executed[3], change + 1);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    //! then we change host_z's ptr each time and check result
    HostTensorND host_iter;
    host_iter.copy_from(host_z);
    std::vector<std::shared_ptr<HostTensorND>> m_hosts(10);
    for (size_t i = 0; i < 10; i++) {
        m_hosts[i] = gen(host_z.shape(), host_z.comp_node());
    }
    iter = 0;
    for (; iter < 10; ++iter) {
        auto host_tmp = m_hosts[iter];
        auto host_z_storage = host_z.storage();
        auto origin_ptr = host_z_storage.raw_storage();
        host_z_storage.reset(
                host_z.comp_node(), host_z_storage.size(),
                host_tmp->storage().raw_storage());
        auto changed_ptr = host_z_storage.raw_storage();
        ASSERT_TRUE(origin_ptr != changed_ptr);
        func->execute();
        func->wait();
        MGB_ASSERT_TENSOR_NEAR(host_iter, host_z, 1e-3) << "iter " << iter;
    }
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
}

void run_comp_seq_rec_basic_level2(CompNode cn) {
    using ConvParam = opr::ConvBias::Param;
    ConvParam param;
    param.sparse = ConvParam::Sparse::GROUP;
    HostTensorGenerator<> gen;
    auto host_x = gen({3, 4, 10, 8}, cn), host_y = gen({2, 3, 2, 3, 3}, cn);

    int iter = 0;
    std::vector<int> executed;

    HostTensorND host_z;
    auto graph = ComputingGraph::make();
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y),
         z = opr::CallbackInjector::make(
                 opr::ConvBias::make(x, y, param),
                 [&](DeviceTensorND&dv) { executed.push_back(iter); });
    graph->options().comp_node_seq_record_level = 2;
    graph->options().var_sanity_check_first_run = false;
    auto func = graph->compile({make_callback_copy(z, host_z)});
    ComputingGraph::assert_destroy(graph);
    for (; iter < 10; ++iter) {
        host_x->copy_from_fixlayout(*gen(host_x->shape(), cn));
        func->execute();
        auto expect = eval_conv_cpu<opr::ConvBias>(*host_x, *host_y, param);
        MGB_ASSERT_TENSOR_NEAR(expect, host_z, 1e-3) << "iter " << iter;
    }
    ASSERT_EQ(executed.size(), 2u);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    //! test default_cpu with record2
    {
        HostTensorND hz;
        graph = ComputingGraph::make();
        x = opr::Host2DeviceCopy::make(*graph, host_x);
        y = opr::Host2DeviceCopy::make(*graph, host_y);
        z = opr::ConvBias::make(x, y, param);
        z = opr::GetVarShape::make(z);
        graph->options().comp_node_seq_record_level = 2;
        graph->options().var_sanity_check_first_run = false;
        auto func = graph->compile({make_callback_copy(z, hz, true)});
        ComputingGraph::assert_destroy(graph);
        func->execute();
        ASSERT_TRUE(hz.comp_node() == cn);
        ASSERT_EQ(hz.ptr<int>()[0], 3);
        ASSERT_EQ(hz.ptr<int>()[1], 6);
        ASSERT_EQ(hz.ptr<int>()[2], 8);
        ASSERT_EQ(hz.ptr<int>()[3], 6);
    }
147 148 149 150 151
}

void run_comp_seq_rec_dyn_elemwise(CompNode cn, bool fake_first) {
    // dynamic memory is allocated in elemwise
    HostTensorGenerator<> gen;
M
Megvii Engine Team 已提交
152
    auto host_x = gen({3, 3}, cn), host_y = gen({1, 3}, cn), host_z = gen({3, 1}, cn);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    auto check = [&]() {
        HostTensorND ret(CompNode::load("cpux"), host_x->shape());
        auto px = host_x->ptr<float>(), py = host_y->ptr<float>(),
             pz = host_z->ptr<float>(), pw = ret.ptr<float>();
        auto sz0 = host_x->shape()[0], sz1 = host_x->shape()[1];
        for (size_t i = 0; i < sz0; ++i) {
            for (size_t j = 0; j < sz1; ++j) {
                pw[i * sz1 + j] = px[i * sz1 + j] * py[j] + pz[i];
            }
        }
        return ret;
    };

    auto graph = ComputingGraph::make();
    // test record on first run
    graph->options().var_sanity_check_first_run = false;
    graph->options().graph_opt_level = 0;
    graph->options().comp_node_seq_record_level = 1;
    if (fake_first) {
        graph->options().fake_next_exec = true;
    }
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y),
         z = opr::Host2DeviceCopy::make(*graph, host_z),
         w = opr::Elemwise::make({x, y, z}, opr::Elemwise::Mode::FUSE_MUL_ADD3);

    HostTensorND host_w;
181
    auto func = graph->compile({make_callback_copy(w, host_w, false)});
182 183 184 185 186 187 188 189 190 191 192
    if (fake_first) {
        func->execute();
    }
    for (int i = 0; i < 10; ++i) {
        if (i == 5) {
            *host_x = *gen({10, 8}, cn);
            *host_y = *gen({1, 8}, cn);
            *host_z = *gen({10, 1}, cn);
        }
        host_x->copy_from(*gen(host_x->shape(), cn));
        func->execute();
193
        func->wait();
194 195 196
        auto expect = check();
        MGB_ASSERT_TENSOR_EQ(expect, host_w) << "iter " << i;
    }
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    //! then we change host_z's ptr each time and check result
    HostTensorND host_iter;
    host_iter.copy_from(host_w);
    std::vector<std::shared_ptr<HostTensorND>> m_hosts(10);
    for (size_t i = 0; i < 10; i++) {
        m_hosts[i] = gen(host_w.shape(), host_w.comp_node());
    }
    for (size_t iter = 0; iter < 10; ++iter) {
        auto host_tmp = m_hosts[iter];
        auto host_w_storage = host_w.storage();
        auto origin_ptr = host_w_storage.raw_storage();
        host_w_storage.reset(
                host_w.comp_node(), host_w_storage.size(),
                host_tmp->storage().raw_storage());
        auto changed_ptr = host_w_storage.raw_storage();
        ASSERT_TRUE(origin_ptr != changed_ptr);
        func->execute();
        func->wait();
        MGB_ASSERT_TENSOR_EQ(host_iter, host_w) << "iter " << iter;
    }
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
}

void run_level2(CompNode cn, bool use_multi_holder) {
    HostTensorGenerator<> gen;
    auto host_x = gen({4, 3, 6, 7}, cn), host_w = gen({2, 3, 2, 3}, cn),
         host_y = gen({1, 25}, cn), host_z = gen({8, 1}, cn),
         host_large = gen({8, 25}, cn);
    auto make_func = [&](bool enable) -> thin_function<const HostTensorND&()> {
        auto graph = ComputingGraph::make();
        graph->options().graph_opt_level = 0;
        if (enable) {
            graph->options().var_sanity_check_first_run = false;
            graph->options().comp_node_seq_record_level = 2;
        }
        auto repeat2 = [](SymbolVar x) { return opr::Concat::make({x, x}, 0); };
        SymbolVar w;
        auto dev_w = std::make_shared<DeviceTensorND>();
        // test shared dev tensor with 1 refcnt
        if (use_multi_holder) {
            dev_w->copy_from(*host_w).sync();
            w = opr::MultipleDeviceTensorHolder::make(*graph, {dev_w})[0];
        } else {
            w = opr::SharedDeviceTensor::make(*graph, *host_w);
        }

        auto x = opr::Host2DeviceCopy::make(*graph, host_x),
             // test shared dev tensor with 1 refcnt
                c = opr::Convolution::make(x, w).reshape({8, 25}),
             y = opr::Host2DeviceCopy::make(*graph, host_y),
             large = opr::ImmutableTensor::make(*graph, *host_large),
             z = opr::Host2DeviceCopy::make(*graph, host_z),
             // elemwise with larger tmp storage
M
Megvii Engine Team 已提交
249 250
                t0 = opr::Elemwise::make(
                             {c, y, z}, opr::Elemwise::Mode::FUSE_MUL_ADD3) +
251 252 253
                     large,
             // t1 shape is {8, 1}
                t1 = opr::reduce_sum(t0, z.symshape()),
M
Megvii Engine Team 已提交
254 255
             t2 = opr::Elemwise::make(
                     {repeat2(c), y, repeat2(t1)}, opr::Elemwise::Mode::FUSE_MUL_ADD3),
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
             large1 = opr::ImmutableTensor::make(*graph, *host_large);
        t2 * 2;  // unused opr

        // used large static infer
        graph->static_infer_manager().infer_value(large.node());

        // unused large static infer
        graph->static_infer_manager().infer_value(large1.node());

        // static infer value
        graph->static_infer_manager().infer_value((t1.symshape() + 1).node());

        auto result = std::make_shared<HostTensorND>();
        auto func = graph->compile({make_callback_copy(t2, *result)});
        std::shared_ptr<cg::AsyncExecutable> sh_func(func.release());
        if (enable) {
            ComputingGraph::assert_destroy(graph);
        }
        auto exec = [result, sh_func]() -> const HostTensorND& {
            sh_func->execute();
            return *result;
        };
        return exec;
    };

    auto f0 = make_func(false), f1 = make_func(true);
    for (int i = 0; i < 3; ++i) {
        host_x->copy_from(*gen(host_x->shape(), cn));
        host_y->copy_from(*gen(host_y->shape(), cn));
        host_z->copy_from(*gen(host_z->shape(), cn));
        auto&& expect = f0();
        auto&& get = f1();
        MGB_ASSERT_TENSOR_EQ(expect, get);
    }

    host_x->resize({1});
    ASSERT_THROW(f1(), MegBrainError);
}

}  // anonymous namespace

namespace mgb {
namespace comp_node_test {
namespace seq_rec {

template <>
void run<basic>(CompNode cn) {
    run_comp_seq_rec_basic(cn, false);
}

template <>
void run<basic_level2>(CompNode cn) {
    run_comp_seq_rec_basic_level2(cn);
}

template <>
void run<basic_fake_exec>(CompNode cn) {
    run_comp_seq_rec_basic(cn, true);
}

template <>
void run<dyn_elemwise>(CompNode cn) {
    run_comp_seq_rec_dyn_elemwise(cn, false);
}

template <>
void run<dyn_elemwise_fake_exec>(CompNode cn) {
    run_comp_seq_rec_dyn_elemwise(cn, true);
}

template <>
void run<level2>(CompNode cn) {
    run_level2(cn, false);
}

template <>
void run<level2_multi_holder>(CompNode cn) {
    run_level2(cn, true);
}

template <>
void run<level2_share_storage>(CompNode cn) {
    HostTensorGenerator<> gen;
    auto host_x = gen({1}, cn), host_y = gen({1}, cn), host_z = gen({10}, cn);
M
Megvii Engine Team 已提交
340 341
    auto make_func =
            [&](bool enable) -> thin_function<std::array<const HostTensorND*, 2>()> {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        auto g0 = ComputingGraph::make(), g1 = ComputingGraph::make();
        if (enable) {
            g0->options().var_sanity_check_first_run = false;
            g0->options().comp_node_seq_record_level = 2;
            g1->options().var_sanity_check_first_run = false;
            g1->options().comp_node_seq_record_level = 2;
            g0->share_device_memory_with(*g1);
        }
        auto x0 = opr::Host2DeviceCopy::make(*g0, host_x),
             x1 = opr::Host2DeviceCopy::make(*g1, host_x),
             y = opr::Host2DeviceCopy::make(*g0, host_y),
             z = opr::Host2DeviceCopy::make(*g1, host_z);
        auto t0 = x0 + y, t1 = x1 + z;

        auto host_t0 = std::make_shared<HostTensorND>(),
             host_t1 = std::make_shared<HostTensorND>();
        auto f0 = g0->compile({make_callback_copy(t0, *host_t0)});
        auto f1 = g1->compile({make_callback_copy(t1, *host_t1)});
M
Megvii Engine Team 已提交
360
        std::shared_ptr<cg::AsyncExecutable> sh_f0(f0.release()), sh_f1(f1.release());
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
        if (enable) {
            ComputingGraph::assert_destroy(g0);
            ComputingGraph::assert_destroy(g1);
        }
        auto exec = [host_t0, host_t1, sh_f0,
                     sh_f1]() -> std::array<const HostTensorND*, 2> {
            sh_f0->execute();
            sh_f1->execute();
            return {host_t0.get(), host_t1.get()};
        };
        return exec;
    };

    auto f0 = make_func(false), f1 = make_func(true);
    for (int i = 0; i < 3; ++i) {
        host_x->copy_from(*gen(host_x->shape(), cn));
        host_y->copy_from(*gen(host_y->shape(), cn));
        host_z->copy_from(*gen(host_z->shape(), cn));
        auto&& expect = f0();
        auto&& get = f1();
        MGB_ASSERT_TENSOR_EQ(*expect[0], *get[0]);
        MGB_ASSERT_TENSOR_EQ(*expect[1], *get[1]);
    }
}

template <>
void run<level2_exec_check>(CompNode cn) {
    HostTensorGenerator<> gen;
    auto host_x = gen({1}, cn);
    for (int testcase = 0; testcase < 3; ++testcase) {
        host_x->copy_from(*gen({1}));
        auto graph = ComputingGraph::make();
        auto x = opr::Host2DeviceCopy::make(*graph, host_x), y = x * 2;
        HostTensorND host_y;
        graph->options().var_sanity_check_first_run = false;
        graph->options().comp_node_seq_record_level = 2;
        auto func = graph->compile({make_callback_copy(y, host_y)});
        ASSERT_EQ(host_y.shape(), host_x->shape());
        auto expect = host_x->ptr<float>()[0] * 2;
        ASSERT_NE(expect, host_y.ptr<float>()[0]);

        if (testcase == 0) {
            ComputingGraph::assert_destroy(graph);
            func->execute();
            ASSERT_EQ(expect, host_y.ptr<float>()[0]);
        } else if (testcase == 1) {
            ASSERT_THROW(func->execute(), MegBrainError);
        } else {
            // it should be OK to destroy func and then graph
            func.reset();
            graph.reset();
        }
    };
}

template <>
void run<sync_from_func>(CompNode cn) {
    REQUIRE_THREAD();
    HostTensorGenerator<> gen;
    auto host_x = gen({1}, cn);
    for (int level : {1, 2}) {
        for (bool sync : {false, true}) {
            auto graph = ComputingGraph::make();
            auto x = opr::Host2DeviceCopy::make(*graph, host_x),
                 y = opr::Sleep::make(x, 0.15) * 2;
            HostTensorND host_y;
            graph->options().var_sanity_check_first_run = false;
            graph->options().comp_node_seq_record_level = level;
429 430 431
            if (level == 1) {
                sync = false;
            }
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
            auto cb = [&](const DeviceTensorND& dv) {
                host_y.copy_from(dv);
                if (sync) {
                    host_y.sync();
                }
            };
            auto func = graph->compile({{y, cb}});
            if (level == 2) {
                ComputingGraph::assert_destroy(graph);
            }
            for (int i = 0; i < 3; ++i) {
                host_x->ptr<float>()[0] = i + 0.3;
                func->execute();
                if (!sync) {
                    func->wait();
                }
                auto got = host_y.ptr<float>()[0];
                MGB_ASSERT_FLOAT_EQ((i + 0.3) * 2, got)
                        << "level=" << level << " i=" << i;
            }
        }
    }
}

template <>
void run<cb_non_contig>(CompNode cn) {
    REQUIRE_THREAD();
    HostTensorGenerator<> gen;
    auto host_x = gen({4, 5}, cn);
    for (int level : {1, 2}) {
        for (bool sync : {false, true}) {
            auto graph = ComputingGraph::make();
            auto x = opr::Host2DeviceCopy::make(*graph, host_x),
                 y = opr::Dimshuffle::make(x, {1, 0});
            HostTensorND host_y;
            graph->options().var_sanity_check_first_run = false;
            graph->options().comp_node_seq_record_level = level;
469 470 471
            if (level == 1) {
                sync = false;
            }
472 473 474 475 476 477 478 479 480 481
            auto cb = [&](const DeviceTensorND& dv) {
                host_y.copy_from(dv);
                if (sync) {
                    host_y.sync();
                }
            };
            auto func = graph->compile({{y, cb}});
            if (level == 2) {
                ComputingGraph::assert_destroy(graph);
            }
482 483
            for (int k = 0; k < 3; ++k) {
                host_x->copy_from(*gen(host_x->shape(), cn));
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
                HostTensorND expect{host_x->comp_node(), {5, 4}};
                auto px = host_x->ptr<float>(), py = expect.ptr<float>();
                for (int i = 0; i < 5; ++i) {
                    for (int j = 0; j < 4; ++j) {
                        py[i * 4 + j] = px[j * 5 + i];
                    }
                }
                func->execute();
                if (!sync) {
                    func->wait();
                }
                MGB_ASSERT_TENSOR_EQ(expect, host_y);
            }
        }
    }
}

template <>
void run<shape_dep_const_shape>(CompNode cn) {
    // load model using const var shape to work around shape dependencies
    using namespace serialization;
    HostTensorGenerator<> gen;
    auto host_x = gen({4, 5}, cn);
    auto fname = output_file("test_comp_node_record_shape_dep_const_shape");

    HostTensorND y_expect;
    {
        // dump graph
        auto graph = ComputingGraph::make();
M
Megvii Engine Team 已提交
513
        auto x = opr::Host2DeviceCopy::make(*graph, host_x, OperatorNodeConfig{"x"}),
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
             y = x.flatten() +
                 opr::reduce_sum(opr::GetVarShape::make(x), x.make_scalar(1));

        graph->compile({make_callback_copy(y, y_expect)})->execute();

        auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()));
        dumper->dump({y});
    }

    HostTensorND host_y;
    {
        GraphLoadConfig config;
        config.const_var_shape = true;
        auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()));
        auto load_rst = loader->load(config);
        load_rst.graph->options().comp_node_seq_record_level = 2;
        load_rst.graph->options().var_sanity_check_first_run = false;
        auto x_inp = load_rst.tensor_map.at("x");
        auto y = load_rst.output_var_list.at(0);
        auto func = load_rst.graph_compile({make_callback_copy(y, host_y)});

        x_inp->copy_from(*host_x);
        func->execute();
    }

    MGB_ASSERT_TENSOR_EQ(y_expect, host_y);
}

542 543 544 545 546 547 548 549 550 551
//! single thread multi recorder run interleave
template <>
void run<multi_recorder_run>(CompNode cn) {
    using ConvParam = opr::Convolution::Param;
    ConvParam param;
    param.sparse = ConvParam::Sparse::GROUP;
    HostTensorGenerator<> gen;
    std::vector<HostTensorND> host_z_v(2, HostTensorND());
    std::vector<std::unique_ptr<mgb::cg::AsyncExecutable>> funcs;
    auto host_x = gen({3, 4, 10, 8}, cn), host_y = gen({2, 3, 2, 3, 3}, cn);
M
Megvii Engine Team 已提交
552
    auto gen_graph = [&](int graph_id) -> std::unique_ptr<mgb::cg::AsyncExecutable> {
553 554 555 556 557
        auto graph = ComputingGraph::make();
        auto x = opr::Host2DeviceCopy::make(*graph, host_x),
             y = opr::Host2DeviceCopy::make(*graph, host_y),
             z = opr::Convolution::make(x, y, param);
        graph->options().comp_node_seq_record_level = 1;
558
        return graph->compile({make_callback_copy(z, host_z_v[graph_id], false)});
559 560 561 562 563 564
    };
    funcs.push_back(gen_graph(0));
    funcs.push_back(gen_graph(1));
    for (int iter = 0; iter < 10; ++iter) {
        host_x->copy_from_fixlayout(*gen(host_x->shape(), cn));
        funcs[0]->execute();
565
        funcs[0]->wait();
566
        funcs[1]->execute();
567
        funcs[1]->wait();
568 569 570 571 572 573
        auto expect = eval_conv_cpu<opr::Convolution>(*host_x, *host_y, param);
        MGB_ASSERT_TENSOR_NEAR(expect, host_z_v[0], 1e-3) << "iter " << iter;
        MGB_ASSERT_TENSOR_NEAR(expect, host_z_v[1], 1e-3) << "iter " << iter;
    }
}

574 575 576 577 578 579 580 581
template <>
void run<void>(CompNode) {}

}  // namespace seq_rec
}  // namespace comp_node_test
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}