custom_opnode.cpp 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * \file src/opr/impl/custom_opnode.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/custom_opnode.h"

14 15
#if MGB_CUSTOM_OP

16 17 18 19 20 21 22
namespace mgb {
namespace opr {

MGB_DYN_TYPE_OBJ_FINAL_IMPL(CustomOpNode);

void CustomOpNode::infer_output_comp_node(void) {
    SmallVector<CompNode> input_comp_nodes(input_num());
23
    for (size_t i=0; i<input_num(); ++i) {
24 25 26 27 28 29 30 31 32
        input_comp_nodes[i] = input(i)->comp_node();
    }

    SmallVector<CompNode> output_comp_nodes = custom::to_builtin<CompNode, custom::Device>(
        m_op->infer_output_device(
            custom::to_custom<CompNode, custom::Device>(input_comp_nodes), m_param
        )
    );
    
33
    for (size_t i=0; i<output_num(); ++i) {
34 35 36 37 38 39 40 41 42 43
        mgb_assert(output_comp_nodes[i] == output_comp_nodes[0], 
                  "only single comp node operator is supported");
        output(i)->comp_node(output_comp_nodes[i]);
    }

    m_comp_node = output_comp_nodes[0];
}

void CustomOpNode::infer_output_dtype(void) {
    SmallVector<DType> input_dtypes(input_num());
44
    for (size_t i=0; i<input_num(); ++i) {
45 46 47 48 49 50 51 52 53
        input_dtypes[i] = input(i)->dtype();
    }

    SmallVector<DType> output_dtypes = custom::to_builtin<megdnn::DType, custom::DType>(
        m_op->infer_output_dtype(
            custom::to_custom<megdnn::DType, custom::DType>(input_dtypes), m_param
        )
    );

54
    for (size_t i=0; i<output_num(); ++i) {
55 56 57 58 59 60
        output(i)->dtype(output_dtypes[i]);
    }
}

void CustomOpNode::infer_output_format(void) {
    SmallVector<TensorFormat> input_formats(input_num());
61
    for (size_t i=0; i<input_num(); ++i) {
62 63 64 65 66 67 68 69 70
        input_formats[i] = input(i)->format();
    }

    SmallVector<TensorFormat> output_formats = custom::to_builtin<TensorFormat, custom::Format>(
        m_op->infer_output_format(
            custom::to_custom<TensorFormat, custom::Format>(input_formats), m_param
        )
    );

71
    for (size_t i=0; i<output_num(); ++i) {
72 73 74 75 76 77
        output(i)->format(output_formats[i]);
    }
}

void CustomOpNode::infer_output_shape(void) {
    SmallVector<TensorShape> input_shapes(input_num());
78
    for (size_t i=0; i<input_num(); ++i) {
79 80 81 82 83 84 85 86 87
        input_shapes[i] = input(i)->shape();
    }

    SmallVector<TensorShape> output_shapes = custom::to_builtin<TensorShape, custom::Shape>(
        m_op->infer_output_shape(
            custom::to_custom<TensorShape, custom::Shape>(input_shapes), m_param
        )
    );

88
    for (size_t i=0; i<output_num(); ++i) {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        output(i)->shape(output_shapes[i]);
    }
}

void CustomOpNode::infer_output_shape(const TensorShapeArray &input_shapes,
                                      TensorShapeArray &output_shapes) {
    output_shapes = custom::to_builtin<TensorShape, custom::Shape>(
        m_op->infer_output_shape(
            custom::to_custom<TensorShape, custom::Shape>(input_shapes), m_param
        )
    );
}

// called by computing_graph for each output varnode
bool CustomOpNode::infer_desc(size_t out_idx, TensorShape &output_shape,
                              const StaticInferInpVal &input_vals) {
    TensorShapeArray input_shapes(input_vals.val.size());
    TensorShapeArray output_shapes(output_num());

    for (size_t i = 0; i < input_shapes.size(); ++ i) {
        input_shapes[i] = input_vals.val[i].shape();
    }

    infer_output_shape(input_shapes, output_shapes);
    output_shape = output_shapes.at(out_idx);
    return true;
}

void CustomOpNode::init_output_dtype() {
    infer_output_dtype();
}

void CustomOpNode::init_output_format() {
    infer_output_format();
}

void CustomOpNode::init_output_comp_node() {
    infer_output_comp_node();
}

void CustomOpNode::do_execute(ExecEnv &env) {
    auto runner = [this]() {
        this->owner_graph()->event().signal_inplace<cg::event::BeforeKernel>(
            this, m_comp_node
        );
        m_comp_node.activate();

        SmallVector<DeviceTensorND> inputs, outputs;
        for(size_t i=0; i<input_num(); i++)
            inputs.push_back(input(i)->dev_tensor());
        for(size_t i=0; i<output_num(); i++)
            outputs.push_back(output(i)->dev_tensor());

        std::vector<custom::Tensor> custom_inputs = custom::to_custom<DeviceTensorND, custom::Tensor>(inputs);
        std::vector<custom::Tensor> custom_outputs = custom::to_custom<DeviceTensorND, custom::Tensor>(outputs);
        m_op->compute(custom_inputs, m_param, custom_outputs);
145 146
        // [TODO] sync should be modified
        CompNode::sync_all();
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

        this->owner_graph()->event().signal_inplace<cg::event::AfterKernel>(
            this, m_comp_node
        );
    };
    env.dispatch_on_comp_node(m_comp_node, runner);
}

void CustomOpNode::init_output_static_infer_desc() {
    using namespace std::placeholders;
    using namespace cg::static_infer;

    m_out_shape.resize(output_num());
    auto &&mgr = owner_graph()->static_infer_manager();

    DepVal dep;
163 164
    // [TODO] need design a interface to allow user to decide it
    if (true) {     
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        for (auto input_var: input())                       
            dep.push_back({input_var, DepType::SHAPE});
    }
    else {
        for (auto input_var: input())                       
            dep.push_back({input_var, DepType::VALUE});
    }

    for (size_t i = 0; i < output_num(); ++ i) {
        mgr.register_shape_infer(output(i), {
            dep.empty() ? SourceType::CONSTANT : SourceType::DEP, dep,
            std::bind(&CustomOpNode::infer_desc, this, i, _1, _2)
        });
    }
}

void CustomOpNode::init_output_mem_plan(bool dynamic) {
    for (auto output_var: output()) {
        if (cg::is_static_var_storage(output_var) == !dynamic 
                && !output_var->contain_flag(VarNode::Flag::NO_SYS_MEM_ALLOC))
            output_var->init_mem_plan();
    }
}

void CustomOpNode::init_rt_force_dynamic_mem_alloc_imply_chain() {
    
}

void CustomOpNode::add_input_layout_constraint() {         
    for (auto &&input_var: input()) {
        input_var->add_layout_constraint_contiguous();
    }
}

void CustomOpNode::mem_plan_fwd_in2out_readonly() {        

}

void CustomOpNode::mem_plan_fwd_in2out_writable() {        

}

cg::OperatorNodeBase::OprEventCallback CustomOpNode::get_opr_event_callback() {  
    return {};
}

void CustomOpNode::on_output_comp_node_stream_changed() {  
    for (auto output_var: output()) {
        if (output_var->comp_node() != m_comp_node) {
            mgb_assert(output_var->contain_flag(VarNode::Flag::VOLATILE_CONTENT));
            output_var->comp_node(m_comp_node);
        }
    }
}

cg::OperatorNodeBase::NodeProp* CustomOpNode::do_make_node_prop() const {    
    return OperatorNodeBase::do_make_node_prop();
}

bool CustomOpNode::update_priority() const {
    if (output_num() == 1 
            && output()[0]->contain_flag(VarNode::Flag::PERSISTENT_DEVICE_VALUE)) {
        node_prop().attribute().priority 
            = std::numeric_limits<decltype(NodeProp::Attribute::priority)>::min();
        return true;
    }
    return false;
}

CustomOpNode::CustomOpNode(const std::shared_ptr<const custom::CustomOp> &op,
                           VarNodeArray inputs,
                           const custom::Param &param,
                           const OperatorNodeConfig &config):
        OperatorNodeBase(inputs[0]->owner_graph(), config, op->op_type(), inputs), m_op(op), m_param(param) {
    mgb_assert(input_num() == inputs.size(), "wrong input tensors list length");
240
    for (size_t i=0; i < input_num(); ++i) 
241 242
        add_input({inputs[i]});

243
    for (size_t i=0; i<output_num(); ++i) 
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        add_output(output_info(i).name());
    
    if (!std::is_empty<custom::Param>::value) {
        using step = unsigned long;
        size_t STEP_SIZE = sizeof(step);
        std::string hash_str = std::to_string(op->runtime_id());
        for (auto &&val: param.raw()) {
            hash_str += val.first;
            hash_str += val.second.str();
        }
        if (hash_str.size() % STEP_SIZE != 0)
            hash_str += std::string(STEP_SIZE - (hash_str.size() % STEP_SIZE), ' ');
        for (size_t pos=0; pos <hash_str.size(); pos+=STEP_SIZE)
            add_equivalence_component<PODHash<step>>(reinterpret_cast<const step*>(hash_str.c_str()+pos));
    }
}

VarNodeArray CustomOpNode::make(const std::shared_ptr<const custom::CustomOp> &op,
                                VarNodeArray inputs,
                                const custom::Param &param,
                                const OperatorNodeConfig &config) {
    auto &&outputs = inputs[0]->owner_graph()->insert_opr(
        std::make_unique<CustomOpNode>(op, inputs, param, config))->output();
    return outputs;
}

SymbolVarArray CustomOpNode::make(const std::shared_ptr<const custom::CustomOp> &op,
                                  SymbolVarArray inputs,
                                  const custom::Param &param,
                                  const OperatorNodeConfig &config) {
    VarNodeArray input_vars(inputs.size());
    for (size_t i=0; i<input_vars.size(); ++i)
        input_vars[i] = inputs[i].node();

    auto &&outputs = inputs[0].node()->owner_graph()->insert_opr(
        std::make_unique<CustomOpNode>(op, input_vars, param, config))->output();
    SymbolVarArray ret(outputs.size());
    for (size_t i=0; i<ret.size(); ++i)
        ret[i] = outputs[i];
    return ret;
}

custom::RunTimeId CustomOpNode::runtime_id() const {
    return m_op->runtime_id();
}

uint32_t CustomOpNode::param_tag(void) const {
    return m_op->param_info().tag();
}

custom::Param& CustomOpNode::param(void) {
    return m_param;
}

custom::Param CustomOpNode::param(void) const {
    return m_param;
}

// a series of functions with the same names as CustomOpImpl
std::string CustomOpNode::op_type(void) const {
    return m_op->op_type();
}

std::string CustomOpNode::op_desc(void) const {
    return m_op->op_desc();
}

311
size_t CustomOpNode::input_num(void) const {
312 313 314
    return m_op->input_num();
}

315
size_t CustomOpNode::output_num(void) const {
316 317 318 319 320 321 322 323 324 325 326 327 328
    return m_op->output_num();
}

custom::ArgInfo CustomOpNode::input_info(size_t idx) const {
    return m_op->input_info(idx);
}

custom::ArgInfo CustomOpNode::output_info(size_t idx) const {
    return m_op->output_info(idx);
}

}
}
329 330

#endif