tensor.cpp 26.2 KB
Newer Older
1 2 3 4
/**
 * \file src/core/impl/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */


#include "megbrain/tensor.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/opr/param_defs.h"
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"

#include "megdnn/oprs.h"

#include <thread>

#include <cstring>
#include <cmath>

using namespace mgb;

namespace {

    //! implement non-contiguous d2d copy
    void noncont_tensor_copy(
31 32 33
            const DeviceTensorND &dest, const DeviceTensorND &src,
            bool contig_dest, bool contig_src) {
        auto src_cn = src.comp_node();
34
        auto dst_cn = dest.comp_node();
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        if (src_cn.device_type() == dst_cn.device_type()) {
            // perform relayout op for better performance when src and dst are
            // placed on comp nodes with the same device type
            auto &&src_env = CompNodeEnv::from_comp_node(src.comp_node());
            auto relayout = opr::intl::get_megdnn_global_opr<megdnn::Relayout>(
                    dst_cn);
            dst_cn.activate();
            relayout->exec(
                    const_cast<DeviceTensorND&>(src).as_megdnn(),
                    dest.as_megdnn(), MegDNNHandle::get(src_env).handle());
        } else {
            if (contig_src) {
                mgb_assert(!contig_dest);
                DeviceTensorND tmp{dst_cn};
                tmp.copy_from(src);
                dest.copy_from_fixlayout(tmp);
                return;
            }
            DeviceTensorND tmp;
            tmp.copy_from(src);
            dest.copy_from_fixlayout(tmp);
        }
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    }

    //! implement non-contiguous h2h copy
    void noncont_tensor_copy(
            const HostTensorND &dest, const HostTensorND &src, bool, bool) {
        auto opr = opr::intl::get_megdnn_global_opr<megdnn::Relayout>(
                CompNode::default_cpu());

        opr->exec(
                const_cast<HostTensorND&>(src).as_megdnn(),
                dest.as_megdnn());
    }

    //! implement non-contiguous d2h copy
    void noncont_tensor_copy(
            const HostTensorND &dest, const DeviceTensorND &src,
            bool contig_dest, bool contig_src) {
        if (contig_src) {
            mgb_assert(!contig_dest);
            HostTensorND tmp;
            tmp.copy_from(src).sync();
            dest.copy_from_fixlayout(tmp);  // sync not needed for h2h copy
            return;
        }
        DeviceTensorND tmp;
        tmp.copy_from(src);
        dest.copy_from_fixlayout(tmp);
    }

    //! implement non-contiguous h2d copy
    void noncont_tensor_copy(
            const DeviceTensorND &dest, const HostTensorND &src,
            bool contig_dest, bool contig_src) {
        if (contig_src) {
            mgb_assert(!contig_dest);
            DeviceTensorND tmp;
            // no need to sync because device free is async-safe with respect to
            // host thread
            tmp.copy_from(src);
            dest.copy_from_fixlayout(tmp);
            return;
        }
        HostTensorND tmp;
        tmp.copy_from(src);
        dest.copy_from_fixlayout(tmp).sync();
    }
} // anonymous namespace

/* ============= Slice and SubTensorSpec ============= */

SubTensorSpec SubTensorSpec::make_from_offset_elem(
        const TensorLayout &layout, ptrdiff_t offset_elem) {
    mgb_assert(layout.ndim && layout.dtype.valid());
    return {layout, offset_elem};
}

SubTensorSpec Slice::apply(TensorLayout layout, int axis) const {
    mgb_assert(layout.ndim > 0 && layout.dtype.valid());
    if (axis == megdnn::param::OptionalAxisV1::INVALID_AXIS) {
        axis = 0;
        layout = layout.collapse_contiguous();
        mgb_assert(layout.ndim == 1,
                   "apply Slice with axis==INVALID_AXIS on non-contig layout");
    }
    // axis in [-ndim, ndim) is available
    if (axis < 0)
        axis += layout.ndim;
    mgb_assert(axis >= 0 && static_cast<size_t>(axis) < layout.ndim,
            "invalid axis: %d; ndim=%zu", axis, layout.ndim);

    ptrdiff_t size_ax = layout.shape[axis];
    ptrdiff_t begin, end, step = m_step.val_with_default(1);
    mgb_assert(step, "Slice step can not be zero");

    auto tostr = [](const Maybe<ptrdiff_t> &v) -> std::string {
        if (!v.valid())
            return "None";
        return std::to_string(v.val());
    };
136 137
    auto mod_size = [size_ax](ptrdiff_t v)->ptrdiff_t {
        if (size_ax == 0) return 0;
138 139 140 141
        return v < 0 ? v + size_ax : v;
    };
    MGB_MARK_USED_VAR(tostr);

142 143 144 145 146 147 148 149 150 151 152 153
#define CHECK(cond)                                                                 \
    if (m_is_scalar_idx) {                                                          \
        mgb_assert(cond,                                                            \
                "index out of bound: layout=%s; request index=%s, axis=%d",         \
                layout.to_string().c_str(), tostr(m_begin).c_str(), axis);          \
    } else {                                                                        \
        mgb_assert(cond,                                                            \
                "index out of bound: layout=%s; request begin=%s end=%s step=%s "   \
                "axis=%d",                                                          \
                layout.to_string().c_str(), tostr(m_begin).c_str(),                 \
                tostr(m_end).c_str(), tostr(m_step).c_str(), axis);                 \
    }
154 155 156 157

    if (step > 0) {
        begin = mod_size(m_begin.val_with_default(0));
        end = mod_size(m_end.val_with_default(size_ax));
158 159 160 161 162
        if (!m_is_scalar_idx) {
            end = std::min(end, size_ax);
            begin = std::min(begin, end);
        }
        CHECK(begin >= 0 && end >= begin && end <= size_ax)
163 164 165
    } else {
        begin = mod_size(m_begin.val_with_default(size_ax - 1));
        end = m_end.valid() ? mod_size(m_end.val()) : -1;
166 167 168 169
        if (!m_is_scalar_idx) {
            begin = std::min(begin, std::max<ptrdiff_t>(size_ax-1, 0));
            end = std::min(end, begin);
        }
170
        CHECK(step < 0 && begin >= 0 && end <= begin && begin < size_ax &&
171
              end >= -1)
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    }
    auto step_abs = std::abs(step);
    layout.shape[axis] = (std::abs(end - begin) + step_abs - 1) / step_abs;
    auto orig_stride = layout.stride[axis];
    layout.stride[axis] *= step;

    // make stride as contiguous as possible
    if (layout.shape[axis] != 1 && axis)
        -- axis;
    if (layout.shape[axis] == 1) {
        auto stride = layout.stride[axis] =
            axis + 1 < static_cast<int>(layout.ndim) ?
            layout.stride[axis + 1] * layout.shape[axis + 1] : 1;

        for (int i = axis - 1; i >= 0; -- i) {
            if (layout.shape[i] == 1) {
                layout.stride[i] = stride;
            } else {
                break;
            }
        }
    }

    auto offset_elem = layout.is_empty() ? 0 : orig_stride * begin;
    return SubTensorSpec::make_from_offset_elem(layout, offset_elem);

#undef CHECK
}

void SubTensorSpec::merge_with(const SubTensorSpec &rhs) {
    mgb_assert(m_layout.dtype.valid() && m_layout.dtype == rhs.m_layout.dtype &&
            rhs.m_layout.ndim);
    m_offset_elem += rhs.m_offset_elem;
    m_layout = rhs.m_layout;
}

/* ===================== TensorStorage ===================== */

class mgb::HostTensorStorageTrait {
    public:
        static void* alloc(CompNode node, size_t size) {
            return node.alloc_host(size);
        }

        static void free(CompNode node, void *data) {
            node.free_host(data);
        }
};

class mgb::DeviceTensorStorageTrait {
    public:
        static void* alloc(CompNode node, size_t size) {
            return node.alloc_device(size);
        }

        static void free(CompNode node, void *data) {
            node.free_device(data);
        }
};

template<class Trait>
TensorStorage<Trait>& TensorStorage<Trait>::operator = (
        const TensorStorage& rhs) {
    if (rhs.m_size > rhs.m_capacity) {
        rhs.ptr();
    }
    m_allow_realloc = rhs.m_allow_realloc;
    m_comp_node = rhs.m_comp_node;
    m_size = rhs.m_size;
    m_capacity = rhs.m_capacity;
    m_offset = rhs.m_offset;
    m_data = rhs.m_data;
    return *this;
}

template<class Trait>
TensorStorage<Trait>& TensorStorage<Trait>::ensure_size(size_t sz) {
    if (sz > m_size) {
        mgb_throw_if(!m_allow_realloc || m_offset, MegBrainError,
                "can not grow a tensor that does not allow realloc");
        check_comp_node_valid();
    }
    m_size = sz;
    return *this;
}

template<class Trait>
TensorStorage<Trait> TensorStorage<Trait>::sub(
        ptrdiff_t offset) const {
    ptr(); // apply lazy resize
    ptrdiff_t toff = offset + m_offset;
    if (offset == static_cast<ptrdiff_t>(m_size)) {
        return {false, m_comp_node, 0, 0, 0, RawStorage{}};
    }
    mgb_assert(toff >= 0 && offset < static_cast<ptrdiff_t>(m_size),
            "bad subtensor: offset=%td m_offset=%zu m_size=%zu",
            offset, m_offset, m_size);
    return {false, m_comp_node, m_size - offset, m_capacity - offset,
        static_cast<size_t>(toff), m_data};
}

template<class Trait>
dt_byte* TensorStorage<Trait>::apply_lazy_and_get_ptr() {
    check_comp_node_valid();
    if (m_size > m_capacity) {
        mgb_assert(m_allow_realloc && !m_offset);
        m_data.reset(); // free old ptr
        m_capacity = 0; // to be exception safe
        auto ptr = static_cast<dt_byte*>(Trait::alloc(m_comp_node, m_size));
        mgb_throw_if(!ptr, SystemError, "failed to allocate memory");
        CompNode cn = m_comp_node;
        m_data.reset(ptr, [cn](void *p){Trait::free(cn, p);});
        m_capacity = m_size;
    }
    return m_data.get() + m_offset;
}

template<class Trait>
TensorStorage<Trait>& TensorStorage<Trait>::comp_node(
        CompNode node, bool allow_mem_node_change) {
    mgb_assert(node.valid());
    if (m_comp_node.valid() && node.mem_node() != m_comp_node.mem_node()) {
        mgb_assert(allow_mem_node_change);
        m_allow_realloc = true;
        m_size = m_capacity = m_offset = 0;
        m_data.reset();
    }
    m_comp_node = node;
    return *this;
}

template<class Trait>
void TensorStorage<Trait>::reset(CompNode node, size_t size,
        RawStorage data) {
    mgb_assert(m_allow_realloc);
    m_comp_node = node;
    m_size = size;
    m_capacity = size;
    m_offset = 0;
    m_data = std::move(data);
}

template<class Trait>
template<class RTrait, typename>
TensorStorage<Trait> TensorStorage<Trait>::make_proxy(
        const TensorStorage<RTrait> &src) {
    mgb_assert(src.comp_node().mem_node() == CompNode::default_cpu().mem_node(),
            "proxy source should be on CPU; got %s",
            src.comp_node().to_string().c_str());
    src.ptr();
    return {true, src.m_comp_node, src.m_size, src.m_capacity, src.m_offset,
        src.m_data};
}

template<class Trait>
void TensorStorage<Trait>::on_invalid_comp_node() {
    mgb_throw(MegBrainError, "trying to acccess TensorStorage with invalid "
            "comp node");
}

namespace mgb {

// host to host
template<> template<>
void TensorStorage<HostTensorStorageTrait>::copy_from(
        const TensorStorage<HostTensorStorageTrait> &src, size_t size) const {
    mgb_assert(size <= this->size() && size <= src.size());
    memcpy(ptr(), src.ptr(), size);
}

// device to host
template<> template<>
void TensorStorage<HostTensorStorageTrait>::copy_from(
        const TensorStorage<DeviceTensorStorageTrait> &src, size_t size) const {
    bool need_sync = false;
    mgb_assert(size <= this->size() && size <= src.size());
    if (m_comp_node != src.comp_node()) {
        auto default_cpu = CompNode::default_cpu();
        if (src.comp_node() != default_cpu) {
            mgb_assert(m_comp_node == default_cpu,
                    "inconsistent D2H copy:"
                    " copy from device to host using different comp nodes:"
                    " device_node=%s host_node=%s",
                    src.comp_node().to_string().c_str(),
                    m_comp_node.to_string().c_str());
            // copy_from() should use m_comp_node, and default_cpu is
            // synchronous with current thread, so this copy has no
            // synchronizing ambiguity and we only need to sync on host
            need_sync = true;
        }
    }
    src.comp_node().copy_to_host(ptr(), src.ptr(), size);
    if (need_sync)
        src.comp_node().sync();
}

// host to device
template<> template<>
void TensorStorage<DeviceTensorStorageTrait>::copy_from(
        const TensorStorage<HostTensorStorageTrait> &src, size_t size) const {
    mgb_assert(size <= this->size() && size <= src.size());
    m_comp_node.copy_to_device(ptr(), src.ptr(), size);
}

// device to device
template<> template<>
void TensorStorage<DeviceTensorStorageTrait>::copy_from(
        const TensorStorage<DeviceTensorStorageTrait> &src, size_t size) const {
    mgb_assert(size <= this->size() && size <= src.size());
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    if (src.comp_node().device_type() == CompNode::DeviceType::CPU &&
        comp_node().device_type() == CompNode::DeviceType::CUDA) {
        // current thread(i.e. cuda dispatcher thread) should wait for all
        // operations on src's comp_node to finish, otherwise a race condition
        // might occur between the worker thread of src's comp_node and the
        // thread responsible for copying pageable memory in \p src to a pinned
        // buffer, refer to
        // https://docs.nvidia.com/cuda/cuda-runtime-api/api-sync-behavior.html
        //
        // Note: it is highly recommended that copy tensor from cpu to cuda
        // with asynchronized disaptching(see graph option async_exec_level),
        // or main thread might be blocked by worker thread corresponding to
        // the src's comp_node, resulting in bad performance
        //
        // TODO: consider using cudaMallocHost or cudaHostRegister
        // to pin the memory of src tensor, so it does not require synchronization
        // and is more efficient
        src.comp_node().sync();
        comp_node().copy_to_device(ptr(), src.ptr(), size);
    } else {
        src.comp_node().peer_copy_to(m_comp_node, ptr(), src.ptr(), size);
    }
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
}


// proxy host to device
template TensorStorage<DeviceTensorStorageTrait>
TensorStorage<DeviceTensorStorageTrait>::
make_proxy<HostTensorStorageTrait, void>(
        const TensorStorage<HostTensorStorageTrait>&);

// proxy device to host
template TensorStorage<HostTensorStorageTrait>
TensorStorage<HostTensorStorageTrait>::
make_proxy<DeviceTensorStorageTrait, void>(
        const TensorStorage<DeviceTensorStorageTrait>&);

}

/* ===================== TensorND ===================== */

// ctor def {

#define DEF                        \
    template <class TensorStorage> \
    TensorND<TensorStorage>::TensorND
DEF() = default;

DEF(CompNode node) : m_storage{node} {}

DEF(DType dtype) : m_layout{dtype} {}

DEF(CompNode node, DType dtype) : m_storage{node}, m_layout{dtype} {}

//! allocate contiguous from given comp node, shape and dtype
DEF(CompNode node, const TensorShape& shape, DType dtype, TensorFormat format)
        : m_storage{node}, m_layout{dtype, format} {
    resize(shape);
}

//! allocate contiguous from given comp node and layout (strides not
//! used)
DEF(CompNode node, const TensorLayout& layout)
        : TensorND(node, layout, layout.dtype, layout.format) {
    mgb_assert(layout.is_contiguous(),
               "non-contiguous layout used for initializing a tensor: %s",
               layout.to_string().c_str());
}

#undef DEF
// ctor def }

// def {
#define DEF(name, ret) \
template<class TensorStorage> \
typename TensorND<TensorStorage>::ChainReturnType ret \
TensorND<TensorStorage>::name

DEF(resize, &)(const TensorShape& shape) {
    mgb_assert(m_layout.dtype.valid());
461
    m_layout.init_contiguous_stride(shape);
462
    m_storage.ensure_size(m_layout.span().dist_byte());
463 464 465 466
    return static_cast<ChainReturnType&>(*this);
}

DEF(reset, &)(TensorStorage storage, const TensorLayout &layout) {
467 468 469 470 471
    //! The storage to be reset is either satisfy the layout or empty.
    //! Empty storage is used after weight preprocess for saving memory and
    //! checking layout when running
    mgb_assert(!layout.ndim || storage.valid_span(layout.span()) ||
               storage.empty());
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    m_storage = std::move(storage);
    m_layout = layout;
    return static_cast<ChainReturnType&>(*this);
}

DEF(comp_node, &)(CompNode comp_node, bool allow_mem_node_change) {
    auto orig_cn = m_storage.comp_node_allow_invalid();
    m_storage.comp_node(comp_node, allow_mem_node_change);
    if (orig_cn.valid() && orig_cn.mem_node() != comp_node.mem_node()) {
        m_layout.ndim = 0;
    }
    return static_cast<ChainReturnType&>(*this);
}

DEF(storage, &)(const TensorStorage &storage) {
    if (m_storage.empty() || storage.empty() ||
            m_storage.ptr() != storage.ptr()) {
        m_storage = storage;
        m_layout.ndim = 0;
    }
    return static_cast<ChainReturnType&>(*this);
}

DEF(dtype, &)(DType dtype) {
    if (m_layout.dtype != dtype) {
497
        m_layout.modify_dtype_inplace(dtype);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        m_layout.ndim = 0;
    }
    return static_cast<ChainReturnType&>(*this);
}

DEF(format, &)(TensorFormat format) {
    if (m_layout.format != format) {
        m_layout.format = format;
        m_layout.ndim = 0;
    }
    return static_cast<ChainReturnType&>(*this);
}

DEF(operator[], ) (std::initializer_list<Slice> slice) const {
    auto subspec = SubTensorSpec::make_from_offset_elem(m_layout, 0);
    size_t axis = 0;
    for (auto &&i: slice) {
        subspec.merge_with(i.apply(subspec.layout(), axis));
        axis ++;
    }
    return sub(subspec);
}

DEF(sub, )(const SubTensorSpec &spec) const {
    mgb_assert(
            spec.layout().dtype == dtype() && spec.layout().format == format(),
            "invalid subtensor spec: sub_layout=%s self=%s",
            spec.layout().to_string().c_str(), m_layout.to_string().c_str());
    ChainReturnType rst;
    rst.reset(m_storage.sub(spec.offset_byte()), spec.layout());
    return rst;
}

#undef DEF

// def }

/* ===================== TensorND::copy_from ===================== */
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
namespace {
/**
 * \brief determine whether to check overlap of two tensors.
 * \return true : when HostStorage || (DeviceStorage && SUPPORT_UNIFIED_ADDRESS)
 * \note when both support unified address, we can treat them both on CPU. So,
 * overlap check should be done
 */
template <typename TensorStorage, typename RStorage>
inline bool should_check_overlap(const TensorND<TensorStorage>& dst,
                                 const TensorND<RStorage>& src) {
    return true;
}

template <>
inline bool should_check_overlap<HostTensorStorage, DeviceTensorStorage>(
        const HostTensorND& dst, const DeviceTensorND& src) {
    return src.comp_node().contain_flag(
            CompNode::Flag::SUPPORT_UNIFIED_ADDRESS);
}

template <>
inline bool should_check_overlap<DeviceTensorStorage, HostTensorStorage>(
        const DeviceTensorND& dst, const HostTensorND& src) {
    return dst.comp_node().contain_flag(
            CompNode::Flag::SUPPORT_UNIFIED_ADDRESS);
}

/**
 * \brief D2D tensor copy should check overlap when
 * 1. They are on the same mem node. But note that the address must be logical
 * comparable. i.e. the original address alloc on enflame is uncomparable.
 * 2. They both support unified address, so can be treated as CPU address.
 */
template <>
inline bool should_check_overlap<DeviceTensorStorage, DeviceTensorStorage>(
        const DeviceTensorND& dst, const DeviceTensorND& src) {
    bool is_same_memnode =
            dst.comp_node().mem_node() == src.comp_node().mem_node();
    bool unified_address = src.comp_node().contain_flag(
                                   CompNode::Flag::SUPPORT_UNIFIED_ADDRESS) &&
                           dst.comp_node().contain_flag(
                                   CompNode::Flag::SUPPORT_UNIFIED_ADDRESS);
    return is_same_memnode || unified_address;
}

/**
 * \brief check overlap of two tensors. throw exception when overlapped
 */
inline void check_overlapped(const dt_byte* dst_min, const dt_byte* dst_max,
                             const dt_byte* src_min, const dt_byte* src_max) {
    mgb_throw_if(src_min < dst_max && dst_min < src_max, TensorCopyOverlapError,
                 "cound not perform copy between overlapped tensors");
}
}  // namespace
590 591 592 593 594 595 596 597 598 599 600 601 602

template<class TensorStorage>
template<class RStorage>
typename TensorND<TensorStorage>::ChainReturnType&
TensorND<TensorStorage>::copy_from(const TensorND<RStorage> &src) {
    if (!m_storage.comp_node_valid())
        m_storage.comp_node(src.comp_node());

    if (m_layout.dtype.valid())
        m_layout.dtype.assert_is(src.dtype());
    else
        m_layout.dtype = src.dtype();

603 604
    m_layout = TensorLayout(src.shape(), m_layout.dtype);
    size_t size_bytes = m_layout.span().dist_byte();
605 606 607 608
    m_storage.ensure_size(size_bytes);
    if (!size_bytes) {
        return static_cast<ChainReturnType&>(*this);
    }
609 610 611 612 613 614
    // requirement:
    // default case, physical contiguous
    // lowbit aligned, logical contiguous
    if (src.layout().is_physical_contiguous() ||
        (src.layout().format.is_lowbit_aligned() &&
         src.layout().is_contiguous())) {
615 616 617 618 619 620
        if (should_check_overlap(*this, src)) {
            check_overlapped(m_storage.ptr(),
                             m_storage.ptr() + size_bytes,
                             src.storage().ptr(),
                             src.storage().ptr() + size_bytes);
        }
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
        m_storage.copy_from(src.storage(), size_bytes);
        return static_cast<ChainReturnType&>(*this);
    }
    return const_cast<ChainReturnType&>(copy_from_fixlayout(src));
}

template <class TensorStorage>
template <class RStorage>
const typename TensorND<TensorStorage>::ChainReturnType&
TensorND<TensorStorage>::copy_from_fixlayout(
        const TensorND<RStorage>& src) const {

    dtype().assert_is(src.dtype());
    mgb_assert(m_layout.eq_shape(src.layout()),
            "shape differs in copy_from_fixlayout: %s vs %s",
            static_cast<const TensorShape&>(m_layout).to_string().c_str(),
            static_cast<const TensorShape&>(src.layout()).to_string().c_str());

    if (src.empty()) {
        return static_cast<const ChainReturnType&>(*this);
    }

    mgb_assert(m_layout.is_non_overlapping_strong(),
            "copy dest must have non-overlapping layout");

    TensorLayout::Span
        src_span = src.layout().span(),
        dst_span = layout().span();

650 651 652 653 654 655
    if (should_check_overlap(*this, src)) {
        check_overlapped(this->raw_ptr() + dst_span.low_byte,
                         this->raw_ptr() + dst_span.high_byte,
                         src.raw_ptr() + src_span.low_byte,
                         src.raw_ptr() + src_span.high_byte);
    }
656

657 658 659 660
    bool self_contig = m_layout.is_physical_contiguous() ||
                       (m_layout.format.is_lowbit_aligned() &&
                        m_layout.is_contiguous()),
         src_contig = src.layout().is_physical_contiguous() ||
661 662
                      (src.layout().format.is_lowbit_aligned() &&
                       src.layout().is_contiguous());
663
    if (self_contig && src_contig) {
664 665 666 667
        if ((m_layout.format.is_default() &&
             src.layout().format.is_default()) ||
            (m_layout.format.is_lowbit_aligned() &&
             src.layout().format.is_lowbit_aligned())) {
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
            mgb_assert(src_span.low_byte == 0 && dst_span.low_byte == 0 &&
                       src_span.high_byte == dst_span.high_byte);
            m_storage.copy_from(src.storage(), src_span.high_byte);
        } else {
            mgb_assert(src_span.low_byte == 0 && dst_span.low_byte == 0);
            m_storage.copy_from(src.storage(), std::min(src_span.high_byte,
                                                        dst_span.high_byte));
        }
        return static_cast<const ChainReturnType&>(*this);
    }
    noncont_tensor_copy(*this, src, self_contig, src_contig);
    return static_cast<const ChainReturnType&>(*this);
}

/* =================== misc =================== */

void mgb::dev_tensor_memset(const DeviceTensorND& tensor, int val) {
    auto&& env = CompNodeEnv::from_comp_node(tensor.comp_node());
    env.activate();
    void* ptr = tensor.raw_ptr();
    size_t size = tensor.layout().span().dist_byte();
    switch (env.property().type) {
#if MGB_CUDA
        case CompNode::DeviceType::CUDA:
            MGB_CUDA_CHECK(
                    cudaMemsetAsync(ptr, val, size, env.cuda_env().stream));
            break;
695 696 697
#endif
#if MGB_ATLAS
       case CompNode::DeviceType::ATLAS:
698
#if MGB_USE_ATLAS_ASYNC_API
699 700
           MGB_ATLAS_CHECK(aclrtMemsetAsync(ptr, -1, val, size,
                                            env.atlas_env().stream));
701 702 703
#else
           MGB_ATLAS_CHECK(aclrtMemset(ptr, -1, val, size));
#endif
704
           break;
705
#endif
706 707 708 709 710 711 712
#if MGB_CAMBRICON
       case CompNode::DeviceType::CAMBRICON:
           MGB_CNRT_CHECK(cnrtSyncQueue(env.cnrt_env().queue));
           MGB_CNRT_CHECK(cnrtMemset(ptr, val, size));
           break;
#endif
       case CompNode::DeviceType::CPU: {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
            auto fill = [ptr, size, val]() { std::memset(ptr, val, size); };
            env.cpu_env().dispatch(fill);
        } break;
        default:
            mgb_throw(MegBrainError,
                      "unhandled comp node in dev_tensor_memset: %s",
                      tensor.comp_node().to_string().c_str());
    }
}

namespace mgb {
    template class TensorStorage<HostTensorStorageTrait>;
    template class TensorStorage<DeviceTensorStorageTrait>;
    template class TensorND<TensorStorage<HostTensorStorageTrait>>;
    template class TensorND<TensorStorage<DeviceTensorStorageTrait>>;

    /* ===== copy_from related ===== */

#define HT_RAW TensorND<HostTensorStorage>
#define DT_RAW TensorND<DeviceTensorStorage>
#define HT(f) f<HostTensorStorage>(const HT_RAW&)
#define DT(f) f<DeviceTensorStorage> (const DT_RAW&)


#define INST(f, c) \
    template c HostTensorND& HT_RAW::HT(f) c; \
    template c HostTensorND& HT_RAW::DT(f) c; \
    template c DeviceTensorND& DT_RAW::HT(f) c; \
    template c DeviceTensorND& DT_RAW::DT(f) c

    INST(copy_from, );
    INST(copy_from_fixlayout, const);

#undef INST
#undef DT
#undef HT
#undef DT_RAW
#undef HT_RAW

}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}