relayout.cpp 9.6 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/rocm/relayout.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#include "hcc_detail/hcc_defs_prologue.h"

#include "test/rocm/fixture.h"
#include "megdnn/oprs.h"
#include "test/common/checker.h"
#include "test/common/benchmarker.h"
#include "test/common/relayout.h"
#include "test/rocm/benchmarker.h"

using namespace megdnn;
using namespace test;

namespace {
template<typename tag>
class ROCM_RELAYOUT: public ROCM {
};
TYPED_TEST_CASE(ROCM_RELAYOUT, relayout::test_types);
TYPED_TEST(ROCM_RELAYOUT, run) {
    relayout::run_test<TypeParam>(this->handle_rocm());
}
}

TEST_F(ROCM, RELAYOUT_MEMCPY_ASYNC) {
    Checker<Relayout> checker(handle_rocm());
    checker.set_epsilon(1e-3);
    struct Arg {
        TensorLayout src, dst;
        Arg(TensorLayout src, TensorLayout dst) : src(src), dst(dst) {}
    };
    std::vector<Arg> args;
    // test for contig
    args.emplace_back(Arg{{{51200}, {1}, dtype::Float32()},
                          {{51200}, {1}, dtype::Float32()}});

    // test for copy_2d
    args.emplace_back(Arg{{{51200}, {9}, dtype::Float32()},
                          {{51200}, {1}, dtype::Float32()}});

    for (auto&& arg : args) {
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .execl({arg.src, arg.dst});
    }
}

#if MEGDNN_WITH_BENCHMARK
TEST_F(ROCM, RELAYOUT_BENCHMARK) {
    //! benchmark contious layout, such as (a, b, c, d) -> (b, a, c,d)
    //! just change the first two axis
    megdnn::rocm::enable_miopen_algo_search(handle_rocm(), true);
    auto benchmarker = ROCMBenchmarker<RelayoutForward>(handle_rocm(),
                                                        handle_naive(false));
    benchmarker.set_display(true);

    auto run = [&](const TensorLayoutArray& layouts) {
        for (auto&& layout : layouts) {
            TensorLayout src = layout.dimshuffle({1, 0, 2});
            TensorLayout dst = layout;
            std::swap(dst.shape[0], dst.shape[1]);
            dst.init_contiguous_stride();
            benchmarker.execl({src, dst});
            auto used = benchmarker.execl({src, dst});
            used = benchmarker.execl({src, dst});
            printf("layout: %s bandwith: %f gbps/s\n",
                   layout.to_string().c_str(),
                   2 * layout.total_nr_elems() * layout.dtype.size() / used *
                           1000 / (1024 * 1024 * 1024));
        }

    };

    TensorLayoutArray layouts = {
            {{12, 23, 2}, dtype::Int32()},
            {{12, 23, 8}, dtype::Int32()},
            {{12, 23, 17}, dtype::Int32()},
            {{12, 23, 64}, dtype::Int32()},
            {{12, 23, 129}, dtype::Int32()},
            {{12, 23, 256}, dtype::Int32()},
            {{12, 23, 1029}, dtype::Int32()},
            {{12, 23, 4096}, dtype::Int32()},
            {{12, 23, 9143}, dtype::Int32()},
            {{12, 23, 18284}, dtype::Int32()},
            {{2, 2, 1000000}, dtype::Int32()},
    };
    run(layouts);

    auto run2 = [&](const TensorLayoutArray& layouts) {
        for (auto&& layout : layouts) {
            TensorLayout src = layout.dimshuffle({0, 2, 1, 3});
            TensorLayout dst = layout;
            std::swap(dst.shape[0], dst.shape[1]);
            dst.init_contiguous_stride();
            benchmarker.execl({src, dst});
            auto used = benchmarker.execl({src, dst});
            used = benchmarker.execl({src, dst});
            printf("layout: %s bandwith: %f gbps/s\n",
                   layout.to_string().c_str(),
                   2 * layout.total_nr_elems() * layout.dtype.size() / used *
                           1000 / (1024 * 1024 * 1024));
        }

    };

    layouts = {
            {{3, 12, 24, 100}, dtype::Int32()},
            {{3, 12, 24, 1029}, dtype::Int32()},
            {{3, 4, 24, 9143}, dtype::Int32()},
            {{3, 4, 24, 18284}, dtype::Int32()},
    };

    run2(layouts);
}

TEST_F(ROCM, RELAYOUT_LAST_CONTIG_BENCHMARK) {
    megdnn::rocm::enable_miopen_algo_search(handle_rocm(), true);
    auto benchmarker = ROCMBenchmarker<RelayoutForward>(handle_rocm(),
                                                        handle_naive(false));
    benchmarker.set_display(true);

    TensorLayout src =
            TensorLayout({5, 5, 100000}, {800000, 100000, 1}, dtype::Float32());
    TensorLayout dst =
            TensorLayout({5, 5, 100000}, {700000, 100000, 1}, dtype::Float32());
    benchmarker.execl({src, dst});
    auto used = benchmarker.execl({src, dst});
    used = benchmarker.execl({src, dst});
    printf("src: %s dst: %s bandwith: %f gbps/s\n", src.to_string().c_str(),
           dst.to_string().c_str(),
           2 * src.total_nr_elems() * src.dtype.size() / used * 1000 /
                   (1024 * 1024 * 1024));
}
#endif

TEST_F(ROCM, RELAYOUT) {
    struct Arg {
        TensorLayout src, dst;
        Arg(TensorLayout src, TensorLayout dst) : src(src), dst(dst) {}
    };
    std::vector<Arg> args;
#if !MEGDNN_DISABLE_FLOAT16
    {
        // contiguous stride
        args.emplace_back(TensorLayout({4, 3, 2}, {2, 8, 1}, dtype::Float16()),
                          TensorLayout({4, 3, 2}, {6, 2, 1}, dtype::Float16()));
        args.emplace_back(TensorLayout({4, 3, 2}, {6, 2, 1}, dtype::Float16()),
                          TensorLayout({4, 3, 2}, {2, 8, 1}, dtype::Float16()));
        args.emplace_back(
                TensorLayout({2, 4, 3, 5}, {60, 5, 20, 1}, dtype::Float16()),
                TensorLayout({2, 4, 3, 5}, {60, 15, 5, 1}, dtype::Float16()));
    }
    args.emplace_back(
            TensorLayout({2, 3, 4, 5}, {60, 20, 5, 1}, dtype::Float16()),
            TensorLayout({2, 3, 4, 5}, {120, 40, 10, 2}, dtype::Float16()));
    args.emplace_back(
            TensorLayout({2, 3, 4, 5}, {120, 40, 10, 2}, dtype::Float16()),
            TensorLayout({2, 3, 4, 5}, {60, 20, 5, 1}, dtype::Float16()));
    args.emplace_back(
            TensorLayout({2, 3, 4, 5}, {120, 40, 10, 2}, dtype::Float16()),
            TensorLayout({2, 3, 4, 5}, {180, 60, 15, 3}, dtype::Float16()));
#endif
    args.emplace_back(
            TensorLayout({2, 3, 4, 5}, {60, 20, 5, 1}, dtype::Int32()),
            TensorLayout({2, 3, 4, 5}, {120, 40, 10, 2}, dtype::Int32()));
    args.emplace_back(
            TensorLayout({2, 3, 4, 5}, {120, 40, 10, 2}, dtype::Int32()),
            TensorLayout({2, 3, 4, 5}, {60, 20, 5, 1}, dtype::Int32()));
    args.emplace_back(
            TensorLayout({2, 3, 4, 5}, {120, 40, 10, 2}, dtype::Int32()),
            TensorLayout({2, 3, 4, 5}, {180, 60, 15, 3}, dtype::Int32()));
    {
        // 1d
        size_t n = 10000;
        args.emplace_back(TensorLayout({n}, {1}, dtype::Int32()),
                          TensorLayout({n}, {1}, dtype::Int32()));
        args.emplace_back(TensorLayout({n}, {1}, dtype::Int32()),
                          TensorLayout({n}, {2}, dtype::Int32()));
        args.emplace_back(TensorLayout({n}, {2}, dtype::Int32()),
                          TensorLayout({n}, {1}, dtype::Int32()));
        args.emplace_back(TensorLayout({n}, {2}, dtype::Int32()),
                          TensorLayout({n}, {2}, dtype::Int32()));
    }
    {
        // 2d
        size_t m = 200, n = 300, k = 400;
        ptrdiff_t k2 = k * 2;
        args.emplace_back(TensorLayout({m, n}, {k2, 2}, dtype::Int32()),
                          TensorLayout({m, n}, {k2 + 1, 2}, dtype::Int32()));
        args.emplace_back(TensorLayout({m, n}, {2, k2}, dtype::Int32()),
                          TensorLayout({m, n}, {2, k2 + 1}, dtype::Int32()));
        args.emplace_back(TensorLayout({m, n}, {2, k2}, dtype::Int32()),
                          TensorLayout({m, n}, {k2 + 1, 2}, dtype::Int32()));
        args.emplace_back(TensorLayout({m, n}, {k2, 2}, dtype::Int32()),
                          TensorLayout({m, n}, {2, k2 + 1}, dtype::Int32()));
        args.emplace_back(TensorLayout({m, n}, {k2, 1}, dtype::Int32()),
                          TensorLayout({m, n}, {k2 + 1, 1}, dtype::Int32()));
        args.emplace_back(TensorLayout({m, n}, {1, k2}, dtype::Int32()),
                          TensorLayout({m, n}, {1, k2 + 1}, dtype::Int32()));
        args.emplace_back(TensorLayout({m, n}, {1, k2}, dtype::Int32()),
                          TensorLayout({m, n}, {k2 + 1, 1}, dtype::Int32()));
        args.emplace_back(TensorLayout({m, n}, {k2, 1}, dtype::Int32()),
                          TensorLayout({m, n}, {1, k2 + 1}, dtype::Int32()));
    }
    {
        // 3d
        size_t m = 20, n = 30, k = 40;
        ptrdiff_t k2 = k;
        args.emplace_back(
                TensorLayout({m, n, k}, {k2 * k2 * 4, k2 * 3, 2},
                             dtype::Int32()),
                TensorLayout({m, n, k}, {2 * k2 * k2 * k2 * 4, k2 * 3, 2},
                             dtype::Int32()));
    }
    {
        // simplify_layout
        // 234..56
        // 2..3456
        args.emplace_back(
                TensorLayout(
                        {2, 3, 4, 5, 6},
                        {2 * 3 * 4 * 5 * 6, 2 * 4 * 5 * 6, 2 * 5 * 6, 6, 1},
                        dtype::Int32()),
                TensorLayout({2, 3, 4, 5, 6},
                             {4 * 3 * 4 * 5 * 6, 4 * 5 * 6, 5 * 6, 6, 1},
                             dtype::Int32()));
    }

    Checker<Relayout> checker(handle_rocm());
    for (auto&& arg : args) {
        checker.exec(TensorLayoutArray{arg.src, arg.dst});
    }
}

// vim: syntax=cpp.doxygen