dump_with_testcase_mge.py 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import os
import re
import struct

import cv2
import numpy as np

17
import megengine._internal as mgb
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
import megengine as mge

logger = mge.get_logger(__name__)


def auto_reformat_image(args, path, data, dst_shape):
    """reformat image to target shape

    :param data: image data as numpy array
    :param dst_shape: target shape
    """
    dim3_format = False  # required input format does not contain batch
    hwc_format = False  # required input format is NHWC

    if not dst_shape:  # input tensor shape is not predefined
        if len(data.shape) == 2:
            chl = 1
            h = data.shape[0]
            w = data.shape[1]
        else:
            assert (len(data.shape) == 3), ('Input image must be of dimension 2 or 3')
            h, w, chl = data.shape
        dst_shape = (1, chl, h, w)

    if len(dst_shape) == 3:
        dst_shape = (1, ) + dst_shape
        dim3_format = True

    assert len(dst_shape) == 4, 'bad dst_shape: {}'.format(dst_shape)
    chl = dst_shape[1]
    if chl in [1, 3]:
        n, c, h, w = dst_shape
        dst_shape = (n, h, w, c)
    else:
        chl = dst_shape[3]
        assert chl in [
            1, 3
        ], ('can not infer input format from shape: {}'.format(dst_shape))
        hwc_format = True

    # dst_shape has now been normalized to NHWC format

    if args.resize_input:
        h, w = dst_shape[1:3]
        data = cv2.resize(data, (w, h))
        logger.info('input {} resized to {}'.format(path, data.shape))

    if chl == 1:
        data = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
        data = data[:, :, np.newaxis]

    assert data.ndim == 3
    data = data[np.newaxis]
    # data normalized to NHWC format

    if not hwc_format:
        data = np.transpose(data, (0, 3, 1, 2))

    if dim3_format:
        data = np.squeeze(data, 0)

    return data


def read_input_data(args, dst_shape, dtype, path, repeat):
    def check_shape_equal(dst_shape, data_shape):
        if len(dst_shape):
            assert len(data_shape) == len(dst_shape), (
                'input/data shapes mismatch: {} vs {}'.format(dst_shape, data_shape)
            )

            if data_shape[1:] != dst_shape[1:]:
                logger.warning(
                    'dst_shape is {}; data_shape is {}'.format(dst_shape, data_shape)
                )

    if path.startswith('#'):
        assert not args.resize_input
        assert not args.input_transform
        spec = path
        m = re.match(r'^#rand\(([-0-9.]*)\s*,\s*([-0-9.]*)\s*(,[^\)]+)?\)$', spec)
        assert m, 'bad spec {}'.format(spec)

        rng_min = float(m.group(1))
        rng_max = float(m.group(2))
        if m.group(3):
            shape_str = m.group(3)
            try:
                shape = shape_str[1:].split(',')
                if shape[-1].strip() == '...':
                    shape = shape[:-1]
                    shape.extend(list(dst_shape[len(shape):]))
                data_shape = tuple(map(int, shape))
            except ValueError as e:
                raise ValueError('bad spec {}: {}'.format(spec, e.args))
        else:
            data_shape = dst_shape

        check_shape_equal(dst_shape, data_shape)
        return np.random.uniform(rng_min, rng_max, data_shape).astype(dtype)

    # try to load image
    data = cv2.imread(path, cv2.IMREAD_COLOR)
    if data is None:
        assert not args.resize_input
        data = mge.load(path)
        assert isinstance(data, np.ndarray)
    else:
        # load image succeeds, so we expect input format is image format
        data = auto_reformat_image(args, path, data, dst_shape)

    data = np.repeat(data, repeat, axis=0)
    if repeat > 1:
        logger.info(
            'repeat input for {} times, data shape is {}'.format(repeat, data.shape)
        )

    check_shape_equal(dst_shape, data.shape)

    if args.input_transform:
        data = eval(args.input_transform, {'data': data, 'np': np})

    return data


def gen_one_testcase(args, inputs, spec):
    paths = spec.split(';')
    if len(paths) != len(inputs):
        if len(paths) == 1 and paths[0].startswith('#'):
            paths = ['{}:{}'.format(name, paths[0]) for name in inputs.keys()]
    assert len(paths) == len(inputs), (
        'required inputs: {}; data paths: {}'.format(inputs.keys(), paths)
    )
    if len(paths) == 1 and ':' not in paths[0]:
        paths[0] = next(iter(inputs.keys())) + ':' + paths[0]

    ret = {}
    for path in paths:
        var, path = path.split(':')
        if args.repeat:
            repeat = args.repeat
        else:
            repeat = 1
        ret[var] = read_input_data(
            args, inputs[var].imm_shape, inputs[var].dtype, path, repeat
        )
    return ret


def make_feeds(args):
    cg, _, outputs = mgb.load_comp_graph_from_file(args.input)
    inputs = mgb.cgtools.get_dep_vars(outputs, 'Host2DeviceCopy')
    inputs = {i.name: i for i in inputs}
    outputs_spec = list(map(mgb.copy_output, outputs))

    if not args.no_assert:
        # FIXME! ExternCOprPlaceholder not done
        func = cg.compile(None, outputs_spec)

        def expect_name(var):
            return '{}:expect'.format(var.name)

    testcases = []

    np.set_printoptions(precision=2, threshold=4, suppress=True)

    data_list = []
    for item in args.data:
        if item.startswith('@'):
            with open(item[1:], 'r') as f:
                data_list.extend([line.rstrip() for line in f if line.rstrip() != ''])
        else:
            data_list.append(item)

    for inp_spec in data_list:
        cur_testcase = gen_one_testcase(args, inputs, inp_spec)
        assert len(cur_testcase) == len(inputs), (
            'required inputs: {}; given data: {}'.format(
                inputs.keys(), cur_testcase.keys()
            )
        )

        if not args.no_assert:
            outputs_get = func(**cur_testcase)
            for var, val in zip(outputs, outputs_get):
                cur_testcase[expect_name(var)] = val
                logger.info(
                    'generate test groundtruth: var={} shape={} range=({}, {})'
                    ' mean={} var={}'.format(
                        var, val.shape, val.min(), val.max(), np.mean(val), np.var(val)
                    )
                )
        testcases.append(cur_testcase)
        logger.info(
            'add testcase: \n {}'.format(
                '\n '.join(
                    '{}: shape={} dtype={} range=({:.2f},{:.2f}) '
                    'mean={:.2f} sd={:.2f}'.format(
                        k, v.shape, v.dtype, v.min(), v.max(), np.mean(v), np.std(v)
                    ) for k, v in sorted(cur_testcase.items())
                )
            )
        )

    if not args.no_assert:

        def expect_shp(var):
            ret = var.imm_shape
            if ret:
                return ret
            return testcases[0][expect_name(var)].shape

        verbose = not args.silent

        outputs_new = []
        for i in outputs:
            get = mgb.make_arg(
235
                i.comp_node,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
                cg,
                dtype=i.dtype,
                name=expect_name(i)
            )
            outputs_new.append(
                mgb.opr.assert_equal(get, i, verbose=verbose, maxerr=args.maxerr)
            )
            inputs[expect_name(i)] = get
        outputs = outputs_new

    return {'outputs': outputs, 'testcases': testcases}


def optimize_for_inference(args, outputs):
    args_map = {
        'enable_io16xc32': 'f16_io_f32_comp',
        'enable_ioc16': 'f16_io_comp',
        'enable_hwcd4': 'use_nhwcd4',
254
        'enable_nchw4': 'use_nchw4',
255
        'enable_nchw88': 'use_nchw88',
256
        'enable_nchw44': 'use_nchw44',
257
        'enable_nchw44_dot': 'use_nchw44_dot',
258
        'enable_nchw32': 'use_nchw32',
259 260
        'enable_chwn4': 'use_chwn4',
        'enable_fuse_conv_bias_nonlinearity': 'fuse_conv_bias_nonlinearity',
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        'enable_fuse_conv_bias_with_z': 'fuse_conv_bias_with_z',
    }
    kwargs = {}
    for k, v in args_map.items():
        if getattr(args, k):
            assert args.optimize_for_inference, (
                'optimize_for_inference should be set when {} is given'.format(k)
            )
            kwargs[v] = True

    if args.optimize_for_inference:
        return mgb.optimize_for_inference(outputs, **kwargs)

    return outputs


def main():
    parser = argparse.ArgumentParser(
        description='Pack computing graph, input values and expected output '
        'values into one file for checking correctness. README.md gives more '
        'details on the usage',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument('input', help='MegEngine dumped model file')
    parser.add_argument('-o', '--output', help='output file', required=True)
    parser.add_argument(
        '-d',
        '--data',
        default=[],
        action='append',
        required=True,
        help='Given input test data when input file is a network, '
        'and current network output would be used as groundtruth. '
        'The format is var0:file0;var1:file1... to specify data files for '
        'input vars. It can also be #rand(min,max,shape...) for generating '
        'random input data, for example, #rand(0,255), '
        '#rand(0,255,1,3,224,224) or #rand(0, 255, 1, ...) where `...` means '
        'the remaining part of the original shape. '
        'If the shape is not specified, the shape of '
        'corresponding input tensors in the network will be used. '
        'If there is only one input var, its name can be omitted. '
        'Each data file can either be an image which can be loaded by opencv, '
        'or a pickled numpy.ndarray. '
        'This option can be given multiple times to add multiple testcases. '
        ' *NOTE* '
        'If you start the data with the letter @, the rest should be a '
        'filename, and each line in the file should be a single datum in '
        'the format described above. '
    )
    parser.add_argument(
        '--repeat',
        type=int,
        default=1,
        help='Specify how many times the input image is repeated. '
        'Useful when running benchmark for batch size other than one. '
        'Have no effect on randomly generated input data.'
    )
    parser.add_argument(
        '--silent',
        action='store_true',
        help='set verbose to False in asserti_equal opr'
    )
    parser.add_argument(
        '--optimize-for-inference',
        action='store_true',
        help='enbale optimization for inference'
    )
    parser.add_argument(
        '--no-assert',
        action='store_true',
        help='do not insert assert_equal opr to check result; '
        'this option is useful for benchmarking'
    )
    parser.add_argument(
        '--maxerr',
        type=float,
        default=1e-4,
        help='max error for assert_equal check during runtime'
    )
    parser.add_argument(
        '--resize-input',
        action='store_true',
        help='resize input image to fit input var shape'
    )
    parser.add_argument(
        '--input-transform',
        help='a python expression to transform the input data. '
        'Example: data / np.std(data)'
    )
    parser.add_argument(
        '--discard-var-name',
        action='store_true',
        help='discard variable and param names in the '
        'generated output'
    )
    parser.add_argument(
        '--output-strip-info',
        action='store_true',
        help='output code strip information'
    )
    parser.add_argument(
        '--enable-io16xc32',
        action='store_true',
        help='transform the mode to float16 io float32 compute'
    )
    parser.add_argument(
        '--enable-ioc16',
        action='store_true',
        help='transform the dtype of the model to float16 io '
        'and compute'
    )
    parser.add_argument(
        '--enable-fuse-conv-bias-nonlinearity',
        action='store_true',
        help='fuse convolution bias and nonlinearity opr to a '
        'conv_bias opr and compute'
    )
    parser.add_argument(
        '--enable-hwcd4',
        action='store_true',
        help='transform the model format from NCHW to NHWCD4 '
        'for inference; you may need to disable CUDA and set '
        'MGB_USE_MEGDNN_DBG=2'
    )
385 386 387 388 389 390
    parser.add_argument(
        '--enable-nchw4',
        action='store_true',
        help='transform the model format from NCHW to NCHW4 '
        'for inference'
    )
391 392 393 394 395 396
    parser.add_argument(
        '--enable-nchw88',
        action='store_true',
        help='transform the model format from NCHW to NCHW88 '
        'for inference'
    )
397 398 399 400 401 402
    parser.add_argument(
        '--enable-nchw44',
        action='store_true',
        help='transform the model format from NCHW to NCHW44 '
        'for inference'
    )
403 404 405 406 407 408
    parser.add_argument(
        '--enable-nchw44-dot',
        action='store_true',
        help='transform the model format from NCHW to NCHW44_DOT '
        'for optimizing armv8.2 dot in inference'
    )
409
    parser.add_argument(
410
        '--enable-nchw32',
411 412 413 414
        action='store_true',
        help='transform the model format from NCHW4 to NCHW32 '
        'for inference on nvidia TensoCore'
    )
415 416 417 418 419 420
    parser.add_argument(
        '--enable-chwn4',
        action='store_true',
        help='transform the model format to CHWN4 '
        'for inference, mainly used for nvidia tensorcore'
    )
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    parser.add_argument(
        '--enable-fuse-conv-bias-with-z',
        action='store_true',
        help='fuse conv_bias with z input for inference on '
        'nvidia GPU (this optimization pass will result in mismatch '
        'of the precision of output of training and inference)'
    )
    args = parser.parse_args()

    feeds = make_feeds(args)

    assert isinstance(feeds,
                      dict) and feeds['testcases'], ('testcases can not be empty')

    output_mgbvars = feeds['outputs']
    output_mgbvars = optimize_for_inference(args, output_mgbvars)

    inputs = mgb.cgtools.get_dep_vars(output_mgbvars, 'Host2DeviceCopy')
    inputs = sorted((i.name, i.dtype) for i in inputs)

    if args.discard_var_name:
        sereg_kwargs = dict(keep_var_name=0, keep_param_name=False)
    else:
        sereg_kwargs = dict(keep_var_name=2, keep_param_name=True)

    with open(args.output, 'wb') as fout:
        fout.write(b'mgbtest0')
        fout.write(struct.pack('I', len(feeds['testcases'])))
    stat = mgb.serialize_comp_graph_to_file(
        args.output,
        output_mgbvars,
        append=True,
        output_strip_info=args.output_strip_info,
        **sereg_kwargs
    )
    logger.info(
        'graph dump sizes: tot_size={:.3f}KiB overhead={:.3f}KiB'.format(
            stat.tot_bytes / 1024, (stat.tot_bytes - stat.tensor_value_bytes) / 1024
        )
    )

    for testcase in feeds['testcases']:
        assert isinstance(testcase, dict)
        cg = mgb.comp_graph()
465
        cn = mgb.comp_node('xpux')
466 467 468 469 470 471 472 473 474 475 476 477 478
        output_mgbvars = []
        for name, dtype in inputs:
            output_mgbvars.append(
                cg.make_shared(cn, value=testcase.pop(name), dtype=dtype)
            )
        assert not testcase, 'extra inputs provided in testcase: {}'.format(
            testcase.keys()
        )
        mgb.serialize_comp_graph_to_file(args.output, output_mgbvars, append=True)


if __name__ == '__main__':
    main()