opr_impl.cpp 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/**
 * \file dnn/src/naive/conv_bias/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#include "src/naive/conv_bias/opr_impl.h"
#include "src/naive/convolution/helper.h"

#include <cstring>
#include "megdnn/dtype.h"
#include "src/common/utils.h"
#include "src/naive/handle.h"
#include "src/naive/lowbit_utils.h"
#include "src/common/conv_bias.h"

#include "midout.h"
MIDOUT_DECL(megdnn_naive_conv_bias_fwd)

namespace megdnn {
namespace naive {

namespace convolution {

template <>
void forward_bias<dt_quint4, dt_quint4, dt_qint32, dt_qint32>(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_out dst, dt_byte* workspace_ptr,
        const ConvBiasForward::CanonizedFilterMeta& filter_meta) {
    auto convert_layout = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::Quantized4Asymm>();
        ret.dtype = dtype::Quantized8Asymm(param.scale, param.zero_point);
        return ret;
    };
    TensorND new_src = {workspace_ptr, convert_layout(src.layout)};
    TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(),
                        convert_layout(filter.layout)};

    uint4_to_uint8(src, new_src);
    uint4_to_uint8(filter, new_flt);
    auto new_filter_meta = filter_meta;
    new_filter_meta.dtype = new_flt.layout.dtype;
    forward_bias<dt_quint8, dt_quint8, dt_qint32, dt_qint32>(
            new_src, new_flt, bias, dst, nullptr, new_filter_meta);
}
}  // namespace convolution

size_t ConvBiasForwardImpl::get_workspace_in_bytes(const TensorLayout& src,
                                                   const TensorLayout& flt,
                                                   const TensorLayout& bias,
                                                   const TensorLayout& z,
57 58
                                                   const TensorLayout& dst,
                                                   const PreprocessedFilter*) {
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    size_t float_workspace_size = 0;

    if (z.ndim > 0 && z.dtype.category() != DTypeCategory::FLOAT) {
        megdnn_assert(z.eq_shape(dst));
        // (w * f + b).astype(float) + (z).astype(float)
        float_workspace_size =
                2 * TensorLayout{z, dtype::Float32()}.span().dist_byte();
    }

    if (bias.dtype.enumv() != dst.dtype.enumv()) {
        return float_workspace_size +
               TensorLayout{dst, bias.dtype}.span().dist_byte();
    } else if (src.dtype.enumv() == DTypeEnum::Quantized4Asymm &&
               dst.dtype.enumv() == DTypeEnum::QuantizedS32) {
        return float_workspace_size +
               (src.span().dist_elem() + flt.span().dist_elem()) *
                       sizeof(uint8_t);
    }
    return float_workspace_size;
}

void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                               _megdnn_tensor_in bias, _megdnn_tensor_in z,
                               _megdnn_tensor_out dst,
83
                               const PreprocessedFilter* preprocessed_filter,
84 85 86 87 88
                               _megdnn_workspace workspace) {
    MIDOUT_BEGIN(megdnn_naive_conv_bias_fwd) {
        dt_byte *workspace_ptr = workspace.raw_ptr;
        // ============================w * f + b================================

89 90 91
        auto filter_meta =
                check_exec(src.layout, filter.layout, bias.layout, z.layout,
                           dst.layout, workspace.size, preprocessed_filter);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        auto sfb = dst;
        if (bias.layout.dtype.enumv() != dst.layout.dtype.enumv()) {
            // intermediate result
            sfb = TensorND{workspace_ptr,
                           TensorLayout{dst.layout, bias.layout.dtype}};
            workspace_ptr += sfb.layout.span().dist_byte();
        }
#define DISPATCH_RAW(in_dt, bias_dt, out_dt, cmode, func)                      \
    else if (src.layout.dtype.enumv() == DTypeTrait<dtype::in_dt>::enumv &&    \
             filter.layout.dtype.enumv() == DTypeTrait<dtype::in_dt>::enumv && \
             bias.layout.dtype.enumv() == DTypeTrait<dtype::bias_dt>::enumv && \
             sfb.layout.dtype.enumv() == DTypeTrait<dtype::out_dt>::enumv &&   \
             param().compute_mode == Param::ComputeMode::cmode) {              \
        MEGDNN_DISPATCH_CPU_KERN_OPR(                                          \
                func(src, filter, bias, sfb, workspace_ptr, filter_meta));     \
    }
#define DISPATCH(in_dt, out_dt)                                          \
    DISPATCH_RAW(                                                        \
            in_dt, out_dt, out_dt, DEFAULT,                              \
            (convolution::forward_bias<DTypeTrait<dtype::in_dt>::ctype,  \
                                       DTypeTrait<dtype::in_dt>::ctype,  \
                                       DTypeTrait<dtype::out_dt>::ctype, \
                                       DTypeTrait<dtype::out_dt>::ctype>))
        if (0) {}
        DISPATCH(Float32, Float32)
        DISPATCH(Int8, Int16)
        DISPATCH(Int8, Int32)
        DISPATCH(QuantizedS8, QuantizedS32)
        DISPATCH(Quantized8Asymm, QuantizedS32)
        DISPATCH(Quantized4Asymm, QuantizedS32)
122 123 124
        DISPATCH_RAW(QuantizedS8, QuantizedS32, QuantizedS32, FLOAT32,
                     (convolution::forward_bias<dt_int8, dt_int8, dt_int32,
                                                dt_int32>))
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
#if !MEGDNN_DISABLE_FLOAT16
        DISPATCH(Float16, Float16)
        DISPATCH_RAW(Float16, Float16, Float16, FLOAT32,
                     (convolution::forward_bias<dt_float16, dt_float16,
                                                dt_float16, dt_float32>))
#endif
        else {
            megdnn_throw(ssprintf(
                    "unsupported naive ConvBias(%s, %s, %s, %s) -> %s",
                    src.layout.dtype.name(), filter.layout.dtype.name(),
                    bias.layout.dtype.name(), z.layout.dtype.name(),
                    dst.layout.dtype.name()));
        }
#undef DISPATCH
#undef DISPATCH_RAW
        handle_z_inp_and_activation(handle(), param().nonlineMode, sfb, z, dst,
                                    workspace_ptr);
    }
    MIDOUT_END();
}

std::vector<ConvBiasForward::Algorithm*>
ConvBiasForwardImpl::get_all_algorithms(const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&) {
    return {static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo()};
}

ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
        const TensorLayout& /* src */, const TensorLayout& /* filter */,
        const TensorLayout& /* bias */, const TensorLayout& /* z */,
        const TensorLayout& /* dst */, size_t /* workspace_limit_in_bytes */,
        bool reproducible) {
    auto algo =
            static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo();
    if (reproducible) {
        megdnn_assert(algo->is_reproducible(),
                      "require reproducible algorithm, but heuristic "
                      "algorithm(%s) is not "
                      "reproducible",
                      algo->name());
    }
    return algo;
}

const char* ConvBiasForwardImpl::get_algorithm_set_name() const {
    return "DEFAULT";
}

}  // namespace naive
}  // namespace megdnn

// vim: syntax=cpp.doxygen