algos.cpp 23.5 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/fallback/convolution/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
 */

#include "src/fallback/convolution/algos.h"
#include "src/common/opr_delegate.h"
#include "src/fallback/convolution/col2img_helper.h"
#include "src/fallback/convolution/run_conv.h"

#include "midout.h"

using namespace megdnn;
using namespace fallback;

MIDOUT_DECL(megdnn_fallback_conv)

namespace {

template <typename T>
void incr_ptr(T*& dst, ptrdiff_t delta) {
    dst = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(dst) + delta);
}

using NCBKernSizeParam = ConvolutionBackwardDataImpl::NCBKernSizeParam;
using NCBKernParam = ConvolutionBackwardDataImpl::NCBKernParam;

Relayout* get_relayout_opr() {
    static CpuOprDelegationStorage<> storage;
    return storage.get<Relayout>();
}

MatrixMul* get_matmul_opr(const NCBKernSizeParam& param) {
    using ConvCM = param::Convolution::ComputeMode;
    using MmCM = param::MatrixMul::ComputeMode;
    static CpuOprDelegationStorage<2> storage;
    switch (param.compute_mode) {
        default:
            return storage.get<MatrixMul, 0>({});
        case ConvCM::FLOAT32: {
            MatrixMul::Param p;
            p.compute_mode = MmCM::FLOAT32;
            return storage.get<MatrixMul, 1>(p);
        }
    }
}

WorkspaceBundle get_bundle(const NCBKernSizeParam& param) {
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    MEGDNN_MARK_USED_VAR(N);
    MEGDNN_MARK_USED_VAR(OH);
    MEGDNN_MARK_USED_VAR(OW);
    bool can_matrix_mul_direct =
            (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0);
    // temp space to store unrolled matrix
    // workspace for matrix mul opr
    // workspace for relayout opr
    size_t part0, part1, part2;
    if (can_matrix_mul_direct) {
        part0 = 0;
    } else {
        part0 = (IC * FH * FW * IH * IW) * param.grad_type.size();
    }
    part2 = (OC * IC * FH * FW) * param.filter_type.size();
    {
        TensorLayout A_, B_, C_;
        A_ = TensorLayout({IC * FH * FW, OC}, param.filter_type);
        B_ = TensorLayout({OC, IH * IW}, param.diff_type);
        C_ = TensorLayout({IC * FH * FW, IH * IW}, param.grad_type);
        part1 = get_matmul_opr(param)->get_workspace_in_bytes(A_, B_, C_);
    }
    return {nullptr, {part0, part1, part2}};
}

template <typename ftype, typename dtype, typename gtype>
void kern_matmul(const NCBKernParam& param) {
    bool is_xcorr = !param.filter_meta.should_flip;
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    auto bundle = get_bundle(param);
    bundle.set(param.workspace_ptr);
    bool is1X1 =
            (FH == 1 && FW == 1 && SH == 1 && SW == 1 && PH == 0 && PW == 0);

    typedef void (*Func1)(const gtype*, gtype*, int, int, int, int, int, int,
                          int);
    typedef void (*Func2)(const gtype*, gtype*, int, int, int, int, int, int,
                          int, int, int, int, int);
    Func1 f1 = nullptr;
    Func2 f2 = nullptr;
    if (is_xcorr) {
        f1 = col2img<true>;
        f2 = col2img_stride_padding<true>;
    } else {
        f1 = col2img<false>;
        f2 = col2img_stride_padding<false>;
    }
    ftype* filter = const_cast<ftype*>(param.filter<ftype>());
    TensorND A_src, A_dst;
    {
        A_src.layout = TensorLayout({IC * FH * FW, OC},
                                    {static_cast<std::ptrdiff_t>(1),
                                     static_cast<std::ptrdiff_t>(IC * FH * FW)},
                                    param.filter_type);
        A_src.raw_ptr = static_cast<void*>(filter);
        A_dst.layout = TensorLayout({IC * FH * FW, OC}, param.filter_type);
        A_dst.raw_ptr = static_cast<void*>(bundle.get(2));
        // TODO Should be removed once armv8 convolution support transpose.
        get_relayout_opr()->exec(A_src, A_dst, inplace_cpu_handle().get());
    }
    for (size_t n = 0; n < N; ++n) {
        gtype *C_src, *C_dst;
        dtype* diff =
                const_cast<dtype*>(param.diff<dtype>() + n * param.inp_bs);
        gtype* grad = param.grad<gtype>() + n * param.out_bs;
        if (is1X1) {
            C_src = grad;
        } else {
            C_src = static_cast<gtype*>(bundle.get(0));
        }
        {
            TensorND B_, C_;
            B_.layout = TensorLayout({OC, IH * IW}, param.diff_type);
            B_.raw_ptr = static_cast<void*>(diff);
            C_.layout = TensorLayout({IC * FH * FW, IH * IW}, param.grad_type);
            C_.raw_ptr = C_src;
            Workspace workspace(static_cast<dt_byte*>(bundle.get(1)),
                                bundle.get_size(1));
            get_matmul_opr(param)->exec(A_dst, B_, C_, workspace);
        }

        if (!is1X1) {
            C_dst = grad;
            std::memset(C_dst, 0, param.grad_type.size() * IC * OH * OW);
            if (PH == 0 && PW == 0 && SH == 1 && SW == 1) {
                f1(C_src, C_dst, OH, OW, IC, IH, IW, FH, FW);
            } else {
                f2(C_src, C_dst, OH, OW, IC, IH, IW, FH, FW, SH, SW, PH, PW);
            }
        }
    }
}

void kern_direct(const NCBKernParam& param) {
    UNPACK_CONV_F32_NCB_KERN_SIZES(param);
    auto diff = param.diff<float>(), filter = param.filter<float>();
    auto grad = param.grad<float>();
    for (size_t n = 0; n < N; ++n) {
        convolution::run_conv_backward_data(
                diff + n * param.inp_bs, filter, grad + n * param.out_bs,
                param.workspace_ptr, IH, IW, IC, FH, FW, OH, OW, OC, PH, PW, SH,
                SW, !param.filter_meta.should_flip);
    }
}

}  // namespace

/* ===================== fallback algo ===================== */

bool ConvolutionImpl::AlgoFallback::usable(
        ConvolutionImpl*, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    auto&& fm = param.filter_meta;
    return fm.format == param::Convolution::Format::NCHW &&
           param.src_type.enumv() == DTypeEnum::Float32 &&
           param.filter_type.enumv() == DTypeEnum::Float32 &&
           param.dst_type.enumv() == DTypeEnum::Float32 &&
           fm.spatial_ndim == 2 && fm.dilation[0] == 1 && fm.dilation[1] == 1;
}

size_t ConvolutionImpl::AlgoFallback::get_workspace(
        ConvolutionImpl*, const NCBKernSizeParam& param) const {
    auto FH = param.filter_meta.spatial[0], FW = param.filter_meta.spatial[1];
    size_t nr_threads = param.nr_threads;
    if (param.filter_meta.should_flip) {
        // need transpose filter
        return WorkspaceBundle{nullptr, {FH * FW * sizeof(float)}}
                       .total_size_in_bytes() *
               nr_threads;
    } else {
        return 0;
    }
}

SmallVector<ConvolutionImpl::NCBKern>
ConvolutionImpl::AlgoFallback::dispatch_kern(
        ConvolutionImpl* opr, const NCBKernSizeParam& param) const {
    size_t group = param.filter_meta.group;
    size_t N = param.n;
    size_t nr_threads = param.nr_threads;
    size_t workspace_per_thread = get_workspace(opr, param) / nr_threads;
    auto kern_fallback = [workspace_per_thread](const NCBKernParam& p,
                                                const NCBKernIndex& ncb_index) {
        UNPACK_CONV_F32_NCB_KERN_SIZES(p);
201 202
        size_t batch_id = ncb_index.ndrange_id[1];
        size_t group_id = ncb_index.ndrange_id[0];
203
        MEGDNN_MARK_USED_VAR(N);
204 205 206
        auto src = p.src<float>(batch_id, group_id),
             filter = p.filter<float>(group_id);
        auto dst = p.dst<float>(batch_id, group_id);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        size_t thread_id = ncb_index.thread_id;
        void* workspace_ptr = reinterpret_cast<void*>(
                reinterpret_cast<ptrdiff_t>(p.workspace_ptr) +
                workspace_per_thread * thread_id);
        convolution::run_conv(src, filter, dst, workspace_ptr, IH, IW, IC, FH,
                              FW, OH, OW, OC, PH, PW, SH, SW,
                              !p.filter_meta.should_flip);
    };
    return {{kern_fallback, {group, N, 1_z}}};
}

/* ===================== naive algo ===================== */

bool ConvolutionImpl::AlgoNaive::usable(
        ConvolutionImpl*, const NCBKernSizeParam& param,
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    bool ret = false;

#define cb(dt) ret |= (param.src_type.enumv() == DTypeTrait<dt>::enumv);
    MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb);
#undef cb
#define cb(dt_src, dt_dst)                                            \
    ret |= (param.src_type.enumv() == DTypeTrait<dt_src>::enumv &&    \
            param.filter_type.enumv() == DTypeTrait<dt_src>::enumv && \
            param.dst_type.enumv() == DTypeTrait<dt_dst>::enumv)
    cb(dtype::Int8, dtype::Int16);
    cb(dtype::Int8, dtype::Int32);
    cb(dtype::Quantized8Asymm, dtype::QuantizedS32);
    cb(dtype::QuantizedS8, dtype::QuantizedS32);
#undef cb
    ret = ret &&
          (param.filter_meta.format == param::Convolution::Format::NCHW ||
           param.filter_meta.format == param::Convolution::Format::NHWC);
    return ret;
}

SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoNaive::dispatch_kern(
        ConvolutionImpl*, const NCBKernSizeParam& param) const {
    size_t N = param.n;
    size_t group = param.filter_meta.group;
#define cb(dt, cmode, compute_type)                                      \
    do {                                                                 \
        if (param.src_type.enumv() == DTypeTrait<dt>::enumv &&           \
            param.compute_mode == param::ConvBias::ComputeMode::cmode) { \
            using ctype = DTypeTrait<dt>::ctype;                         \
            using comp_type = DTypeTrait<compute_type>::ctype;           \
253 254 255 256 257
            MIDOUT_BEGIN(megdnn_fallback_conv, midout_iv(1)) {           \
                return {{kern_naive_forward<ctype, ctype, comp_type>,    \
                         {group, N, 1_z}}};                              \
            }                                                            \
            MIDOUT_END();                                                \
258 259 260 261 262 263 264 265 266 267
        }                                                                \
    } while (0)

    cb(dtype::Float32, DEFAULT, dtype::Float32);
#if !MEGDNN_DISABLE_FLOAT16
    cb(dtype::Float16, DEFAULT, dtype::Float16);
    cb(dtype::Float16, FLOAT32, dtype::Float32);
#endif
#undef cb

268 269 270 271 272 273 274 275 276 277 278 279 280
#define cb(dt_src, dt_dst)                                              \
    do {                                                                \
        if (param.src_type.enumv() == DTypeTrait<dt_src>::enumv &&      \
            param.filter_type.enumv() == DTypeTrait<dt_src>::enumv &&   \
            param.dst_type.enumv() == DTypeTrait<dt_dst>::enumv) {      \
            MIDOUT_BEGIN(megdnn_fallback_conv, midout_iv(2)) {          \
                return {{kern_naive_forward<DTypeTrait<dt_src>::ctype,  \
                                            DTypeTrait<dt_dst>::ctype,  \
                                            DTypeTrait<dt_dst>::ctype>, \
                         {group, N, 1_z}}};                             \
            }                                                           \
            MIDOUT_END();                                               \
        }                                                               \
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    } while (0)
    cb(dtype::Int8, dtype::Int16);
    cb(dtype::Int8, dtype::Int32);
    cb(dtype::Quantized8Asymm, dtype::QuantizedS32);
    cb(dtype::QuantizedS8, dtype::QuantizedS32);
    megdnn_throw(megdnn_mangle("unknown convolution data type"));
#undef cb
}

/* ===================== default algo ===================== */

ConvolutionImpl::AlgoDefault::AlgoDefault(fallback::ConvBiasImpl* conv_bias_opr,
                                          ConvBiasImpl::AlgoBase* algorithm)
        : m_conv_bias_opr(conv_bias_opr), m_algorithm(algorithm) {
    megdnn_assert_internal(algorithm);
    m_name = ssprintf("CONVOLUTION_DEFAULT_%s", m_algorithm->name());
}

ConvBiasImpl::NCBKernSizeParam
ConvolutionImpl::AlgoDefault::AlgoDefault::init_convbias_opr_and_param(
        ConvBiasImpl* conv_bias_opr, const NCBKernSizeParam& param) {
    DType bias_type = param.dst_type;
    if (bias_type.category() == DTypeCategory::QUANTIZED) {
        bias_type = dtype::QuantizedS32(
                mul_scale(param.src_type, param.filter_type));
    }

    ::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param(
            param, 0, param::MatrixMul::Format::DEFAULT, bias_type, 0,
            BiasMode::NO_BIAS, param::ConvBias::NonlineMode::IDENTITY);
    // nonline mode
    conv_bias_opr->param().nonlineMode = conv_bias_size_param.nonlineMode;
    // convolution mode
    if (conv_bias_size_param.filter_meta.should_flip) {
        conv_bias_opr->param().mode = param::ConvolutionV0::Mode::CONVOLUTION;
    } else {
        conv_bias_opr->param().mode =
                param::ConvolutionV0::Mode::CROSS_CORRELATION;
    }
    // sparse
    if (conv_bias_size_param.filter_meta.group > 1) {
        conv_bias_opr->param().sparse = param::ConvolutionV0::Sparse::GROUP;
    } else {
        conv_bias_opr->param().sparse = param::ConvolutionV0::Sparse::DENSE;
    }
    // format
    conv_bias_opr->param().format = conv_bias_size_param.filter_meta.format;
    // pad stride dilate
    conv_bias_opr->param().pad_h = conv_bias_size_param.filter_meta.padding[0];
    conv_bias_opr->param().pad_w = conv_bias_size_param.filter_meta.padding[1];
    conv_bias_opr->param().stride_h =
            conv_bias_size_param.filter_meta.stride[0];
    conv_bias_opr->param().stride_w =
            conv_bias_size_param.filter_meta.stride[1];
    conv_bias_opr->param().dilate_h =
            conv_bias_size_param.filter_meta.dilation[0];
    conv_bias_opr->param().dilate_w =
            conv_bias_size_param.filter_meta.dilation[1];
    // output_block_size
    conv_bias_opr->param().output_block_size =
            conv_bias_size_param.output_block_size;
    // compute_mode
    conv_bias_opr->param().compute_mode = conv_bias_size_param.compute_mode;

    return conv_bias_size_param;
}

bool ConvolutionImpl::AlgoDefault::is_preferred(
        ConvolutionImpl*, const NCBKernSizeParam& param) const {
    ::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
            init_convbias_opr_and_param(m_conv_bias_opr, param);
    return m_algorithm->is_preferred(m_conv_bias_opr, conv_bias_param);
}

bool ConvolutionImpl::AlgoDefault::usable(
        ConvolutionImpl*, const NCBKernSizeParam& param,
        AlgoSelectionStrategy algo_selection_strategy) const {
    ::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
            init_convbias_opr_and_param(m_conv_bias_opr, param);
    return m_algorithm->usable(m_conv_bias_opr, conv_bias_param,
                               static_cast<ConvBiasImpl::AlgoSelectionStrategy>(
                                       algo_selection_strategy));
}

WorkspaceBundle ConvolutionImpl::AlgoDefault::get_bundle(
        const NCBKernSizeParam& param) const {
    ::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
            init_convbias_opr_and_param(m_conv_bias_opr, param);
    m_conv_bias_opr->execution_policy() = {m_algorithm};
    return WorkspaceBundle(nullptr, {m_algorithm->get_workspace(
                                            m_conv_bias_opr, conv_bias_param)});
}

size_t ConvolutionImpl::AlgoDefault::get_workspace(
        ConvolutionImpl*, const NCBKernSizeParam& param) const {
    return get_bundle(param).total_size_in_bytes();
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
size_t ConvolutionImpl::AlgoDefault::get_preprocess_workspace(
        ConvolutionImpl*, const NCBKernSizeParam& param) const {
    ::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
            init_convbias_opr_and_param(m_conv_bias_opr, param);
    m_conv_bias_opr->execution_policy() = {m_algorithm};
    return m_algorithm->get_preprocess_workspace(m_conv_bias_opr,
                                                 conv_bias_param);
}

SmallVector<TensorLayout>
ConvolutionImpl::AlgoDefault::deduce_preprocessed_filter_layout(
        ConvolutionImpl*, const NCBKernSizeParam& param) const {
    ::ConvBiasImpl::NCBKernSizeParam conv_bias_param =
            init_convbias_opr_and_param(m_conv_bias_opr, param);
    m_conv_bias_opr->execution_policy() = {m_algorithm};
    return m_algorithm->deduce_preprocessed_filter_layout(m_conv_bias_opr,
                                                          conv_bias_param);
}

//! Return the implement preprocess kernel
SmallVector<ConvolutionImpl::NCBKern>
ConvolutionImpl::AlgoDefault::get_preprocess_kimpl(
        ::ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase* algo,
        const NCBKernSizeParam& param) {
    MIDOUT_BEGIN(megdnn_fallback_conv, midout_iv("get_preprocess_kimpl"_hash)) {
        // construct the conv_bias kern param
        ::ConvBiasImpl::NCBKernParam conv_bias_param;
        ::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param =
                init_convbias_opr_and_param(conv_bias_opr, param);
        static_cast<::ConvBiasImpl::NCBKernSizeParam&>(conv_bias_param) =
                conv_bias_size_param;
        auto conv_bias_preprocess_kerns =
                algo->dispatch_preprocess_kerns(conv_bias_opr, conv_bias_param);
        SmallVector<ConvolutionImpl::NCBKern> convolution_preprocess_kerns;

        //! Set the conv_bias param using convolution param
        auto set_copy_param_filter_workspace_ptr =
                [](const NCBKernParam& conv_param,
                   ::ConvBiasImpl::NCBKernParam& copied_param) {
                    copied_param.filter_ptr = conv_param.filter_ptr;
                    copied_param.workspace_ptr = conv_param.workspace_ptr;
                    copied_param.workspace_size = conv_param.workspace_size;
                };
        for (size_t i = 0; i < conv_bias_preprocess_kerns.size(); i++) {
            auto kernel = conv_bias_preprocess_kerns[i];
            //! If the kerenl batch parallel
            auto run = [=](const NCBKernParam& p,
                           const NCBKernIndex& ncb_index) {
                auto copy_param = conv_bias_param;
                set_copy_param_filter_workspace_ptr(p, copy_param);
                kernel.kern(copy_param,
                            {ncb_index.thread_id, ncb_index.ndrange_id});
            };
            convolution_preprocess_kerns.push_back({run, kernel.global_size});
        }
        return convolution_preprocess_kerns;
    }
    MIDOUT_END();
}

//! Return the implement kernel
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoDefault::get_kimpl(
        ::ConvBiasImpl* conv_bias_opr, ConvBiasImpl::AlgoBase* algo,
        const NCBKernSizeParam& param) {
    MIDOUT_BEGIN(megdnn_fallback_conv, midout_iv(0)) {
        // construct the conv_bias kern param
        ::ConvBiasImpl::NCBKernParam conv_bias_param;
        ::ConvBiasImpl::NCBKernSizeParam conv_bias_size_param =
                init_convbias_opr_and_param(conv_bias_opr, param);
        static_cast<::ConvBiasImpl::NCBKernSizeParam&>(conv_bias_param) =
                conv_bias_size_param;
        auto conv_bias_kerns =
                algo->dispatch_kerns(conv_bias_opr, conv_bias_param);
        SmallVector<ConvolutionImpl::NCBKern> convolution_kerns;

        //! Set the conv_bias param using convolution param
455
        auto set_copy_param_compute_address =
456 457 458 459 460 461 462 463 464 465 466 467 468 469
                [](const NCBKernParam& conv_param,
                   ::ConvBiasImpl::NCBKernParam& copied_param) {
                    copied_param.src_ptr = conv_param.src_ptr;
                    copied_param.filter_ptr = conv_param.filter_ptr;
                    copied_param.dst_ptr = conv_param.dst_ptr;
                    copied_param.workspace_ptr = conv_param.workspace_ptr;
                    copied_param.workspace_size = conv_param.workspace_size;
                };
        for (size_t i = 0; i < conv_bias_kerns.size(); i++) {
            auto kernel = conv_bias_kerns[i];
            //! If the kerenl batch parallel
            auto run = [=](const NCBKernParam& p,
                           const NCBKernIndex& ncb_index) {
                auto copy_param = conv_bias_param;
470
                set_copy_param_compute_address(p, copy_param);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
                kernel.kern(copy_param,
                            {ncb_index.thread_id, ncb_index.ndrange_id});
            };
            convolution_kerns.push_back({run, kernel.global_size});
        }
        return convolution_kerns;
    }
    MIDOUT_END();
}

/* ===================== direct algo ===================== */

bool ConvolutionBackwardDataImpl::AlgoDirect::usable(
        ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const {
    auto&& fm = param.filter_meta;
    return fm.format == param::Convolution::Format::NCHW &&
           param.diff_type.enumv() == DTypeEnum::Float32 &&
           param.filter_type.enumv() == DTypeEnum::Float32 &&
           param.grad_type.enumv() == DTypeEnum::Float32 &&
           fm.spatial_ndim == 2 && fm.group == 1 && fm.dilation[0] == 1 &&
           fm.dilation[1] == 1;
}

size_t ConvolutionBackwardDataImpl::AlgoDirect::get_workspace(
        ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const {
    auto FH = param.filter_meta.spatial[0], FW = param.filter_meta.spatial[1];
    if (param.filter_meta.should_flip) {
        // need transpose filter
        return FH * FW * sizeof(float);
    } else {
        return 0;
    }
}

ConvolutionBackwardDataImpl::ncb_kern_t
ConvolutionBackwardDataImpl::AlgoDirect::dispatch_kern(
        ConvolutionBackwardDataImpl*, const NCBKernSizeParam&) const {
    return kern_direct;
}

/* ===================== Matrix mul algo ===================== */

bool ConvolutionBackwardDataImpl::AlgoMatrixMul::usable(
        ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const {
    auto&& fm = param.filter_meta;
    return fm.format == param::Convolution::Format::NCHW &&
           fm.spatial_ndim == 2 && fm.group == 1 && fm.dilation[0] == 1 &&
           fm.dilation[1] == 1;
}

size_t ConvolutionBackwardDataImpl::AlgoMatrixMul::get_workspace(
        ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const {
    return get_bundle(param).total_size_in_bytes();
}

ConvolutionBackwardDataImpl::ncb_kern_t
ConvolutionBackwardDataImpl::AlgoMatrixMul::dispatch_kern(
        ConvolutionBackwardDataImpl*, const NCBKernSizeParam& param) const {
#define cb(dt)                                                    \
    do {                                                          \
        if (param.filter_type.enumv() == DTypeTrait<dt>::enumv) { \
            using ctype = DTypeTrait<dt>::ctype;                  \
            return kern_matmul<ctype, ctype, ctype>;              \
        }                                                         \
    } while (0);
    MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb);
#undef cb

#define cb(dt_src, dt_dst)                                            \
    do {                                                              \
        if (param.diff_type.enumv() == DTypeTrait<dt_src>::enumv &&   \
            param.filter_type.enumv() == DTypeTrait<dt_src>::enumv && \
            param.grad_type.enumv() == DTypeTrait<dt_dst>::enumv) {   \
            return kern_matmul<DTypeTrait<dt_src>::ctype,             \
                               DTypeTrait<dt_src>::ctype,             \
                               DTypeTrait<dt_dst>::ctype>;            \
        }                                                             \
    } while (0)
    cb(dtype::Int8, dtype::Int32);
    cb(dtype::QuantizedS8, dtype::QuantizedS32);
    cb(dtype::Quantized8Asymm, dtype::QuantizedS32);
    megdnn_throw("unsupported data type on matrix mul");
#undef cb
}

// vim: syntax=cpp.doxygen